JP3520927B2 - Power generator - Google Patents

Power generator

Info

Publication number
JP3520927B2
JP3520927B2 JP08574993A JP8574993A JP3520927B2 JP 3520927 B2 JP3520927 B2 JP 3520927B2 JP 08574993 A JP08574993 A JP 08574993A JP 8574993 A JP8574993 A JP 8574993A JP 3520927 B2 JP3520927 B2 JP 3520927B2
Authority
JP
Japan
Prior art keywords
low
refrigerant
turbine
heat
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08574993A
Other languages
Japanese (ja)
Other versions
JPH06272517A (en
Inventor
茂 坂下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP08574993A priority Critical patent/JP3520927B2/en
Publication of JPH06272517A publication Critical patent/JPH06272517A/en
Application granted granted Critical
Publication of JP3520927B2 publication Critical patent/JP3520927B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は夜間電力と昼間電力の平
滑化を図るために蓄冷サイクルを組合せた発電装置に係
り、特に蓄冷サイクル側にも又発電サイクル側にも地球
環境の保護を充分配慮した発電装置を提供する事にあ
る。 【0002】 【従来の技術】本来、企業は現世代の人間及び社会の要
請に合致する商品若しくはサービスをタイムリーに且つ
適切なコストで供給するのが債務であるが、近年はそれ
のみならず、次世代の人間及び社会に対し、地球環境の
破壊や化石燃料等の大量消費等の負の遺産を残す事な
く、言い換えれば地球という共通の財産を如何に保全し
ながら現世代に対する社会的要請を満足し得る商品若し
くはサービスを提供する事が要求され、そしてこの様な
要請は公営企業たる電力会社に対しては特に極めて強く
要請される。この為従来より昼間、特に夏期における昼
間の冷房消費電力のピーク電力に合せて発電装置を建造
する事なく、夜間における余剰電力の有効に利用して、
消費電力が大幅に低減する深夜電力を利用して蓄冷若し
くは蓄熱を図り、昼間時に該熱エネルギーを発電サイク
ルの一部に組込む事により、ピーク電力の平滑化を図っ
ている。 【0003】そして更に近年においては、前記発電サイ
クルに火力発電等の化石燃料消費型の発電システムを用
いずに、軽水炉等の核分裂型の原子力発電、更には燃料
の無限利用が可能な核融合型の原子力発電が注力されて
いる。原子力発電も通常の火力発電と同様に加熱装置と
しての例えば核融合反応炉にてガス化した熱蒸気をター
ビンに流入させ圧力エネルギを運動のエネルギに転換さ
せる事により動力を発生させて発電機で電力を発生し、
一方タービンで働き終わった低圧ガスを復水器で海水と
熱交換させて復水させた後、フラッシュタンクに導き、
そしてフラッシュタンク内に貯溜した復水は再度循環ポ
ンプにより反応炉内で熱蒸気にガス化させ、前記発電サ
イクル(ランキンサイクル)を繰り返す。しかしながら
前記復水器で海水と熱交換させる事は、海水が熱水化
し、環境破壊につながる。 【0004】この為特公昭49ー45095号において
は、前記復水器に空冷コンデンサを用い、該コンデンサ
を利用して海水の代りに空気にて低圧ガスの冷却を行う
と共に、前記発電機に冷凍機を連結し、夜間電力時に前
記発電機を介して冷凍機を駆動させて蒸発器よりの冷熱
を蓄冷槽に蓄冷し、昼間時に前記タービンよりの低圧ガ
スを空冷コンデンサと共に蓄冷槽に導くように構成して
いる。これにより、空冷コンデンサの放熱量は蓄冷槽に
適度に配分されてその分空冷コンデンサの放熱量が減少
するので大気の温度上昇を避ける事が出来る。 【0005】 【発明が解決しようとする課題】しかしながら原子力発
電の場合は火力発電の場合と異なり、反応炉内への燃料
供給の制御が困難であるために、昼夜間を問わず定常的
な量の前記熱水若しくは熱気が排出され、結果として夜
間運転中においても空冷コンデンサへの低圧ガスの導入
量は変らず、又夜間時は蓄冷中であるために蓄冷槽へ低
圧ガスを配分する事が出来ず、この為海水若しくは大気
への放熱量の減少を図る事が出来ず、その環境破壊に対
しては無防備である。 【0006】一方前記蓄冷槽側の冷凍サイクルにおいて
も近年大気のオゾン層破壊を防止するためにフロンの代
替エネルギとしてアンモニアや炭酸ガス冷媒を用いてい
る。しかしながらアンモニアや炭酸ガス冷媒を用いた場
合においても単にフロンの代替冷媒としての利用にとど
まり、アンモニアや炭酸ガスの有利性を何等生かしてい
ない。即ち前記アンモニア等を単にフロンの代替として
しか用いる技術であれば、基本的にアンモニアを用いた
ことの意味がなく、いわゆる技術の進歩の面から見ての
前進ではない。 【0007】本発明はかかる従来技術の欠点に鑑み、原
子力発電のように、昼夜間を問わず定常的な量の前記熱
水若しくは熱気が排出される装置においても、効果的に
海水若しくは大気への放熱量の減少を図り、円滑に夜間
エネルギの蓄冷と共に環境破壊を有効に阻止し得る発電
装置を提供する事を目的とする。本発明の他の目的は、
前記蓄冷用の冷凍サイクルにフロンの代替冷媒を用いる
と共に、該代替冷媒の利点を有効に生かし、フロンに比
較して数段優れた而も発電装置に好適な蓄冷サイクルを
組込んだ発電装置を提供する事を目的とする。 【0008】 【課題を解決する為の手段】本発明は前記したタービン
及び復水器を具えてなる発電装置において、前記タービ
ンの中段より抽気させた中圧ガスを熱源として吸収若し
くは吸着冷凍サイクルを構成する第1の冷凍サイクル
と、低温蓄冷槽と、誘導電動機が連結された膨張機兼用
の冷凍圧縮機と、低温蓄冷槽と、冷媒蒸発器とを具えた
アンモニア若しくは炭酸ガスを冷媒とする第2の冷凍/
膨脹サイクルとを具え、夜間運転時に前記第1の冷凍サ
イクルの蒸発器を凝縮器として利用して前記冷凍圧縮機
の圧縮運転により低温蓄冷槽に低温蓄冷を行い、一方昼
間運転時に前記低温蓄冷槽に低温蓄冷された低温エネル
ギにより冷却された冷媒を冷媒蒸発器に導き、前記ター
ビンより吐出された低圧ガス又は/及び復水器よりの熱
交換媒体と熱交換させた後、その蒸発冷媒により前記冷
凍圧縮機の膨脹回転を行い、該冷凍圧縮機に連結された
誘導電動機を発電機として回転させるように構成した事
を特徴とするものである。尚本発明は主として原子力発
電装置に好適に適用されるものであるが、これのみに限
らず、火力発電やごみ償却炉を加熱源とする発電装置等
にも適用可能である。 【0009】 【作用】かかる技術手段によれば次の様な作用を有す
る。例えば原子力発電の場合は夜間運転時においても昼
間と同様な熱蒸気が加熱装置側より得られるが、この場
合においてもタービンの中段より中圧ガスが吸収若しく
は吸着冷凍機側に供給されるために、復水器側に導入さ
れる低圧ガスが大幅に減少し、結果として該復水器と熱
交換される海水若しくは大気への放熱量を大幅に減少す
る事が出来、環境破壊を有効に阻止し得る。 【0010】又蓄冷槽への蓄冷は吸収冷凍機とアンモニ
ア等の冷凍サイクルの二段階に分けて冷凍を行う構成を
取るために、冷凍圧縮機の軸動力を大きくする事なく円
滑に−50℃以下の低温エネルギの蓄冷が可能となる。
そしてこのような低温エネルギ蓄冷用の冷凍サイクルは
フロンよりアンモニア若しくは炭酸ガス冷媒が有利であ
り、フロンに比較して数段優れた冷凍効率を得る事が出
来る。又第1の冷凍サイクルを構成する吸収若しくは吸
着冷凍機もアンモニアを用いるものであり、結果として
フロンを用いずにそれ以上に有効な蓄冷サイクルを構成
できる。 【0011】又昼間時には前記低温蓄冷槽に低温蓄冷さ
れた低温エネルギにより冷却された冷媒を冷媒蒸発器に
導き、前記タービンより吐出された低圧ガスと熱交換さ
せる訳であるが、この際前記冷媒は−50℃以下の極低
温に冷却されている為に、復水器側の負荷を大幅に軽減
