JPS6035105A - Lng based generating equipment by rankine cycle - Google Patents

Lng based generating equipment by rankine cycle

Info

Publication number
JPS6035105A
JPS6035105A JP14388183A JP14388183A JPS6035105A JP S6035105 A JPS6035105 A JP S6035105A JP 14388183 A JP14388183 A JP 14388183A JP 14388183 A JP14388183 A JP 14388183A JP S6035105 A JPS6035105 A JP S6035105A
Authority
JP
Japan
Prior art keywords
lubricating oil
refrigerant
medium
conduit
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14388183A
Other languages
Japanese (ja)
Other versions
JPH0146686B2 (en
Inventor
Osamu Kita
喜多 修
Shigeo Watanabe
茂雄 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Sanki Engineering Co Ltd
Hitachi Ltd
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Sanki Engineering Co Ltd
Hitachi Techno Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Sanki Engineering Co Ltd, Hitachi Techno Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Sanki Engineering Co Ltd
Priority to JP14388183A priority Critical patent/JPS6035105A/en
Publication of JPS6035105A publication Critical patent/JPS6035105A/en
Publication of JPH0146686B2 publication Critical patent/JPH0146686B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To obtain supply of refrigerant with high density of lubricating oil to an oil separator by installing a weir in a Rankine-Cycle-type refrigerant operator and introducing a part of the regrigerant, which flows over the weir because of its raised boiling foam level due to lubricating oil density exceeding the predetermined density. CONSTITUTION:Through a conduit 18, LNG is sent to a LNG vaporizer 4, in which it is evaporated by condensation heat of refrigerant like fleon from a conduit 13. Further, it is sent to a NG heater 5, in which it is heated by sea water to become natural gas at 0 deg.C or higher temperature and delivered to consumers. Refrigerant that has been condensed in the vaporizer 4 is supplied to a refrigerant evaporator 1 by a pump 6 and heated by sea water from a conduit 21. And the gas generated thereby is sent to a turbine 7 through a conduit 12 in order to have the gas do work in the turbine 7 to drive a generator 8. And a refrigerant evaporator 1 containing a weir 3 installed therein sends refrigerant with high density of lubricating oil to an oil separator 9, taking advantage of a rise of a boiling boundary surface in the evaporator 1, which takes places because of mixing of lubricating oil into the refrigerant.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、液化天然ガス(LNG)が気化する時の冷熱
をランキンサイクルにより動力として回収し発電を行な
うフロン系サイクル媒体を使用するランキンサイクル式
冷熱発電設備に関するものであり、特にランキンサイク
ル用媒体タービンの期 安定した長規連続運転性を得るための設備構成に係るも
のである、 〔発明の背景〕 LNG気化時の冷熱を動力として回収し発電するために
、ランキンサイクル式LNG冷熱発電設備が適すること
が知られている。このランキンサイクル媒体としては、
例えばフロンR−22,フロンR−13B1などのフロ
ン系媒体が用いられ閉サイクルで循環使用されている、 このような設備では、媒体ガスが媒体タービンの軸封部
より大気中に漏洩することを防(゛ため、軸封部はオイ
ルフィルムシールやメカニカルシールのような軸シール
機構が採用されているが、運転を継続するに従い媒体タ
ービンの軸シール部よりメカニカルシールや軸受用と1
)て使」されている潤滑油が、通常は微量ながらランキ
ンサイクル系内に漏れ込む。さらに、軸シール部が破損
などのトラブル番−より、一時的に多量の潤滑油がラン
キンサイクル系内に混入することもある。この系内に漏
れ込んだ潤滑油は、ランキン媒体に比べ沸点が高いため
そのほとんどが媒体蒸発器中に蓄積しる。すなわち、第
1図のように油泥入量にほぼ比例して泡沫高さが上昇す
る。このため、潤滑油の濃度が高々なると、沸騰面泡沫
高さが媒体蒸発器のデミスタ−を越えるためミストが飛
散し、媒体タービンに流れ込む蒸気媒体中に液媒体の同
伴する植が増加し、そのため媒体タービンに振動や異音
が発生し、運転を継続することが不可能となる現象が生
じ信頼性の面で問題があったのみならず、従来はこのよ
うな状態になった場合、ランキン媒体を交換することに
より運転を継続できることが知られていたが、ランキン
媒体は高価なものであり交換する場合は多額の費用を要
するため、経済的にも不都合であった。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a Rankine cycle system that uses a fluorocarbon-based cycle medium to generate electricity by recovering cold heat when liquefied natural gas (LNG) is vaporized as power through the Rankine cycle. [Background of the Invention] This invention relates to cold power generation equipment, and in particular to equipment configuration for obtaining stable long-term continuous operation of a Rankine cycle medium turbine. It is known that Rankine cycle type LNG cryogenic power generation equipment is suitable for generating electricity. As this Rankine cycle medium,
For example, in such equipment where fluorocarbon-based media such as Freon R-22 and Freon R-13B1 are used and circulated in a closed cycle, it is necessary to prevent the medium gas from leaking into the atmosphere from the shaft seal of the medium turbine. To prevent this, a shaft seal mechanism such as an oil film seal or a mechanical seal is adopted for the shaft seal part, but as the operation continues, the shaft seal part of the media turbine is replaced by a mechanical seal or a shaft seal mechanism such as a mechanical seal.
) The lubricating oil used in the engine normally leaks into the Rankine cycle system, albeit in small amounts. Furthermore, due to problems such as damage to the shaft seal, a large amount of lubricating oil may temporarily enter the Rankine cycle system. Most of the lubricating oil leaked into the system accumulates in the medium evaporator because its boiling point is higher than that of the Rankine medium. That is, as shown in FIG. 1, the height of the foam increases almost in proportion to the amount of oil introduced. For this reason, when the concentration of lubricating oil becomes high, the height of the boiling surface foam exceeds the demister of the medium evaporator, causing mist to scatter, and the amount of liquid medium entrained in the steam medium flowing into the medium turbine increases. Vibrations and abnormal noises occur in the media turbine, making it impossible to continue operation, which not only poses problems in terms of reliability, but in the past, when such a situation occurs, Rankine media It was known that operation could be continued by replacing the Rankine media, but this was economically inconvenient because Rankine media are expensive and replacing them requires a large amount of money.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、潤滑油混入による沸騰面泡沫高さの上
昇を防ぎ、潤滑油濃度の高い媒体液を油分離器へ連続的
に供給可能にすることにある。
An object of the present invention is to prevent an increase in the height of boiling surface foam due to lubricating oil contamination, and to enable continuous supply of a medium liquid with a high lubricating oil concentration to an oil separator.