し得、更に前記冷媒蒸発器側で復水器よりの熱交換媒
体、具体的には海水と熱交換させる事により、海水自体
の温度低下を有効に図る事が出来、更に該海水若しくは
流体を復水器間で循環させる事により閉サイクルを形成
する事が出来この面からも環境破壊を有効に阻止し得
る。又前記冷媒蒸発器で熱交換後の蒸発冷媒は前記冷凍
圧縮機の膨脹回転を行い、該冷凍圧縮機に連結された誘
導電動機を介して発電機を行う事が出来るために、その
分発電量が増大し、その分タービン側の発電量を低減さ
せてもピーク電力の需要を有効に賄うことが出来、発電
所の建設コスト及び設備費の低減を有効に図る事が出来
る。 【0012】 【実施例】以下、図面に基づいて本発明の実施例を例示
的に詳しく説明する。但しこの実施例に記載されている
構成部品の寸法、材質、形状、その相対配置などは特に
特定的な記載がない限りは、この発明の範囲をそれのみ
に限定する趣旨ではなく単なる説明例に過ぎない。図1
は本発明の実施例に係る発電装置の基本構成図で、1は
核融合反応炉で、公知の様に超伝導コイル11、真空容
器12、ブランケット13により核融合反応室14を形
成すると共に、該反応室14と連通する燃料注入部1
5、トリチウム回収部16を具える。2はフラッシュタ
ンク、3は循環ポンプ、4はその出力軸に発電機4Aが
連結された蒸気タービン、5は復水器で、これらにより
ランキンサイクルを構成する。即ち、前記したように核
融合反応炉1にてガス化した熱蒸気を蒸気タービン4に
流入させ発電機4Aを駆動回転させて電力を発生させる
とともに、一方タービン4で働き終わった低圧ガスを復
水器5で復水させた後、フラッシュタンク2に導き、そ
してフラッシュタンク2内に貯溜した復水は再度循環ポ
ンプ3により反応炉1内で熱蒸気にガス化させ、ランキ
ンサイクルを繰り返す 【0013】そして前記復水器5内の熱交換器5aは後
記する冷媒蒸発器21の負荷熱交換器21aと配管22
及びポンプ23を介して連結されている。又前記タービ
ン4は、その中段に抽気管6を接続し、該タービン4よ
り抽気させた中圧ガスをアンモニア吸収冷凍機7の発生
器71側に導入可能に構成している。吸収冷凍機7は公
知の様に、発生器71、熱交換器72、吸収器73、凝
縮器74、及び蒸発器75からなり、前記タービン4の
中段より抽気させた150℃前後の保有熱を有する中圧
ガスを吸収冷凍機7の発生器71に導き、その蒸発器7
5側で略5〜7℃前後の蒸発熱を取り出し可能に構成し
ている。尚凝縮器74側の凝縮熱は必要に応じ、夜間の
地域暖房、温水プール、養魚場等に利用される。 【0014】一方前記蒸発器75側は受液器24を介し
て−55℃の低温蓄冷を行う低温蓄冷槽25と、誘導電
動機26が連結された膨張機兼用の冷凍圧縮機27とに
よりアンモニア若しくは炭酸ガスを冷媒とする冷凍サイ
クルを構成する、又前記冷凍圧縮機27と低温蓄冷槽2
5とは冷媒蒸発器21との間で膨脹サイクルを形成す
る。 【0015】夜間運転時は昼間と同様に反応炉1よりフ
ラッシュタンク2を介して得られた熱蒸気を蒸気タービ
ン4に流入させ、発電機4Aを回転させ所望の発電を行
う。この際夜間の消費電力は昼間より相当小さくなって
いる為に、余剰熱エネルギをタービン4の中段の抽気管
6より中圧ガスとして取り出して吸収冷凍機7の発生器
71側に導き、蒸発器75側に略5〜7℃前後の蒸発熱
を生成する。そして前記発生器71での熱交換により中
圧ガスは復水され、フラッシュタンク2側に戻入され
る。 【0016】一方前記誘導電動機26は発電機4A側よ
り若しくは夜間の深夜電力を利用して駆動回転させる。
この結果前記吸収冷凍機7側の蒸発器75が凝縮器とし
て機能し、前記略5〜7℃前後の蒸発熱と熱交換された
アンモニア若しくは炭酸ガス冷媒が凝縮して受液器24
に貯溜される。そして受液器24に貯溜された液化アン
モニアは、低温蓄冷槽25で蒸発/熱交換して−55℃
前後の低温蓄冷を行い、その後冷凍圧縮機27で再度圧
縮されて前記吸収冷凍機7側の蒸発器75側に導かれ、
以下前記冷凍サイクルを繰り返しながら低温蓄冷を継続
する。 【0017】一方昼間運転時には、反応炉1よりフラッ
シュタンク2を介して得られた熱蒸気を蒸気タービン4
に流入させ、発電機4Aを回転させ所望の発電を行う点
については前記と同様である。この場合前記タービン4
は100%負荷であるために、該タービン4より吐出さ
れた低圧ガスが復水器5と熱交換するとその熱交換媒体
に例えば海水を用いた場合には熱水となり、環境破壊に
つながる。そこで昼間時においては前記蓄冷槽の冷凍サ
イクルを膨脹サイクルに切換え、前記低温蓄冷槽25に
低温蓄冷された低温エネルギにより冷却されたアンモニ
ア等の冷媒を冷媒蒸発器21に導き、前記冷媒蒸発器2
1側で復水器5よりの熱交換媒体、具体的には海水若し
くは真水と熱交換させる事により、熱水化した水自体の
温度低下を図り、以下該水を復水器5間で循環させる事
により閉サイクルを形成する事が出来、この面からも環
境破壊を有効に阻止し得る。 【0018】又前記冷媒蒸発器21で熱交換後の蒸発冷
媒は前記冷凍圧縮機27の膨脹回転を行い、該冷凍圧縮
機27に連結された誘導電動機26を介して発電機を行
う事により、その分発電量が増大し、その分タービン4
側の発電量を低減させてもピーク電力の需要を有効に賄
うことが出来る。 【0019】 【効果】以上記載のごとく本発明によれば、原子力発電
のように、昼夜間を問わず定常的な量の前記熱水若しく
は熱気が排出される装置においても、効果的に復水器5
よりの熱媒体の放熱量の減少若しくは閉サイクルを形成
でき、これにより円滑に夜間エネルギの蓄冷と共に環境
破壊を有効に阻止し得る。又、本発明によれば、前記蓄
冷用の冷凍サイクルにフロンの代替冷媒を用いると共
に、該代替冷媒の利点を有効に生かし、フロンに比較し
て数段優れた而も発電装置に好適な蓄冷サイクルを組込
んだ発電装置を提供する事が出来る。等の種々の著効を
有す。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power generation apparatus which combines a regenerative cycle for smoothing nighttime power and daytime power, and more particularly to power generation on the regenerative cycle side. It is another object of the present invention to provide a power generation device that fully considers the protection of the global environment on the cycle side. [0002] Originally, it is a debt of a company to supply goods or services meeting the demands of the current generation of people and society in a timely manner and at an appropriate cost. The social demands of the current generation on the next generation of humans and society without preserving any negative heritage such as destruction of the global environment and mass consumption of fossil fuels, in other words, how to preserve the common property of the earth It is required to provide goods or services that can satisfy the above conditions, and such demands are particularly strongly demanded for the electric power company as a public company. For this reason, conventionally, without constructing a power generator in accordance with the peak power of cooling power consumption in the daytime, especially in the summertime, effectively using the surplus power at night,