〔発明の概要〕[Summary of the invention]

本発明は、ランキンサイクルを用い液化天然ガス(T、
 N G )の気化時の冷熱を利用して発電を行なうラ
ンキンサイクル式LNG冷熱発電設備において、油分離
器を並設し、媒体タービンより漏洩しランキン媒体中に
混入した潤滑油を連続的に、または間欠的に分離して排
出し、媒体蒸発器中の油含有量をその設備の許容する値
以下に保つ方法を用い、媒体蒸発器内に堰を設け、潤滑
油がサイクル媒体中に混入したために発生する媒体蒸発
器内の沸騰界面の上昇を利用して潤滑油濃度の高いラン
キン媒体を油分離器に供給して油分離することを特徴と
する。
The present invention uses liquefied natural gas (T,
In a Rankine cycle LNG cryothermal power generation facility that generates electricity using the cold heat generated during vaporization of N G ), an oil separator is installed in parallel to continuously remove lubricating oil that has leaked from the medium turbine and mixed into the Rankine medium. Or, by using a method of intermittently separating and discharging the oil to keep the oil content in the medium evaporator below the value allowed by the equipment, and installing a weir inside the medium evaporator, the lubricating oil was mixed into the cycle medium. The system is characterized in that the Rankine medium with high lubricating oil concentration is supplied to the oil separator to separate the oil by utilizing the rise of the boiling interface within the medium evaporator that occurs in the medium evaporator.

〔発明の実施例〕[Embodiments of the invention]

本発明による一実施例を@2図により説明する。 An embodiment according to the present invention will be explained with reference to FIG.

LNGは導管18からT、 N G蒸発器4に入り、こ
こでLNGは導管13からの例えばフロンR−13B1
の凝縮熱により蒸発した後導管19からNG加熱器5に
入り、導管冴からの海水により0℃以上の天然ガスとな
り、導管加から燃料ガスとして供給される。一方、ラン
キンサイクル系においては、LNGg発器4においてL
 N Gの冷熱によりフロンR−13B1(以下フロン
と略す)を大気圧付近の状態で凝縮させ、約−60℃前
後の液として導管17からフロンポンプ6により所定の
圧力まで昇圧した後、導管11から媒体蒸発器1に供給
される。媒体蒸発器1では、導管21からの海水により
約8℃程度までフロンは加熱される。このガスは導管1
2からフロンタービン7に入り、ここでほぼ大気圧まで
膨張し、その膨張時のエネルギーを発電機8により電力
として回収する。フロンタービン7を出た大気圧付近の
フロンガスは膨張のため一60℃程度まで温度が降下し
、導管13よりLNG蒸発器4に入り、循環する。
The LNG enters the T,NG evaporator 4 through conduit 18, where the LNG enters the T,NG evaporator 4 from conduit 13, e.g.
After being evaporated by the heat of condensation, it enters the NG heater 5 through the conduit 19, becomes natural gas at 0° C. or higher with seawater from the conduit, and is supplied as fuel gas from the conduit. On the other hand, in the Rankine cycle system, LNGg generator 4
Freon R-13B1 (hereinafter abbreviated as Freon) is condensed at near atmospheric pressure by the cold energy of N G, and the liquid at around -60°C is pressurized to a predetermined pressure by the Freon pump 6 from the conduit 17, and then the conduit 11 is supplied to the medium evaporator 1 from In the medium evaporator 1, the seawater from the conduit 21 heats the fluorocarbon to about 8°C. This gas is in conduit 1
2 enters the freon turbine 7, where it expands to almost atmospheric pressure, and the energy at the time of expansion is recovered as electric power by the generator 8. The fluorocarbon gas at near atmospheric pressure that exits the fluorocarbon turbine 7 is expanded and its temperature drops to about -60° C., enters the LNG evaporator 4 through the conduit 13, and is circulated.

本実施例において、上記フロンタービン7にはメカニカ
ルシールや軸受用として潤滑油が使用されるが、このよ
うな潤滑油のランキンサイクル内・ 4 ・ へ漏れ込む量を零にすることは構造的に困難である。漏
れ込んだ潤滑油は導管13に流入し、T、 N G蒸発
器4.フロンポンプ6を経て媒体蒸発器1にフロンと共
に流れ込む。媒体蒸発器lで海水の熱によりフロンは蒸
発するが、潤滑油に比べ沸点の低いフロンのみが蒸発し
、フロンタービン7からランキンサイクル内へ漏れ込ん
だ潤滑油は媒体蒸発器1のフロン液に蓄積され、フロン
液中の潤滑油濃度は次第に上昇する。潤滑油濃度が上昇
しである濃度以上になると、媒体の種類に関係なく潤滑
油が混入しない場合に比べて沸騰面泡沫高さに顕著な差
異が生じ、第1図のように潤滑油量にほぼ比例して泡沫
高さが上昇する。そして、泡沫高さがデミスタ−2を越
えると、フロンタービン7にフロンガスと共にフロン液
がミスト状になって導管12より入り、フロンタービン
7の羽根車に衝突してエローシロンや振動発生の原因に
なり、フロンタービン7は運転が不可能になる。
In this embodiment, lubricating oil is used in the front turbine 7 for mechanical seals and bearings, but it is structurally difficult to reduce the amount of lubricating oil leaking into the Rankine cycle to zero. Have difficulty. The leaked lubricating oil flows into the conduit 13 and flows into the T, NG evaporator 4. It flows into the medium evaporator 1 through the freon pump 6 together with the freon. Freon is evaporated by the heat of the seawater in the medium evaporator 1, but only the fluorocarbon, which has a lower boiling point than the lubricating oil, is evaporated, and the lubricating oil leaked from the fluorocarbon turbine 7 into the Rankine cycle becomes the fluorocarbon liquid in the medium evaporator 1. The lubricating oil concentration in the Freon fluid gradually increases. When the lubricating oil concentration increases to a certain level or higher, there is a noticeable difference in the height of the boiling surface foam compared to when no lubricating oil is mixed in, regardless of the type of medium, and as shown in Figure 1, the lubricating oil amount increases. The foam height increases almost proportionally. When the height of the foam exceeds the demister 2, the fluorocarbon liquid along with the fluorocarbon gas enters the fluorocarbon turbine 7 through the conduit 12 in the form of a mist, colliding with the impeller of the fluorocarbon turbine 7 and causing erosion and vibration. , the front turbine 7 becomes unable to operate.