Cold storage or heat storage is performed by using late-night power, which greatly reduces power consumption, and peak power is smoothed by incorporating the heat energy into a part of the power generation cycle during the daytime. [0003] In recent years, nuclear power generation of a nuclear fission type such as a light water reactor and the like, and a nuclear fusion type capable of infinite use of fuel without using a fossil fuel consuming power generation system such as thermal power generation in the power generation cycle. Nuclear power is focused on. In the case of nuclear power generation, similar to ordinary thermal power generation, heat is generated by flowing heat steam gasified by, for example, a fusion reactor as a heating device into a turbine and converting pressure energy into kinetic energy to generate power. Generate electricity,
On the other hand, after the low-pressure gas that has finished working in the turbine is condensed by exchanging heat with seawater in a condenser, it is led to a flash tank,
The condensed water stored in the flash tank is again gasified into hot steam in the reaction furnace by the circulation pump, and the power generation cycle (rankine cycle) is repeated. However, the heat exchange with the seawater in the condenser causes the seawater to become hot water, which leads to environmental destruction. For this reason, in Japanese Patent Publication No. 49-45095, an air-cooled condenser is used for the condenser, and the condenser is used to cool low-pressure gas with air instead of seawater, and to refrigerate the generator. In order to drive the refrigerator through the generator during nighttime power to store cold heat from the evaporator in the cold storage tank, and to guide the low-pressure gas from the turbine to the cold storage tank together with the air-cooled condenser during the daytime. Make up. Thereby, the heat radiation amount of the air-cooled condenser is appropriately distributed to the regenerator, and the heat radiation amount of the air-cooled condenser is reduced by that amount, so that the temperature rise of the atmosphere can be avoided. [0005] However, unlike in the case of thermal power generation, it is difficult to control the supply of fuel into the reactor in the case of nuclear power generation. The hot water or hot air of the above is discharged, as a result, the amount of low-pressure gas introduced into the air-cooled condenser does not change during night operation, and the low-pressure gas is distributed to the cold storage tank at night because cold storage is being performed. Therefore, the amount of heat released to seawater or the atmosphere cannot be reduced, and there is no defense against environmental destruction. On the other hand, in the refrigerating cycle on the side of the regenerator, ammonia or carbon dioxide gas refrigerant is used as an alternative energy to Freon in order to prevent destruction of the ozone layer in the atmosphere in recent years. However, even when an ammonia or carbon dioxide gas refrigerant is used, it is merely used as an alternative refrigerant to chlorofluorocarbon, and does not make use of the advantage of ammonia or carbon dioxide gas. That is, as long as the technology uses the ammonia or the like only as a substitute for chlorofluorocarbon, there is basically no point in using ammonia, and it is not a step forward in terms of so-called technological progress. [0007] In view of the drawbacks of the prior art, the present invention is also effective in a device that discharges a constant amount of the hot water or hot air regardless of day and night, such as nuclear power, to seawater or the atmosphere. It is an object of the present invention to provide a power generator capable of smoothly reducing cold energy storage at night and effectively preventing environmental destruction by reducing the amount of heat radiation. Another object of the present invention is to
Using a refrigerant instead of Freon for the refrigeration cycle for cold storage, effectively utilizing the advantages of the substitute refrigerant, a power generator incorporating a cool storage cycle suitable for the power generator, which is several stages superior to Freon. The purpose is to provide. According to the present invention, there is provided a power generating apparatus comprising the above-described turbine and a condenser, wherein an intermediate pressure gas extracted from a middle stage of the turbine is used as a heat source for an absorption or adsorption refrigeration cycle. A first refrigeration cycle to be configured, a low-temperature regenerator, a refrigerating compressor combined with an induction motor connected to an induction motor, a low-temperature regenerator, and a refrigerant evaporator comprising ammonia or carbon dioxide as refrigerant. 2 frozen /
An expansion cycle, wherein during low-temperature operation, low-temperature cold storage is performed in the low-temperature regenerator by compression operation of the refrigerating compressor using the evaporator of the first refrigeration cycle as a condenser. The refrigerant cooled by the low-temperature energy stored at a low temperature is guided to a refrigerant evaporator, and heat-exchanged with a low-pressure gas discharged from the turbine and / or a heat exchange medium from a condenser. The present invention is characterized in that the refrigeration compressor is expanded and rotated, and the induction motor connected to the refrigeration compressor is rotated as a generator. The present invention is preferably applied mainly to a nuclear power generation apparatus, but is not limited thereto, and is also applicable to a thermal power generation or a power generation apparatus using a garbage depreciation furnace as a heating source. According to the above technical means, the following functions are provided. For example, in the case of nuclear power generation, even during nighttime operation, the same heat steam as in the daytime is obtained from the heating device side, but also in this case, the medium pressure gas is absorbed from the middle stage of the turbine or supplied to the adsorption refrigerator side. The amount of low-pressure gas introduced into the condenser side is greatly reduced, and as a result, the amount of heat released to the seawater or the atmosphere that exchanges heat with the condenser can be greatly reduced, effectively preventing environmental destruction. I can do it. Since the refrigerating operation in the regenerator is performed in two stages, that is, an absorption refrigerating machine and a refrigerating cycle of ammonia or the like, the refrigerating operation is performed at -50 ° C. without increasing the axial power of the refrigerating compressor. The following low-temperature energy can be stored.
In such a refrigeration cycle for storing low-temperature energy, ammonia or carbon dioxide gas refrigerant is more advantageous than chlorofluorocarbon, and refrigeration efficiency superior to chlorofluorocarbon by several steps can be obtained. Further, the absorption or adsorption refrigerator constituting the first refrigeration cycle also uses ammonia. As a result, a more effective regenerative storage cycle can be constructed without using chlorofluorocarbon. In the daytime, the refrigerant cooled by the low-temperature energy stored in the low-temperature storage tank at a low temperature is guided to a refrigerant evaporator to exchange heat with the low-pressure gas discharged