この現象を防止するには、媒体蒸発器1内の液面高さを
デミスタ−2の高さ以下にすることで解決できることを
第1図は示している。そこで、媒体蒸発器1内に堰3を
作り、潤滑油がある濃度以上になり沸騰面泡沫高さが上
昇すると堰3を越えてあふれ出るようにする。そうすれ
ば、泡沫高さが上昇しても堰3の高さまでであり、デミ
スタ−2を越えるようなことはなくミストも発生しない
FIG. 1 shows that this phenomenon can be prevented by making the liquid level in the medium evaporator 1 lower than the height of the demister 2. Therefore, a weir 3 is created in the medium evaporator 1 so that when the lubricating oil reaches a certain concentration and the boiling surface foam height increases, it overflows over the weir 3. In this way, even if the height of the foam increases, it will only rise to the height of the weir 3 and will not exceed the demister 2, and no mist will be generated.

また、フロンに比べ潤滑油は比重が小さいため、沸騰面
の潤滑油濃度が媒体蒸発器内の潤滑油濃度より高(濃縮
できる効果も有する。堰3を越えてあふれ出した潤滑油
濃度の高いフロン液は油分離器9へ連続して送り、導管
nよりの加熱源によりフロンを蒸発させ残留した潤滑油
を弁31より抜き出す4゜ 本実施例によれば、媒体蒸発器1内に堰3を設けること
により、液面高さを絶えず一定に保つと共に潤滑油濃度
の高いフロン液を連続して油分離器へ供給することがで
きる。
In addition, since lubricating oil has a lower specific gravity than CFC, the lubricating oil concentration on the boiling surface is higher than the lubricating oil concentration in the medium evaporator (it also has the effect of concentrating it). The fluorocarbon liquid is continuously sent to the oil separator 9, the fluorocarbon is evaporated by a heating source from the conduit n, and the remaining lubricating oil is extracted from the valve 31.According to this embodiment, a weir 3 is installed in the medium evaporator 1. By providing this, it is possible to constantly keep the liquid level constant and to continuously supply Freon liquid with a high lubricating oil concentration to the oil separator.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、媒体蒸発器内に堰を作る二とにより、
潤滑油混入による沸騰面泡沫高さの上昇を監視すること
な々上昇を防く゛ことができ、さらに潤滑油濃度の高い
媒体液を油分離器へ連続的に供給することができて油分
離器の負荷を減らせる効果がある。
According to the invention, by creating a weir in the medium evaporator,
By monitoring the rise in boiling surface foam height due to lubricating oil contamination, it is possible to prevent such an increase.Furthermore, it is possible to continuously supply a medium liquid with high lubricant concentration to the oil separator, thereby improving the oil separator's performance. It has the effect of reducing the load.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、フロン系ランキン媒体にタービン油を混入し
た場合の沸騰時のタービン潤滑油混入により沸騰液向が
上昇する特性を示した線図、第2図は、本発明によるラ
ンキンサイクル式LNG冷熱発電設備の一実施例を示す
系統図である。 1・・・・・・媒体蒸発器、2・・・・・・デミスタ−
53・・・・・・堰、4・・・・・・L N G蒸発器
、5・・・・・・NG加熱器、6・・・・・・フロンポ
ンプ、7・・・・・・フロンタービン、8・・・発電機
、9・・・・・・油分離器、31・・・・・・弁、11
〜24・・・・・・導管 ・ 8 に
Fig. 1 is a diagram showing the characteristic that the boiling liquid direction increases due to the mixing of turbine lubricating oil at the time of boiling when turbine oil is mixed in a fluorocarbon-based Rankine medium. It is a system diagram showing one example of cold power generation equipment. 1...Medium evaporator, 2...Demister
53...Weir, 4...LNG evaporator, 5...NG heater, 6...Freon pump, 7... Front turbine, 8... Generator, 9... Oil separator, 31... Valve, 11
~24... Conduit・8

Claims (1)

【特許請求の範囲】[Claims] 1、 ランキンサイクルを用い液化天然ガスの気化時の
冷熱を利用して発電を行ない、油分離器を並設し、サイ
クル媒体中に混入した潤滑油を連続的に、または間欠的
に分離して排出し、媒体蒸発器中の油含有量をその設備
の許容する値以下に保つようにしたLNG冷熱発電設備
において、媒体蒸発器内に堰を設け、潤滑油がサイクル
媒体中に混入したために発生する媒体蒸発器内の沸騰界
面の上昇を利用して潤滑油製置の高いフロン系媒体を油
分離器に供給するようにしたことを特徴とするランキン
サイクル式LNG冷熱発電設備。
1. The Rankine cycle is used to generate electricity using the cold heat generated during the vaporization of liquefied natural gas, and an oil separator is installed in parallel to continuously or intermittently separate lubricating oil mixed into the cycle medium. This problem occurred because lubricating oil got mixed into the cycle medium when a weir was installed in the medium evaporator in LNG cryogenic power generation equipment, which was designed to maintain the oil content in the medium evaporator below the allowable value for the equipment. A Rankine cycle type LNG cryothermal power generation facility characterized in that a fluorocarbon-based medium having a high lubricating oil content is supplied to an oil separator by utilizing the rise of a boiling interface in a medium evaporator.
JP14388183A 1983-08-08 1983-08-08 Lng based generating equipment by rankine cycle Granted JPS6035105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14388183A JPS6035105A (en) 1983-08-08 1983-08-08 Lng based generating equipment by rankine cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14388183A JPS6035105A (en) 1983-08-08 1983-08-08 Lng based generating equipment by rankine cycle

Publications (2)

Publication Number Publication Date
JPS6035105A true JPS6035105A (en) 1985-02-22
JPH0146686B2 JPH0146686B2 (en) 1989-10-11

Family

ID=15349186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14388183A Granted JPS6035105A (en) 1983-08-08 1983-08-08 Lng based generating equipment by rankine cycle

Country Status (1)

Country Link
JP (1) JPS6035105A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011503405A (en) * 2007-07-27 2011-01-27 ユナイテッド テクノロジーズ コーポレイション Oil recovery from the organic Rankine cycle (ORC) system evaporator
JP2014199027A (en) * 2013-03-29 2014-10-23 メタウォーター株式会社 Turbine rotary shaft sealing method
CN106437911A (en) * 2016-08-29 2017-02-22 思安新能源股份有限公司 Comprehensive power generating system for natural gas pipe network residual pressure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011503405A (en) * 2007-07-27 2011-01-27 ユナイテッド テクノロジーズ コーポレイション Oil recovery from the organic Rankine cycle (ORC) system evaporator
JP2014199027A (en) * 2013-03-29 2014-10-23 メタウォーター株式会社 Turbine rotary shaft sealing method
CN106437911A (en) * 2016-08-29 2017-02-22 思安新能源股份有限公司 Comprehensive power generating system for natural gas pipe network residual pressure
CN106437911B (en) * 2016-08-29 2017-11-10 思安新能源股份有限公司 A kind of gas distributing system overbottom pressure comprehensive generating system

Also Published As

Publication number Publication date
JPH0146686B2 (en) 1989-10-11

Similar Documents

Publication Publication Date Title
US4191021A (en) Small power plant utilizing waste heat
JP4343738B2 (en) Binary cycle power generation method and apparatus
CN102691537B (en) Carbon dioxide recovery type thermal power generation system and method for operation thereof
Tabor et al. Establishing criteria for fluids for small vapor turbines
JPS6040707A (en) Low boiling point medium cycle generator
JP3753760B2 (en) Heat recovery in liquid ring pump seal liquid cooler system
US4050252A (en) Ocean nuclear power equipment
US4380903A (en) Enthalpy restoration in geothermal energy processing system
JPS6035105A (en) Lng based generating equipment by rankine cycle
Milman et al. The working medium for the megawatt class utilization heat and power complex based on Organic Rankine Cycle
Angelino et al. Perspectives for waste heat recovery by means of organic fluid cycles
Igbong et al. Working fluid selection for simple and recuperative organic rankine cycle operating under varying conditions: a comparative analysis
JP4301666B2 (en) Waste heat absorption refrigerator
US4275563A (en) Power-generating plant having increased circulating force of working fluid
JPS59119003A (en) Operation of cryogenic power plant
Phair Getting the most out of geothermal power
KR20210109622A (en) Exhaust heat recovery device and its control method
JPS6213488B2 (en)
JPS5963311A (en) Cold heat aided power generating system
JP2005273668A (en) Power using steam in atmospheric air
US11808205B2 (en) Turbine inlet air cooling systems with condensate water recovery
KR102042316B1 (en) Apparatus and Method for Supplying Working Fluid of Waste Heat Power Generation
JPS5943910A (en) Abnormality detecting method of power generating facility using
CN102472122A (en) Waste heat recovery turbine system
RU2146768C1 (en) Low-potential heat conversion system