from the turbine. Is cooled to an extremely low temperature of −50 ° C. or less, so that the load on the condenser side can be greatly reduced. Further, a heat exchange medium from the condenser on the refrigerant evaporator side, specifically, seawater By exchanging heat with seawater, the temperature of seawater itself can be effectively reduced, and a closed cycle can be formed by circulating the seawater or fluid between the condensers. Can be effectively blocked. Further, the evaporated refrigerant after the heat exchange in the refrigerant evaporator performs the expansion rotation of the refrigeration compressor, and can generate a power through an induction motor connected to the refrigeration compressor. Therefore, even if the amount of power generation on the turbine side is reduced, peak power demand can be effectively covered, and the construction cost and equipment cost of the power plant can be effectively reduced. Embodiments of the present invention will be described in detail below with reference to the drawings. However, unless otherwise specified, dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention thereto, but are merely illustrative examples. Not just. FIG.
Is a basic configuration diagram of a power generation apparatus according to an embodiment of the present invention. Numeral 1 denotes a nuclear fusion reactor, which forms a nuclear fusion reaction chamber 14 with a superconducting coil 11, a vacuum vessel 12, and a blanket 13 as is known. Fuel injection part 1 communicating with the reaction chamber 14
5. A tritium recovery unit 16 is provided. 2 is a flash tank, 3 is a circulation pump, 4 is a steam turbine whose output shaft is connected to a generator 4A, and 5 is a condenser, which constitutes a Rankine cycle. That is, as described above, the heat steam gasified in the fusion reactor 1 flows into the steam turbine 4 to drive and rotate the generator 4A to generate electric power, while the low-pressure gas that has stopped working in the turbine 4 is recovered. After being condensed in the water tank 5, the condensate is led to the flash tank 2, and the condensed water stored in the flash tank 2 is again gasified into hot steam in the reaction furnace 1 by the circulation pump 3, and the Rankine cycle is repeated. A heat exchanger 5a in the condenser 5 is connected to a load heat exchanger 21a of a refrigerant evaporator 21 and a pipe 22 as described later.
And a pump 23. The turbine 4 is connected to a bleed pipe 6 at the middle stage so that the medium-pressure gas extracted from the turbine 4 can be introduced into the generator 71 of the ammonia absorption refrigerator 7. As is known, the absorption refrigerator 7 includes a generator 71, a heat exchanger 72, an absorber 73, a condenser 74, and an evaporator 75. The medium-pressure gas is led to the generator 71 of the absorption refrigerator 7, and the evaporator
It is configured so that the heat of evaporation of about 5 to 7 ° C. can be taken out on the 5 side. The heat of condensation on the side of the condenser 74 is used for nighttime district heating, a heated water pool, a fish farm, and the like, if necessary. On the other hand, on the evaporator 75 side, ammonia or ammonia is supplied by a low-temperature regenerator tank 25 for performing low-temperature regenerative storage at -55 ° C. through a liquid receiver 24 and a refrigerating compressor 27 connected to an induction motor 26 and also serving as an expander. A refrigeration cycle using carbon dioxide as a refrigerant, and the refrigeration compressor 27 and the low-temperature regenerator 2
5 forms an expansion cycle with the refrigerant evaporator 21. During nighttime operation, heat steam obtained from the reactor 1 via the flash tank 2 flows into the steam turbine 4 as in daytime, and the generator 4A is rotated to generate desired power. At this time, since the nighttime power consumption is considerably smaller than in the daytime, surplus heat energy is taken out as a medium-pressure gas from the bleed pipe 6 in the middle stage of the turbine 4 and guided to the generator 71 side of the absorption refrigerator 7 to be supplied to the evaporator. Evaporation heat of about 5 to 7 ° C. is generated on the 75 side. The medium pressure gas is condensed by the heat exchange in the generator 71 and returned to the flash tank 2 side. On the other hand, the induction motor 26 is driven and rotated from the generator 4A side or by using midnight power at night.
As a result, the evaporator 75 on the absorption refrigerator 7 side functions as a condenser, and the ammonia or carbon dioxide gas refrigerant that has exchanged heat with the evaporation heat of about 5 to 7 ° C. is condensed to form the receiver 24.
Will be stored. The liquefied ammonia stored in the liquid receiver 24 is evaporated / heat-exchanged in the low-temperature regenerator 25 to −55 ° C.
Cold storage is performed before and after, and then compressed again by the refrigerating compressor 27 and guided to the evaporator 75 on the absorption refrigerating machine 7 side,
Hereinafter, low-temperature cold storage is continued while repeating the refrigeration cycle. On the other hand, during daytime operation, the hot steam obtained from the reactor 1 via the flash tank 2 is
And the generator 4A is rotated to generate a desired electric power. In this case, the turbine 4
Is a 100% load, and when the low-pressure gas discharged from the turbine 4 exchanges heat with the condenser 5, it becomes hot water when, for example, seawater is used as the heat exchange medium, leading to environmental destruction. Therefore, in the daytime, the refrigerating cycle of the regenerator is switched to an expansion cycle, and a refrigerant such as ammonia cooled by low-temperature energy stored in the low-temperature regenerator 25 at a low temperature is guided to a refrigerant evaporator 21 and the refrigerant evaporator 2 is operated.
By exchanging heat with the heat exchange medium from the condenser 5, specifically, seawater or fresh water on one side, the temperature of the hydrothermal water itself is reduced, and the water is circulated between the condensers 5. By doing so, a closed cycle can be formed, and from this aspect, environmental destruction can be effectively prevented. Further, the evaporated refrigerant after the heat exchange in the refrigerant evaporator 21 rotates the refrigeration compressor 27 by expansion, and generates a generator through an induction motor 26 connected to the refrigeration compressor 27. The power generation increases by that much, and the turbine 4
Even if the power generation on the side is reduced, peak power demand can be effectively covered. As described above, according to the present invention, even in a device in which a constant amount of the hot water or hot air is discharged regardless of day and night, such as a nuclear power plant, the water is effectively condensed. Vessel 5
Thus, the heat release amount of the heat medium can be reduced or a closed cycle can be formed, whereby the energy can be stored smoothly at night and environmental destruction can be effectively prevented. Further, according to the present invention, while using an alternative refrigerant for chlorofluorocarbon in the refrigeration cycle for storing cold energy, the advantage of the alternative refrigerant is effectively utilized, and a refrigeration storage system that is several stages superior to chlorofluorocarbon is suitable for a power generation device. It is possible to provide a power generator incorporating a cycle. And so on.

【図面の簡単な説明】 【図1】本発明の実施例に係る蓄冷サイクルを組込んだ
発電装置の基本構成図である。 【符号の説明】 1 原子炉その他の加熱装置 4 蒸気タービン 4A 発電機 5 復水器 6 抽気管 7 吸収冷凍機 25 低温蓄冷槽 26 誘導電動機 27 冷凍圧縮機 21 冷媒蒸発器
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a basic configuration diagram of a power generator incorporating a cool storage cycle according to an embodiment of the present invention. [Description of Signs] 1 Nuclear reactor or other heating device 4 Steam turbine 4A Generator 5 Condenser 6 Bleed pipe 7 Absorption refrigerator 25 Low temperature regenerator 26 Induction motor 27 Refrigeration compressor 21 Refrigerant evaporator

Claims (1)

(57)【特許請求の範囲】 【請求項1】 原子炉その他の加熱装置内でガス化した
熱蒸気をタービンに流入させて、該タービンに連結した
発電機を駆動回転させると共に、前記タービンより吐出
された低圧ガスを復水させる復水器を具えた発電装置に
おいて、 前記タービンの中段より抽気させた中圧ガスを熱源とし
て吸収若しくは吸着冷凍サイクルを構成する第1の冷凍
サイクルと、 誘導電動機が連結された膨張機兼用の冷凍圧縮機と、低
温蓄冷槽と、冷媒蒸発器とを具えたアンモニア若しくは
炭酸ガスを冷媒とする第2の冷凍/膨脹サイクルとを具
え、 夜間運転時に前記第1の冷凍サイクルの蒸発器を凝縮器
として利用して前記冷凍圧縮機の圧縮運転により低温蓄
冷槽に低温蓄冷を行い、 一方昼間運転時に前記低温蓄冷槽に低温蓄冷された低温
エネルギにより冷却された冷媒を冷媒蒸発器に導き、前
記タービンより吐出された低圧ガス又は/及び復水器よ
りの熱交換媒体と熱交換させた後、その蒸発冷媒により
前記冷凍圧縮機の膨脹回転を行い、該冷凍圧縮機に連結
された誘導電動機を発電機として回転させるように構成
した事を特徴とする発電装置
(57) [Claim 1] Heat steam gasified in a nuclear reactor or other heating device is flowed into a turbine to drive and rotate a generator connected to the turbine. In a power generator including a condenser for condensing discharged low-pressure gas, a first refrigeration cycle constituting an absorption or adsorption refrigeration cycle using a medium-pressure gas extracted from a middle stage of the turbine as a heat source, and an induction motor And a second refrigeration / expansion cycle using ammonia or carbon dioxide gas as a refrigerant having a low-temperature regenerator and a refrigerant evaporator. Using the evaporator of the refrigerating cycle as a condenser, low-temperature cold storage is performed in the low-temperature regenerator by the compression operation of the refrigerating compressor. The refrigerant cooled by the temperature energy is led to a refrigerant evaporator, and exchanges heat with the low-pressure gas discharged from the turbine and / or the heat exchange medium from the condenser, and then the refrigerant is expanded by the evaporated refrigerant. A generator configured to rotate and rotate an induction motor connected to the refrigeration compressor as a generator.
JP08574993A 1993-03-19 1993-03-19 Power generator Expired - Fee Related JP3520927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08574993A JP3520927B2 (en) 1993-03-19 1993-03-19 Power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08574993A JP3520927B2 (en) 1993-03-19 1993-03-19 Power generator

Publications (2)

Publication Number Publication Date
JPH06272517A JPH06272517A (en) 1994-09-27
JP3520927B2 true JP3520927B2 (en) 2004-04-19

Family

ID=13867507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08574993A Expired - Fee Related JP3520927B2 (en) 1993-03-19 1993-03-19 Power generator

Country Status (1)

Country Link
JP (1) JP3520927B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100354504C (en) * 2005-12-28 2007-12-12 上海电力学院 Multi-grade using backheating drain residual heat generator of thermal power generator set
US7748210B2 (en) * 2008-07-31 2010-07-06 General Electric Company System and method for use in a combined or rankine cycle power plant
CN112967827B (en) * 2021-02-03 2022-07-15 中国能源建设集团广东省电力设计研究院有限公司 Fused salt energy storage coupling power generation system and method for fusion reactor
CN113012837A (en) * 2021-02-03 2021-06-22 中国能源建设集团广东省电力设计研究院有限公司 Fused salt energy storage decoupling power generation system and method for fusion reactor
CN113053544B (en) * 2021-02-03 2022-11-22 中国能源建设集团广东省电力设计研究院有限公司 Oil energy storage coupling power generation system and method for fusion reactor
CN112967826A (en) * 2021-02-03 2021-06-15 中国能源建设集团广东省电力设计研究院有限公司 Oil energy storage decoupling power generation system and method for fusion reactor

Also Published As

Publication number Publication date
JPH06272517A (en) 1994-09-27

Similar Documents

Publication Publication Date Title
CN112880451A (en) CO based on supplemental external energy2Gas-liquid phase change energy storage device and method
US20060123819A1 (en) Cogeneration system
CN102563987A (en) Vapor-compression refrigerating plant driven by organic Rankine cycle and method
US20220341635A1 (en) Transducing method and system
JPH0252962A (en) Method and device for generating cold heat
CN114034133A (en) Heat pump electricity storage system for recovering waste heat of liquid cooling data center
JP3520927B2 (en) Power generator
US6519946B2 (en) Cogeneration system using waste-heat gas generated in micro gas turbine
KR101397621B1 (en) System for increasing energy efficiency of gas power plant
KR100618292B1 (en) Triple purpose integrated power, heat and cold cogeneration system with absortion cooler from natural gas
JP5312644B1 (en) Air conditioning power generation system
CN202501677U (en) Steam compression refrigeration device driven by organic Rankine cycle
Du et al. Feasibility of small-scale cold energy storage (CES) through carbon dioxide based Rankine cycle
KR101315918B1 (en) Organic rankine cycle for using low temperature waste heat and absorbtion type refrigerator
CN116641769A (en) Energy storage utilization system based on carbon dioxide working medium
CN116624242A (en) Heat pump type fused salt-carbon composite energy storage power supply method and device
JPH0797933A (en) Intake air cooling device of gas turbine
JP2005171861A (en) Rankine cycle power generation system
JP2000146359A (en) Cogeneration system
JP2000097047A (en) Heat and electricity combination supply system and heat- accumulation quantity controlling method of heat- accumulator applied thereto
KR20210092106A (en) Environment-friendly, high-efficiency heat pump system with reduced energy and carbon emissions for both industrial steam, hot water and cold water
JPH02146208A (en) Compound heat utilizing plant
RU2812381C1 (en) Operating method of steam gas plant
JP2015210070A (en) Complex air-conditioning refrigeration system
JP2005147447A (en) Ammonia-water non-azeotropic mixture medium circulation system

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040128

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees