JP2015210070A - Complex air-conditioning refrigeration system - Google Patents

Complex air-conditioning refrigeration system Download PDF

Info

Publication number
JP2015210070A
JP2015210070A JP2014103759A JP2014103759A JP2015210070A JP 2015210070 A JP2015210070 A JP 2015210070A JP 2014103759 A JP2014103759 A JP 2014103759A JP 2014103759 A JP2014103759 A JP 2014103759A JP 2015210070 A JP2015210070 A JP 2015210070A
Authority
JP
Japan
Prior art keywords
cycle
refrigerant
air
combined
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014103759A
Other languages
Japanese (ja)
Inventor
三村 建治
Kenji Mimura
建治 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIMURA YOKO
Original Assignee
MIMURA YOKO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIMURA YOKO filed Critical MIMURA YOKO
Priority to JP2014103759A priority Critical patent/JP2015210070A/en
Publication of JP2015210070A publication Critical patent/JP2015210070A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To further facilitate taking advantage of natural energy.SOLUTION: By using a complex cycle constituted by a first cycle being a refrigeration cycle of a reverse carnot cycle, and a second cycle being a refrigerant cycle, unused heat energy, which was conventionally wasted, is used by the heat exchange with refrigerant of the second cycle. In the cooling operation, refrigerant which passes through an expansion valve or expander and performs cooling operation by means of an indoor heat exchanger, thereby having low pressure and low temperature, and refrigerant of the second cycle are heat-exchanged to lower the temperature of the refrigerant of the second cycle. In addition, refrigerant which is compressed by the compressor of the first cycle, thereby having high pressure and high temperature, is heat-exchanged again with the refrigerant of the second cycle having the lowered temperature to lower the condensation temperature of the refrigerant of the first cycle so as to significantly reduce drive force required for a compressor in the first cycle.

Description

本発明は、逆カルノーサイクルの冷凍サイクルの第1サイクルと、冷媒サイクルの第2サイクルからなる複合サイクルを用いて、従来、冷却するためだけに凝縮器から大気に放出され、捨てられていた、未利用の熱エネルギーを、第2サイクルの冷媒との熱交換により活用する。
冷房の場合は、第1サイクルの膨張弁または、膨張機を通過し、さらに室内熱交換器により冷房を行い低圧、低温となった冷媒と、第2サイクルの冷媒との熱交換により第2サイクルの冷媒を降温する。そして第1サイクルの圧縮機により圧縮され、高圧、高温となった冷媒を、降温された第2サイクルの冷媒と再び熱交換する事により、第1サイクルの冷媒の凝縮温度を下げ、第1サイクルの圧縮機に必要な駆動力を大幅に低減させる。
また、暖房の場合は、第1サイクルの圧縮機により圧縮され、高圧、高温となった冷媒を利用して、熱交換により第2サイクルの冷媒を昇温する。そして第1サイクルの膨張弁または、膨張機を通過し低圧、低温となった冷媒と、昇温された第2サイクルの冷媒を再び熱交換する事により、第1サイクルの冷媒の蒸発温度を上げ、第1サイクルの圧縮機に必要な駆動力を大幅に低減させる。
また第1サイクルの膨張弁の替わりに膨張機を取り付け、その駆動力を利用して発電を行い、第1サイクルの圧縮機と第2サイクルの循環ポンプの駆動を補助する。これにより、空調、冷凍装置の消費電力を大幅に低減する事のできる、複合空調冷凍装置に関するものである。
The present invention, using a combined cycle consisting of a first cycle of a reverse Carnot cycle and a second cycle of a refrigerant cycle, has been conventionally released from the condenser to the atmosphere only for cooling and discarded. Unused thermal energy is utilized by heat exchange with the refrigerant in the second cycle.
In the case of cooling, the second cycle is obtained by heat exchange between the refrigerant that has passed through the expansion valve or the expander of the first cycle and further cooled by the indoor heat exchanger to become low pressure and low temperature and the refrigerant of the second cycle. The refrigerant is cooled down. Then, the refrigerant that has been compressed by the compressor in the first cycle and becomes high pressure and high temperature is again heat exchanged with the refrigerant in the second cycle that has been cooled down, thereby reducing the condensation temperature of the refrigerant in the first cycle. The driving force required for the compressor is greatly reduced.
In the case of heating, the refrigerant of the second cycle is heated by heat exchange using the refrigerant that has been compressed by the compressor of the first cycle and has become high pressure and high temperature. The first cycle refrigerant evaporating temperature is increased by exchanging heat again between the refrigerant that has passed through the first cycle expansion valve or the expander and has become low pressure and low temperature and the second cycle refrigerant that has been heated. The driving force required for the compressor in the first cycle is greatly reduced.
In addition, an expander is attached instead of the expansion valve in the first cycle, and electric power is generated using the driving force to assist in driving the compressor in the first cycle and the circulation pump in the second cycle. Thus, the present invention relates to a composite air-conditioning refrigeration apparatus that can significantly reduce the power consumption of the air-conditioning and refrigeration apparatus.

現在、世界的に逆カルノーサイクルを原理とした空調冷凍装置は、そのエネルギー効率の高さから、将来の低炭素社会への有力な切り札となっている。また、日本における空調冷凍装置の技術は順調に発展し、世界をリードするに至っている。こういった環境において空調冷凍装置の更なる性能向上及び、空調、冷凍装置技術の有効利用が求められている。Currently, air-conditioning refrigeration systems based on the reverse Carnot cycle are a powerful trump card for future low-carbon societies because of their high energy efficiency. In addition, the technology of air-conditioning refrigeration equipment in Japan has been steadily developing and has led the world. In such an environment, further improvement in performance of the air-conditioning refrigeration apparatus and effective use of the air-conditioning and refrigeration apparatus technology are required.

こういった環境において逆カルノーサイクルの冷凍サイクルと冷媒サイクルを複合的に、かつ巧妙に活用した空調冷凍装置の社会的な意義は計りしれない。
In such an environment, the social significance of an air-conditioning refrigeration system that utilizes the reverse Carnot cycle refrigeration cycle and the refrigerant cycle in a complex and skillful manner is immeasurable.

特許2546868Patent 2546868 特許5441844Patent 5441844

本発明は、逆カルノーサイクルの冷凍サイクルの第1サイクルと、冷媒サイクルの第2サイクルからなる複合サイクルを用いて、従来、冷却するためだけに凝縮器から大気に放出され、捨てられていた、未利用の熱エネルギーを、第2サイクルの冷媒との熱交換により活用する。
冷房の場合は、第1サイクルの膨張弁または、膨張機を通過し、さらに室内熱交換器により冷房を行い低圧、低温となった冷媒と、第2サイクルの冷媒との熱交換により第2サイクルの冷媒を降温する。そして第1サイクルの圧縮機により圧縮され、高圧、高温となった冷媒を、降温された第2サイクルの冷媒と再び熱交換する事により、第1サイクルの冷媒の凝縮温度を下げ、第1サイクルの圧縮機に必要な駆動力を大幅に低減させる。
また、暖房の場合は、第1サイクルの圧縮機により圧縮され、高圧、高温となった冷媒を利用して、熱交換により第2サイクルの冷媒を昇温する。そして第1サイクルの膨張弁または、膨張機を通過し低圧、低温となった冷媒と、昇温された第2サイクルの冷媒を再び熱交換する事により、第1サイクルの冷媒の蒸発温度を上げ、第1サイクルの圧縮機に必要な駆動力を大幅に低減させる。
また第1サイクルの膨張弁の替わりに膨張機を取り付け、その駆動力を利用して発電を行い、第1サイクルの圧縮機と第2サイクルの循環ポンプの駆動を補助する。これにより、空調、冷凍装置の消費電力を大幅に低減する事のできる、複合空調冷凍装置である。
The present invention, using a combined cycle consisting of a first cycle of a reverse Carnot cycle and a second cycle of a refrigerant cycle, has been conventionally released from the condenser to the atmosphere only for cooling and discarded. Unused thermal energy is utilized by heat exchange with the refrigerant in the second cycle.
In the case of cooling, the second cycle is obtained by heat exchange between the refrigerant that has passed through the expansion valve or the expander of the first cycle and further cooled by the indoor heat exchanger to become low pressure and low temperature and the refrigerant of the second cycle. The refrigerant is cooled down. Then, the refrigerant that has been compressed by the compressor in the first cycle and becomes high pressure and high temperature is again heat exchanged with the refrigerant in the second cycle that has been cooled down, thereby reducing the condensation temperature of the refrigerant in the first cycle. The driving force required for the compressor is greatly reduced.
In the case of heating, the refrigerant of the second cycle is heated by heat exchange using the refrigerant that has been compressed by the compressor of the first cycle and has become high pressure and high temperature. The first cycle refrigerant evaporating temperature is increased by exchanging heat again between the refrigerant that has passed through the first cycle expansion valve or the expander and has become low pressure and low temperature and the second cycle refrigerant that has been heated. The driving force required for the compressor in the first cycle is greatly reduced.
In addition, an expander is attached instead of the expansion valve in the first cycle, and electric power is generated using the driving force to assist in driving the compressor in the first cycle and the circulation pump in the second cycle. Thereby, it is a composite air-conditioning refrigeration apparatus which can reduce the power consumption of an air-conditioning and refrigeration apparatus significantly.

現在、電気は、大規模な発電施設で発電するか、工場等での自家発電、各家庭等での個別の小規模発電で作られているが、大規模発電である原子力は事故時の被害の甚大さや核燃料廃棄物処理の問題、火力や天然ガスはCO2を排出し、水力及び、地熱、太陽熱、太陽光、風力等の再生可能エネルギーは規模や建設場所等の問題がある。工場等の自家発電も、CO2排出や燃料価格の変動等の問題があり、各家庭での太陽光、風力等の再生可能エネルギー利用は、共に気候に左右され不安定であり、また規模も限られる。この様な状況のなかで、より一層、エネルギーの有効利用を促進する必要が有る。Currently, electricity is generated by large-scale power generation facilities, or by private power generation in factories, etc., and individual small-scale power generation in each home, but nuclear power, which is large-scale power generation, is damaged during an accident. There is a problem of the size and construction location of hydropower and renewable energy such as geothermal, solar heat, solar and wind power. In-house power generation at factories also has problems such as CO2 emissions and fuel price fluctuations, and the use of renewable energy such as solar and wind power at each home is both unstable and unstable depending on the climate. It is done. In such a situation, it is necessary to further promote the effective use of energy.

本発明は、逆カルノーサイクルの冷凍サイクルの第1サイクルと、冷媒サイクルの第2サイクルからなる複合サイクルを用いて、従来、冷却するためだけに凝縮器から大気に放出され、捨てられていた、未利用の熱エネルギーを、第2サイクルの冷媒との熱交換により活用する。
第1サイクルの冷媒と、第2サイクルの冷媒を巧妙に熱交換し利用する事により、冷房および、暖房においても、全体の空調冷凍能力と空調冷凍効率を向上させる事ができる複合空調冷凍装置であり、また、第1サイクルの膨張弁の替わりに膨張機を取り付け、その駆動力を利用して発電を行い、第1サイクルの圧縮機と第2サイクルの循環ポンプの駆動を補助する。これにより、空調、冷凍装置の消費電力を大幅に低減する事のできる、複合空調冷凍装置である。
前記課題を解決するためには、本発明は冷媒サイクルを複合的に組み合わせる事により、大気の熱エネルギーを利用して発電を行い、さらに複合サイクルの巧妙な熱交換により空調、冷凍装置の消費電力を大幅に低減する事のできる複合空調冷凍装置であり、新しい自然エネルギーの有効利用として極めて有用である。
The present invention, using a combined cycle consisting of a first cycle of a reverse Carnot cycle and a second cycle of a refrigerant cycle, has been conventionally released from the condenser to the atmosphere only for cooling and discarded. Unused thermal energy is utilized by heat exchange with the refrigerant in the second cycle.
A combined air-conditioning refrigeration system that can improve the overall air-conditioning refrigeration capacity and air-conditioning refrigeration efficiency in cooling and heating by skillfully exchanging and using the refrigerant in the first cycle and the refrigerant in the second cycle. In addition, an expander is attached instead of the expansion valve of the first cycle, and electric power is generated using the driving force to assist the drive of the compressor of the first cycle and the circulation pump of the second cycle. Thereby, it is a composite air-conditioning refrigeration apparatus which can reduce the power consumption of an air-conditioning and refrigeration apparatus significantly.
In order to solve the above-mentioned problems, the present invention combines the refrigerant cycle in combination to generate power using the thermal energy of the atmosphere, and further uses the combined cycle to perform heat exchange and consumes power in the air conditioning and refrigeration equipment. It is a composite air-conditioning refrigeration system that can significantly reduce the amount of water, and is extremely useful as an effective use of new natural energy.

本発明は大気の熱エネルギーを利用する為、一年中24時間安定稼働が可能な省電力、複合空調冷凍装置であり、各戸別、及び大規模施設、店舗等、どこにでも設置可能である。
また、凝縮器による排熱の放出が極めて少ないので、ヒートアイランド現象の対策におおいに有効である。
Since the present invention uses thermal energy of the atmosphere, it is a power-saving and combined air-conditioning refrigeration apparatus that can be stably operated for 24 hours all year round, and can be installed everywhere, such as each house, large-scale facility, store, and the like.
In addition, since the exhaust heat emitted by the condenser is extremely small, it is very effective for the countermeasure against the heat island phenomenon.

以下、本発明による複合空調冷凍装置を図1、図2、図3、図4、に示す全体の構成図に基づいて説明する。Hereinafter, the composite air-conditioning refrigerating apparatus according to the present invention will be described with reference to the entire configuration diagram shown in FIGS. 1, 2, 3, and 4.

図1、において冷房のときは、第1サイクルの圧縮機1は外部駆動機15により駆動される。圧縮され高温、高圧となった1サイクルの冷媒は、四方弁18を介して冷媒配管10を経て熱交換器3に流入し、第2サイクルの循環ポンプ6により送られた第2サイクルの冷媒と熱交換を行い、低温となり排出され冷媒配管7を経て膨張弁2、または図2の膨張機19に入るIn FIG. 1, during cooling, the compressor 1 in the first cycle is driven by the external driver 15. The one-cycle refrigerant that has been compressed to a high temperature and high pressure flows into the heat exchanger 3 through the refrigerant pipe 10 via the four-way valve 18, and the second-cycle refrigerant sent by the second-cycle circulation pump 6. The heat exchange is performed, the temperature becomes low, and the refrigerant is discharged and enters the expansion valve 2 or the expander 19 shown in FIG.

図1、において第1サイクルの膨張弁2により膨張するか、または図2の膨張機19により発電機の17を駆動し発電を行う。In FIG. 1, it expands with the expansion valve 2 of a 1st cycle, or drives the generator 17 with the expander 19 of FIG. 2, and it produces electric power.

図1、において膨張弁2、または図2の膨張機19により膨張し低温、低圧となった第1サイクルの冷媒は冷媒配管8を経て、四方弁18により室内熱交換器5に入り冷房をおこない、四方弁18を介し、熱交換器4によって、第2サイクルの温度の高い冷媒と熱交換して昇温し、四方弁18を介し冷媒配管9を経て圧縮機1に戻る。この冷媒の昇温により、第1サイクルの圧縮機1の圧縮に必要な駆動力を大幅に低減させる。In FIG. 1, the refrigerant in the first cycle, which has been expanded by the expansion valve 2 or the expander 19 in FIG. 2 and has become low temperature and low pressure, passes through the refrigerant pipe 8 and enters the indoor heat exchanger 5 by the four-way valve 18 for cooling. The heat exchanger 4 exchanges heat with the refrigerant having a high temperature in the second cycle through the four-way valve 18 to increase the temperature, and the refrigerant returns to the compressor 1 through the refrigerant pipe 9 through the four-way valve 18. With this temperature rise of the refrigerant, the driving force required for the compression of the compressor 1 in the first cycle is greatly reduced.

図1により、熱交換器3を介して昇温された、第2サイクルの冷媒は、冷媒配管13を経て四方弁18を介し冷媒配管14を通り熱交換器4に入る。According to FIG. 1, the refrigerant in the second cycle, which has been heated through the heat exchanger 3, enters the heat exchanger 4 through the refrigerant pipe 13 via the four-way valve 18 through the refrigerant pipe 13.

図1、において第2サイクルの冷媒は、第1サイクルの膨張弁2、または図2の膨張機19、及び室内熱交換器5を通過し低圧、低温となった冷媒を昇温し、冷媒配管11を経て循環ポンプ6に戻る。In FIG. 1, the refrigerant of the second cycle passes through the expansion valve 2 of the first cycle or the expander 19 of FIG. 2 and the indoor heat exchanger 5 to raise the temperature of the refrigerant that has become low pressure and low temperature, and refrigerant piping 11 to return to the circulation pump 6.

図1、において循環ポンプ6により送られた第2サイクル冷媒は、冷媒配管12を経て熱交換器3に流入し、第1サイクルの高温となった冷媒との熱交換により昇温され、冷媒配管13から四方弁18に戻る。In FIG. 1, the second cycle refrigerant sent by the circulation pump 6 flows into the heat exchanger 3 through the refrigerant pipe 12 and is heated by heat exchange with the refrigerant having reached the high temperature in the first cycle. Return from 13 to the four-way valve 18.

図3、において暖房のときは、第1サイクルの圧縮機1は外部駆動機15により駆動される。圧縮され高温、高圧となった第1サイクルの冷媒は、四方弁18を介して冷媒配管9を経て四方弁18から室内熱交換器5に流入し暖房を行い、四方弁18を介し、熱交換器4によって、第2サイクルの低温の冷媒を昇温し、四方弁18を介し冷媒配管8を経て膨張弁2、または図4の膨張機19に入る。In FIG. 3, during heating, the compressor 1 in the first cycle is driven by the external driver 15. The refrigerant of the first cycle, which has been compressed and becomes high temperature and high pressure, flows into the indoor heat exchanger 5 from the four-way valve 18 through the refrigerant pipe 9 via the four-way valve 18, performs heating, and exchanges heat through the four-way valve 18. The temperature of the low-temperature refrigerant in the second cycle is raised by the vessel 4 and enters the expansion valve 2 or the expander 19 of FIG. 4 through the refrigerant pipe 8 via the four-way valve 18.

図3、において第1サイクルの膨張弁2により膨張するか、または図4の膨張機19に流入した冷媒は膨張し、膨張機19の駆動力を発生させ、図4の発電機17を駆動し発電を行う。In FIG. 3, the refrigerant that is expanded by the expansion valve 2 in the first cycle or that flows into the expander 19 in FIG. 4 expands to generate the driving force of the expander 19 and drive the generator 17 in FIG. Generate electricity.

図3、において膨張弁2、または図4の膨張機19により膨張し低温、低圧となった第1サイクルの冷媒は、熱交換器3に入り、第2サイクルの温度の高い冷媒と熱交換して昇温し、冷媒配管10を経て四方弁18を介し、圧縮機1に戻る。この冷媒の昇温により、第1サイクルの圧縮機1の圧縮に必要な駆動力を大幅に低減させる。In FIG. 3, the refrigerant of the first cycle, which has been expanded by the expansion valve 2 or the expander 19 of FIG. 4 to become low temperature and low pressure, enters the heat exchanger 3 and exchanges heat with the refrigerant having a high temperature in the second cycle. The temperature is raised, and the refrigerant returns to the compressor 1 through the refrigerant pipe 10 and the four-way valve 18. With this temperature rise of the refrigerant, the driving force required for the compression of the compressor 1 in the first cycle is greatly reduced.

図3、において第1サイクルの圧縮機1により圧縮され高温となり、冷媒配管9を経て四方弁18を介して室内熱交換器5に流入し暖房を行った第1サイクルの冷媒により、熱交換器4を介して昇温された、第2サイクルの冷媒は、冷媒配管14を経て四方弁18に入る。In FIG. 3, it is compressed by the compressor 1 of the first cycle, becomes high temperature, flows into the indoor heat exchanger 5 via the four-way valve 18 through the refrigerant pipe 9, and is heated by the refrigerant of the first cycle that is heated. The refrigerant of the second cycle whose temperature has been increased through 4 enters the four-way valve 18 through the refrigerant pipe 14.

図3、において温度の高い第2サイクル冷媒は、四方弁18を介して冷媒配管13を経て熱交換器3に入り、第1サイクルの膨張弁2、または図4の膨張機19、を通過し低圧、低温となった、第1サイクル冷媒を昇温し、冷媒配管12を経て循環ポンプ6に戻る。In FIG. 3, the second cycle refrigerant having a high temperature enters the heat exchanger 3 through the refrigerant pipe 13 via the four-way valve 18 and passes through the first cycle expansion valve 2 or the expander 19 in FIG. The temperature of the first cycle refrigerant, which has become low pressure and low temperature, is raised, and returns to the circulation pump 6 via the refrigerant pipe 12.

図3、において循環ポンプ6により送られた第2サイクル冷媒は、冷媒配管11を経て熱交換器4に流入し、第1サイクルの高温の冷媒により昇温され、冷媒配管14を経て第2サイクルの四方弁18に戻る。In FIG. 3, the second cycle refrigerant sent by the circulation pump 6 flows into the heat exchanger 4 through the refrigerant pipe 11, is heated by the high-temperature refrigerant in the first cycle, and passes through the refrigerant pipe 14 for the second cycle. The four-way valve 18 is returned.

以下、本発明による別案の複合空調冷凍装置を図5、図6、図7、図8、に示す全体の構成図に基づいて説明する。Hereinafter, another combined air-conditioning refrigeration apparatus according to the present invention will be described based on the entire configuration diagram shown in FIGS. 5, 6, 7, and 8.

図5、において冷房のときは、第1サイクルの圧縮機1は外部駆動機15により駆動される。圧縮され高温、高圧となった1サイクルの冷媒は、冷媒配管10を経て四方弁18を介して熱交換器3に流入し、第2サイクルの冷媒ポンプ6により送られた第2サイクル冷媒と熱交換を行い、低温となり排出され冷媒配管7を経て膨張弁2、または図6の膨張機19に入るIn FIG. 5, during cooling, the compressor 1 in the first cycle is driven by the external driver 15. The compressed one-cycle refrigerant that has become high temperature and high pressure flows into the heat exchanger 3 via the four-way valve 18 through the refrigerant pipe 10, and the second-cycle refrigerant and heat sent by the second-cycle refrigerant pump 6. It is exchanged, discharged at a low temperature, passes through the refrigerant pipe 7 and enters the expansion valve 2 or the expander 19 shown in FIG.

図5、において第1サイクルの膨張弁2により膨張するか、または図6の膨張機19に流入した冷媒は膨張し、膨張機19の駆動力を発生させ、図6の発電機17を駆動し発電を行う。In FIG. 5, the refrigerant that is expanded by the expansion valve 2 in the first cycle or that flows into the expander 19 in FIG. 6 expands, generates a driving force for the expander 19, and drives the generator 17 in FIG. Generate electricity.

図5、において膨張弁2、または図6の膨張機19により膨張し低温、低圧となった第1サイクルの冷媒は、四方弁18により室内熱交換器5に入り、冷房をおこなった後に四方弁18を経て熱交換器4に入り、第2サイクルの温度の高い冷媒と熱交換して昇温し、冷媒配管9を経て圧縮機1に戻る。この冷媒の昇温により、第1サイクルの圧縮機1の圧縮に必要な駆動力を大幅に低減させる。In FIG. 5, the refrigerant in the first cycle, which is expanded by the expansion valve 2 in FIG. 5 or the expander 19 in FIG. 6 and becomes low temperature and low pressure, enters the indoor heat exchanger 5 by the four-way valve 18, and after cooling, the four-way valve The heat exchanger 4 enters the heat exchanger 4 through 18, heats up with the refrigerant having a high temperature in the second cycle, rises in temperature, and returns to the compressor 1 through the refrigerant pipe 9. With this temperature rise of the refrigerant, the driving force required for the compression of the compressor 1 in the first cycle is greatly reduced.

図5、において第2サイクルの冷媒は、第1サイクルの膨張弁2、または図2の膨張機19、及び室内熱交換器5を通過し低圧、低温となった冷媒を熱交換器4により昇温し、冷媒配管11を経て循環ポンプ6に戻る。In FIG. 5, the refrigerant in the second cycle passes through the expansion valve 2 in the first cycle or the expander 19 in FIG. 2 and the indoor heat exchanger 5, and the refrigerant that has become low pressure and low temperature is raised by the heat exchanger 4. It warms and returns to the circulation pump 6 through the refrigerant | coolant piping 11. FIG.

図5、において循環ポンプ6により送られた第2サイクル冷媒は、冷媒配管12を経て熱交換器3に流入し、第1サイクルの高温となった冷媒との熱交換により昇温され、冷媒配管13から熱交換器4に戻る。In FIG. 5, the second cycle refrigerant sent by the circulation pump 6 flows into the heat exchanger 3 through the refrigerant pipe 12 and is heated by heat exchange with the refrigerant having reached the high temperature in the first cycle. Return from 13 to the heat exchanger 4.

図7、において暖房のときは、第1サイクルの圧縮機1は外部駆動機15により駆動される。圧縮され高温、高圧となった第1サイクルの冷媒は、冷媒配管10を経て四方弁18から室内熱交換器5に流入し、暖房を行い、四方弁18を介し、熱交換器3によって、第2サイクルの低温の冷媒を昇温し、冷媒配管7を経て膨張弁2、または図8の膨張機19に入る。In FIG. 7, during heating, the compressor 1 in the first cycle is driven by the external driver 15. The refrigerant of the first cycle, which has been compressed and becomes high temperature and high pressure, flows into the indoor heat exchanger 5 from the four-way valve 18 through the refrigerant pipe 10, performs heating, and is heated by the heat exchanger 3 through the four-way valve 18. The temperature of the low-temperature refrigerant of two cycles is increased, and the refrigerant enters the expansion valve 2 or the expander 19 shown in FIG.

図7、において第1サイクルの膨張弁2により膨張するか、または図8の膨張機19に流入した冷媒は膨張し、膨張機19の駆動力を発生させ、図8の発電機17を駆動し発電を行う。In FIG. 7, the refrigerant that is expanded by the expansion valve 2 in the first cycle or that flows into the expander 19 of FIG. 8 expands, generates a driving force of the expander 19, and drives the generator 17 of FIG. 8. Generate electricity.

図7、において膨張弁2、または図8の膨張機19により膨張し低温、低圧となった第1サイクルの冷媒は熱交換器4に入り、第2サイクルの温度の高い冷媒と熱交換して昇温し、冷媒配管9を経て、圧縮機1に戻る。この冷媒の昇温により、第1サイクルの圧縮機1の圧縮に必要な駆動力を大幅に低減させる。In FIG. 7, the refrigerant of the first cycle, which is expanded by the expansion valve 2 or the expander 19 of FIG. 8 and becomes low temperature and low pressure, enters the heat exchanger 4 and exchanges heat with the refrigerant having a high temperature of the second cycle. The temperature is raised and the refrigerant pipe 9 is returned to the compressor 1. With this temperature rise of the refrigerant, the driving force required for the compression of the compressor 1 in the first cycle is greatly reduced.

図7、において第2サイクルの冷媒は、室内熱交換器5、及び熱交換器3、そして第1サイクルの膨張弁2、または図8の膨張機19、を通過し低圧、低温となった冷媒を熱交換器4により昇温し、冷媒配管11を経て循環ポンプ6に戻る。In FIG. 7, the refrigerant of the second cycle passes through the indoor heat exchanger 5, the heat exchanger 3, and the expansion valve 2 of the first cycle, or the expander 19 of FIG. Is heated by the heat exchanger 4 and returns to the circulation pump 6 through the refrigerant pipe 11.

図7、において循環ポンプ6により送られた第2サイクル冷媒は、冷媒配管12を経て熱交換器3に流入し、第1サイクルの高温となった冷媒との熱交換により昇温され、冷媒配管13から熱交換器4に戻る。In FIG. 7, the second cycle refrigerant sent by the circulation pump 6 flows into the heat exchanger 3 through the refrigerant pipe 12, and is heated by heat exchange with the refrigerant having a high temperature in the first cycle. Return from 13 to the heat exchanger 4.

以下、本発明による第2サイクルの冷媒の循環量を制御する複合空調冷凍装置を図9、に示す全体の構成図に基づいて説明する。Hereinafter, the composite air-conditioning refrigeration apparatus for controlling the circulation amount of the refrigerant in the second cycle according to the present invention will be described based on the overall configuration diagram shown in FIG.

図9、において循環ポンプ6により送られた第2サイクル冷媒は、冷媒配管12を経て熱交換器3に流入し、第1サイクルの高温となった冷媒との熱交換により昇温され、冷媒配管13から熱交換器4に流入し、循環ポンプ6により熱交換器3を経て循環する。
第2サイクル冷媒は温度センサー26により温度を検知され、循環ポンプ6の循環量を制御装置25により制御される事によって、適正な温度に保たれる。
In FIG. 9, the second cycle refrigerant sent by the circulation pump 6 flows into the heat exchanger 3 through the refrigerant pipe 12 and is heated by heat exchange with the refrigerant having reached the high temperature in the first cycle. 13 flows into the heat exchanger 4 and circulates through the heat exchanger 3 by the circulation pump 6.
The temperature of the second cycle refrigerant is detected by the temperature sensor 26, and the circulation amount of the circulation pump 6 is controlled by the control device 25, so that the second cycle refrigerant is maintained at an appropriate temperature.

以下、本発明による二段圧縮複合冷凍装置を図10、に示す全体の構成図に基づいて説明する。Hereinafter, a two-stage compression composite refrigeration apparatus according to the present invention will be described with reference to an overall configuration diagram shown in FIG.

図10、において、第1サイクルの低段圧縮機20は低段圧縮駆動機23により駆動される。圧縮され昇温され、中間圧力となった第1サイクルの冷媒は、冷媒配管10を経て中間冷却器27に流入し、第1サイクルの高圧冷媒をバイパスさせて、中間冷却器用膨張弁21により膨張された、低温で中間圧力の冷媒と熱交換を行い、高段圧縮機16に入る。In FIG. 10, the first stage low-stage compressor 20 is driven by a low-stage compression driver 23. The refrigerant of the first cycle, which has been compressed and heated to the intermediate pressure, flows into the intermediate cooler 27 through the refrigerant pipe 10, bypasses the high-pressure refrigerant of the first cycle, and is expanded by the expansion valve 21 for the intermediate cooler. The heat exchange with the low-temperature and intermediate-pressure refrigerant is performed, and the high-stage compressor 16 is entered.

図10、において、第1サイクルの高段圧縮機16は高段圧縮駆動機24により駆動される。圧縮され高温、高圧となった1サイクルの冷媒は、熱交換器3に流入し、第2サイクルの冷媒ポンプ6により送られた冷媒と熱交換を行い、低温となり排出され、受液器22、中間冷却器27、冷媒配管7を経て膨張弁2に入る。In FIG. 10, the first stage high stage compressor 16 is driven by a high stage compression drive 24. The compressed one-cycle refrigerant that has become high-temperature and high-pressure flows into the heat exchanger 3, exchanges heat with the refrigerant sent by the second-cycle refrigerant pump 6, is discharged at a low temperature, It enters the expansion valve 2 through the intermediate cooler 27 and the refrigerant pipe 7.

図10、において膨張弁2により膨張し低温、低圧となった第1サイクルの冷媒は、室内熱交換器5に入り、冷房をおこない、冷媒配管8を経て、熱交換器4に入り、第2サイクルの温度の高い冷媒と熱交換して昇温し、冷媒配管9を経て、低段圧縮機20に戻る。この冷媒の昇温により、第1サイクルの低段圧縮機20の圧縮に必要な駆動力を大幅に低減させる。In FIG. 10, the refrigerant in the first cycle, which has been expanded by the expansion valve 2 to become low temperature and low pressure, enters the indoor heat exchanger 5, cools, enters the heat exchanger 4 through the refrigerant pipe 8, and enters the second heat exchanger 4. The temperature is raised by exchanging heat with a refrigerant having a high cycle temperature, and the refrigerant returns to the low-stage compressor 20 through the refrigerant pipe 9. With the temperature rise of the refrigerant, the driving force required for compression of the first stage low-stage compressor 20 is greatly reduced.

図10、において低段圧縮機20および、高段圧縮機16により圧縮され高温となった第1サイクルの冷媒により、熱交換器3を介して昇温された、第2サイクルの冷媒は、冷媒配管13を経て、熱交換器4に入る。In FIG. 10, the second-cycle refrigerant heated by the first-cycle refrigerant compressed by the low-stage compressor 20 and the high-stage compressor 16 and having a high temperature through the heat exchanger 3 is a refrigerant. It enters the heat exchanger 4 through the pipe 13.

図10、において熱交換器4に入った第2サイクルの冷媒は、第1サイクルの膨張弁2により膨張し低圧となり、室内熱交換器5に入り冷房をおこなった第1サイクル冷媒と、熱交換を行い、冷媒配管11を経て冷媒ポンプ6に入る。In FIG. 10, the refrigerant in the second cycle that has entered the heat exchanger 4 is expanded by the expansion valve 2 in the first cycle to become a low pressure, and exchanges heat with the first cycle refrigerant that has entered the indoor heat exchanger 5 and has been cooled. And enters the refrigerant pump 6 through the refrigerant pipe 11.

図10、において冷媒ポンプ6により送られた第2サイクル冷媒は、冷媒配管12を経て熱交換器3に戻る。In FIG. 10, the second cycle refrigerant sent by the refrigerant pump 6 returns to the heat exchanger 3 through the refrigerant pipe 12.

ここで、複合サイクルではない通常の冷凍サイクルの場合の空調冷凍装置の第1サイクルの具体的な運転状態について、図11、において実線のP−h(モリエル)線図により説明する。
逆カルノーサイクルの第1サイクルにおける、点Aは圧縮機1に供給される冷媒の状態(例えば圧力0.498MPa、5℃)を示し、駆動機15で駆動される圧縮機1により圧縮され、高圧、高温となり、点Bにおいては(例えば圧力1.73MPa、70℃)となる。点Aから点Bへの状態変化は、等エントロピー変化となる。点Cは室内熱交換器5から流出した冷媒の状態を示し(例えば圧力1.73MPa、34℃)となる。点Dは第1サイクル膨張弁2により膨張した後の熱交換器4の入口における冷媒の状態を示し(例えば圧力0.498MPa、0℃)となる。点Cから点Dへの状態変化は、等比エンタルピー変化となる。第1サイクルの冷媒は、点Dの状態から、熱交換器4を経て、点Aの状態に戻る。
Here, a specific operation state of the first cycle of the air-conditioning refrigeration system in the case of a normal refrigeration cycle that is not a combined cycle will be described with reference to a solid Ph (Mollier) diagram in FIG.
Point A in the first cycle of the reverse Carnot cycle indicates the state of the refrigerant supplied to the compressor 1 (for example, pressure 0.498 MPa, 5 ° C.), compressed by the compressor 1 driven by the drive 15, At point B (for example, pressure 1.73 MPa, 70 ° C.). A state change from point A to point B is an isentropic change. Point C shows the state of the refrigerant flowing out of the indoor heat exchanger 5 (for example, pressure 1.73 MPa, 34 ° C.). Point D shows the state of the refrigerant at the inlet of the heat exchanger 4 after being expanded by the first cycle expansion valve 2 (for example, pressure 0.498 MPa, 0 ° C.). The state change from the point C to the point D is a geometric enthalpy change. The refrigerant in the first cycle returns from the state at point D to the state at point A via the heat exchanger 4.

ここで、複合サイクルの複合空調冷凍装置の冷房時の第1サイクルの具体的な運転状態について、図11、において一点鎖線のP−h(モリエル)線図により説明する。
逆カルノーサイクルの第1サイクルにおける、点E’は圧縮機1に供給される冷媒の状態(例えば圧力0.498MPa、5℃)を示し、駆動機15で駆動される圧縮機1により圧縮され、高圧、高温となり、点F’においては(例えば圧力1.192MPa、50℃)となる。点E’から点F’への状態変化は、等エントロピー変化となる。点G’は熱交換器3から流出した冷媒の状態を示し(例えば圧力1.192MPa、20℃)となる。点H’は第1サイクル膨張弁2により膨張した後の、室内熱交換器5の入口における冷媒の状態を示し(例えば圧力0.498MPa、0℃)となる。点G’から点H’への状態変化は、等比エンタルピー変化となる。第1サイクルの冷媒は、点H’の状態から、熱交換器4において、第2サイクルの冷媒との熱交換により、第2サイクルの冷媒の温度を降下させた後に、点Aの状態に戻る。
Here, a specific operation state of the first cycle during cooling of the combined air-conditioning refrigeration apparatus of the combined cycle will be described with reference to a dashed-dotted line Ph (Mollier) diagram in FIG.
Point E ′ in the first cycle of the reverse Carnot cycle indicates the state of the refrigerant supplied to the compressor 1 (for example, pressure 0.498 MPa, 5 ° C.), and is compressed by the compressor 1 driven by the drive unit 15. The pressure becomes high and high, and at point F ′ (for example, pressure 1.192 MPa, 50 ° C.). The state change from the point E ′ to the point F ′ is an isentropic change. Point G ′ indicates the state of the refrigerant flowing out of the heat exchanger 3 (for example, pressure 1.192 MPa, 20 ° C.). Point H ′ indicates the state of the refrigerant at the inlet of the indoor heat exchanger 5 after being expanded by the first cycle expansion valve 2 (for example, pressure 0.498 MPa, 0 ° C.). The state change from the point G ′ to the point H ′ is a geometric enthalpy change. The refrigerant of the first cycle returns from the state of point H ′ to the state of point A after the temperature of the refrigerant of the second cycle is lowered by heat exchange with the refrigerant of the second cycle in the heat exchanger 4. .

ここで、複合サイクルの複合空調冷凍装置の暖房時の第1サイクルの具体的な運転状態について、図12、において一点鎖線のP−h(モリエル)線図により説明する。
逆カルノーサイクルの第1サイクルにおける、点A’は圧縮機1に供給される冷媒の状態(例えば圧力0.786MPa、20℃)を示し、駆動機15で駆動される圧縮機1により圧縮され、高圧、高温となり、点B’においては(例えば圧力1.73MPa、62℃)となる。点A’から点B’への状態変化は、等エントロピー変化となる。点C’は熱交換器3から流出した冷媒の状態を示し(例えば圧力1.73MPa、32℃)となる。点D’は第1サイクル膨張弁2により膨張した後の室内熱交換器5の入口における冷媒の状態を示し(例えば圧力0.786MPa、15℃)となる。点C’から点D’への状態変化は、等比エンタルピー変化となる。第1サイクルの冷媒は、点D’の状態から、室内熱交換器5を経て、点A’の状態に戻る。
Here, a specific operation state of the first cycle during heating of the combined air-conditioning refrigeration apparatus of the combined cycle will be described with reference to a dashed-dotted line Ph (Mollier) diagram in FIG.
Point A ′ in the first cycle of the reverse Carnot cycle indicates the state of the refrigerant supplied to the compressor 1 (for example, pressure 0.786 MPa, 20 ° C.) and is compressed by the compressor 1 driven by the drive unit 15. The pressure becomes high and high, and at point B ′ (for example, pressure 1.73 MPa, 62 ° C.). The state change from the point A ′ to the point B ′ is an isentropic change. Point C ′ indicates the state of the refrigerant flowing out of the heat exchanger 3 (for example, pressure 1.73 MPa, 32 ° C.). Point D ′ indicates the state of the refrigerant at the inlet of the indoor heat exchanger 5 after being expanded by the first cycle expansion valve 2 (for example, pressure 0.786 MPa, 15 ° C.). The state change from the point C ′ to the point D ′ is a geometric enthalpy change. The refrigerant in the first cycle returns from the state of point D ′ to the state of point A ′ via the indoor heat exchanger 5.

ここで、冷房の場合の、通常の冷凍サイクルの理論圧縮動力Δjと複合空調冷凍装置の理論圧縮動力Δiの比較を、図11、のP−h(モリエル)線図により説明する。11図において、通常の冷凍サイクルの第1サイクルより発生する理論圧縮動力Δjの比エンタルピーの値は(例えばh2−h1=33KJ/Kg)。そして、複合空調冷凍装置の第1サイクルより発生する理論圧縮動力Δiの比エンタルピーの値は(例えばh2’−h1’=24KJ/Kg)であり、例えば約28%効率が良くなる。
暖房の場合の、通常の冷凍サイクルの理論圧縮動力Δj’と複合空調冷凍装置の理論圧縮動力Δi’の比較を、図12、のP−h(モリエル)線図により説明する。12図において、通常の冷凍サイクルの第1サイクルより発生する理論圧縮動力Δj’の比エンタルピーの値は(例えばh2−h1=34KJ/Kg)。そして、複合空調冷凍装置の第1サイクルより発生する理論圧縮動力Δi’の比エンタルピーの値は(例えばh2’−h1’=19KJ/Kg)であり、例えば約45%効率が良くなる。
Here, a comparison between the theoretical compression power Δj of the normal refrigeration cycle and the theoretical compression power Δi of the combined air-conditioning refrigeration apparatus in the case of cooling will be described with reference to the Ph (Mollier) diagram of FIG. In FIG. 11, the value of the specific enthalpy of the theoretical compression power Δj generated from the first cycle of the normal refrigeration cycle (for example, h2−h1 = 33 KJ / Kg). The value of the specific enthalpy of the theoretical compression power Δi generated from the first cycle of the combined air-conditioning refrigeration apparatus is (for example, h2′−h1 ′ = 24 KJ / Kg), and the efficiency is improved by, for example, about 28%.
A comparison between the theoretical compression power Δj ′ of the normal refrigeration cycle and the theoretical compression power Δi ′ of the combined air-conditioning refrigeration apparatus in the case of heating will be described with reference to the Ph (Mollier) diagram of FIG. In FIG. 12, the value of the specific enthalpy of the theoretical compression power Δj ′ generated from the first cycle of the normal refrigeration cycle (for example, h2−h1 = 34 KJ / Kg). The value of the specific enthalpy of the theoretical compression power Δi ′ generated from the first cycle of the combined air-conditioning refrigeration apparatus is (for example, h2′−h1 ′ = 19 KJ / Kg), and the efficiency is improved by, for example, about 45%.

ここで、冷房の場合の、通常の冷凍サイクルの成績係数と複合空調冷凍装置の冷凍サイクルの成績係数の比較を、図11、のP−h(モリエル)線図により説明する。11図において、通常の冷凍サイクルの第1サイクルより発生する冷凍サイクルの成績係数の値は(例えばh1−h4/h2−h1≒5.03)。そして、複合空調冷凍装置の第1サイクルより発生する冷凍サイクルの成績係数の値は(例えばh1’−h4’/h2’−h1’≒7.71)であり、例えば約35%効率が良くなる。
暖房の場合、通常の冷凍サイクルの成績係数と複合空調冷凍装置の冷凍サイクルの成績係数の比較を、図12、のP−h(モリエル)線図により説明する。12図において、通常の冷凍サイクルの第1サイクルより発生する冷凍サイクルの成績係数の値は(例えばh1−h4/h2−h1≒4.71)。そして、複合空調冷凍装置の第1サイクルより発生する冷凍サイクルの成績係数の値は(例えばh1’−h4’/h2’−h1’≒9.26)であり、例えば約49%効率が良くなる。
Here, the comparison between the coefficient of performance of the normal refrigeration cycle and the coefficient of performance of the refrigeration cycle of the combined air-conditioning refrigeration system in the case of cooling will be described with reference to the Ph (Mollier) diagram of FIG. In FIG. 11, the coefficient of performance of the refrigeration cycle generated from the first cycle of the normal refrigeration cycle is (for example, h1−h4 / h2−h1≈5.03). The coefficient of performance of the refrigeration cycle generated from the first cycle of the combined air-conditioning refrigeration apparatus is (for example, h1′−h4 ′ / h2′−h1′≈7.71), and the efficiency is improved by, for example, about 35%. .
In the case of heating, the comparison of the coefficient of performance of the normal refrigeration cycle and the coefficient of performance of the refrigeration cycle of the combined air-conditioning refrigeration system will be described with reference to the Ph (Mollier) diagram of FIG. In FIG. 12, the coefficient of performance of the refrigeration cycle generated from the first cycle of the normal refrigeration cycle is (for example, h1−h4 / h2−h1≈4.71). The coefficient of performance of the refrigeration cycle generated from the first cycle of the combined air-conditioning refrigeration system is (for example, h1′−h4 ′ / h2′−h1′≈9.26), and the efficiency is improved by, for example, about 49%. .

複合空調冷凍装置の冷房の場合示す構成図Configuration diagram showing cooling of a combined air conditioning refrigeration system 第1サイクルの膨張機の駆動力を利用して発電する複合空調冷凍装置の冷房の場合示す構成図The block diagram shown in the case of the cooling of the composite air-conditioning refrigerating device which generates electric power using the driving force of the first cycle expander 複合空調冷凍装置の暖房の場合示す構成図The block diagram which shows in the case of heating of a compound air-conditioning refrigeration system 第1サイクルの膨張機の駆動力を利用して発電する複合空調冷凍装置の暖房の場合示す構成図The block diagram shown in the case of the heating of the composite air-conditioning refrigerating device which generates electric power using the driving force of the expander of the first cycle 別案の複合空調冷凍装置の冷房の場合示す構成図Configuration diagram showing the cooling of another combined air conditioning refrigeration system 第1サイクルの膨張機の駆動力を利用して発電する別案の複合空調冷凍装置の冷房の場合示す構成図The block diagram which shows the case of the cooling of the another compound air-conditioning refrigeration apparatus which produces electric power using the driving force of the expander of the 1st cycle 別案の複合空調冷凍装置の暖房の場合示す構成図The block diagram which shows in the case of the heating of another compound air-conditioning refrigeration system 第1サイクルの膨張機の駆動力を利用して発電する別案の複合空調冷凍装置の暖房の場合示す構成図The block diagram which shows the case of the heating of the another compound air-conditioning refrigeration apparatus which produces electric power using the driving force of the expander of the 1st cycle 第2サイクルの冷媒の循環量を制御する複合空調冷凍装置を示す構成図The block diagram which shows the composite air-conditioning refrigeration apparatus which controls the circulation amount of the refrigerant | coolant of a 2nd cycle 二段複合冷凍装置の構成図Configuration diagram of two-stage combined refrigeration system 複合空調冷凍装置の冷房の場合示す第1サイクルのP−h線図Ph diagram of the first cycle shown in the case of cooling of a combined air conditioning refrigeration system 複合空調冷凍装置の暖房の場合示す第1サイクルのP−h線図Ph diagram of the first cycle shown in the case of heating of the combined air-conditioning refrigeration system

1・・・第1サイクルの圧縮機、2・・・第1サイクルの膨張弁、3・・・熱交換器、4・・・熱交換器、5・・・室内熱交換器、6・・・循環ポンプ、7、8、9、10,・・・第1サイクルの冷媒配管、11、12、13、14、・・・第2サイクルの冷媒配管、15・・・駆動機、16・・・高段圧縮駆動機、17、・・・発電機、18、・・・四方弁、19・・・膨張機、20・・・低段圧縮機、21、・・・中間冷却器用膨張弁、22・・・受液器、23・・・低段圧縮駆動機、24・・・高段圧縮駆動機、25・・・制御装置、26・・・温度センサー、27・・・中間冷却器、DESCRIPTION OF SYMBOLS 1 ... 1st cycle compressor, 2 ... 1st cycle expansion valve, 3 ... Heat exchanger, 4 ... Heat exchanger, 5 ... Indoor heat exchanger, 6 ...・ Circulating pump, 7, 8, 9, 10,... First cycle refrigerant piping, 11, 12, 13, 14,... Second cycle refrigerant piping, 15. -High stage compression drive, 17, ... Generator, 18, ... Four-way valve, 19 ... Expander, 20 ... Low stage compressor, 21, ... Expansion valve for intermediate cooler, 22 ... Liquid receiver, 23 ... Low stage compression drive, 24 ... High stage compression drive, 25 ... Control device, 26 ... Temperature sensor, 27 ... Intermediate cooler,

Claims (7)

逆カルノーサイクルの冷凍サイクルの第1サイクルと、冷媒サイクルの第2サイクルからなる複合サイクルを有する複合空調冷凍装置において、従来、冷却するためだけに凝縮器により、大気に放出されていた、未利用の熱エネルギーを活用して、第1サイクルの冷媒と、第2サイクルの冷媒を巧妙に熱交換し利用する事により、冷房および、暖房においても、全体の空調冷凍能力と空調冷凍効率を向上させる事ができる複合空調冷凍装置。In a combined air-conditioning refrigeration system having a combined cycle consisting of a first cycle of a reverse Carnot cycle and a second cycle of a refrigerant cycle, it has conventionally been released into the atmosphere by a condenser only for cooling. By utilizing the heat energy of the first cycle and skillfully exchanging and using the refrigerant of the first cycle and the refrigerant of the second cycle, the entire air-conditioning refrigerating capacity and air-conditioning refrigerating efficiency are improved even in cooling and heating. Combined air conditioning refrigeration system that can do things. 逆カルノーサイクルの冷凍サイクルの第1サイクルと、冷媒サイクルの第2サイクルからなる複合サイクルを用いて、第1サイクルの膨張機から発電機により電力を取り出し利用する事により、消費電力を大幅に低減する複合空調冷凍装置。Using a combined cycle consisting of the first cycle of the reverse Carnot cycle and the second cycle of the refrigerant cycle, the power is taken out from the expander of the first cycle by the generator and used to greatly reduce power consumption. Combined air conditioning refrigeration equipment. 逆カルノーサイクルの冷凍サイクルの第1サイクルと、冷媒サイクルの第2サイクルからなる複合サイクルを有する複合空調冷凍装置において、第1サイクルの温度の高い冷媒と熱交換した第2サイクルの冷媒を利用して、第1サイクルの膨張機を通過し減圧、低温となった冷媒を、熱交換器によって昇温し、第1サイクルの圧縮機に必要な駆動力を低減させ、効率を向上させる事ができる複合空調冷凍装置。In a combined air-conditioning refrigeration system having a combined cycle composed of a first cycle of a reverse Carnot cycle and a second cycle of a refrigerant cycle, the second cycle refrigerant exchanged heat with the high-temperature refrigerant of the first cycle is used. Thus, the refrigerant that has passed through the first cycle expander and has been depressurized and lowered in temperature can be heated by the heat exchanger, reducing the driving force required for the compressor in the first cycle and improving the efficiency. Combined air conditioning refrigeration equipment. 逆カルノーサイクルの冷凍サイクルの第1サイクルと、冷媒サイクルの第2サイクルからなる複合サイクルを有する複合空調冷凍装置において、第2サイクルの冷媒を、第1サイクルの膨張機を通過し減圧、低温となった冷媒との熱交換により降温させ、さらに、第1サイクルの冷媒との熱交換によって第1サイクルの冷媒の凝縮温度を低下させ、圧縮機に必要な駆動力を低減させ、効率を向上させる事ができる複合空調冷凍装置。In a combined air-conditioning refrigeration system having a combined cycle consisting of a first cycle of a reverse Carnot cycle and a second cycle of a refrigerant cycle, the refrigerant of the second cycle passes through the expander of the first cycle and is depressurized and cooled. The temperature is lowered by heat exchange with the refrigerant, and the condensation temperature of the refrigerant in the first cycle is lowered by heat exchange with the refrigerant in the first cycle, thereby reducing the driving force necessary for the compressor and improving the efficiency. Combined air conditioning refrigeration system that can do things. 逆カルノーサイクルの冷凍サイクルの第1サイクルと、冷媒サイクルの第2サイクルからなる複合サイクルを用いて、第1サイクルの膨張弁の替わりに膨張機を取り付け、その駆動力で発電を行い、利用する事により、消費電力を大幅に低減する複合空調冷凍装置において、第1サイクルの冷媒と、第2サイクルの冷媒をそれぞれの特性に合った異なった冷媒、水、ブライン等、を用いる複合空調冷凍装置。Using a combined cycle consisting of the first cycle of the reverse Carnot cycle and the second cycle of the refrigerant cycle, an expander is attached instead of the expansion valve of the first cycle, and power is generated and used by the driving force. In the combined air-conditioning refrigerating apparatus that significantly reduces power consumption, the combined air-conditioning refrigerating apparatus using different refrigerants, water, brine, etc. that match the characteristics of the first-cycle refrigerant and the second-cycle refrigerant. . 逆カルノーサイクルの冷凍サイクルの第1サイクルと、冷媒サイクルの第2サイクルからなる複合サイクルを有する複合空調冷凍装置において、従来、冷却するためだけに凝縮器により、大気に放出されていた、未利用の熱エネルギーを活用して、第1サイクルの冷媒と、第2サイクルの冷媒を熱交換し利用する事により、冷房および、暖房においても、全体の空調冷凍能力と空調冷凍効率を向上させる事ができる複合空調冷凍装置において、第1サイクルの冷媒と、第2サイクルの冷媒をそれぞれの特性に合った異なった冷媒、水、ブライン等、を用いる複合空調装置。In a combined air-conditioning refrigeration system having a combined cycle consisting of a first cycle of a reverse Carnot cycle and a second cycle of a refrigerant cycle, it has conventionally been released into the atmosphere by a condenser only for cooling. By using the heat energy of the first cycle, the first cycle refrigerant and the second cycle refrigerant are used by exchanging heat to improve the overall air conditioning refrigerating capacity and air conditioning refrigerating efficiency even in cooling and heating. A composite air-conditioning refrigeration apparatus using a first-cycle refrigerant and a second-cycle refrigerant that use different refrigerants, water, brine, and the like that match the respective characteristics. 逆カルノーサイクルの冷凍サイクルの第1サイクルと、冷媒サイクルの第2サイクルからなる複合サイクルを有する複合空調冷凍装置において、従来、冷却するためだけに凝縮器により、大気に放出されていた未利用の熱エネルギーを活用して、第2サイクルの冷媒と、第1サイクルの冷媒とを熱交換し利用する事により、冷房および暖房においても、全体の空調冷凍能力と空調冷凍効率を向上させる事ができる空調冷凍装置において、第2サイクルの冷媒の循環量を温度センサーにより検知し制御する事により、常に最適な温度と循環量を保つ事ができる複合空調冷凍装置。In a combined air-conditioning refrigeration system having a combined cycle consisting of a first cycle of a reverse Carnot cycle and a second cycle of a refrigerant cycle, the unused air that has been conventionally released to the atmosphere by a condenser only for cooling By utilizing heat energy and exchanging heat between the second cycle refrigerant and the first cycle refrigerant, it is possible to improve the overall air conditioning refrigerating capacity and air conditioning refrigerating efficiency even in cooling and heating. In the air-conditioning refrigeration system, a combined air-conditioning refrigeration system that can always maintain the optimum temperature and circulation rate by detecting and controlling the circulation amount of the refrigerant in the second cycle with a temperature sensor.
JP2014103759A 2014-04-28 2014-04-28 Complex air-conditioning refrigeration system Pending JP2015210070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014103759A JP2015210070A (en) 2014-04-28 2014-04-28 Complex air-conditioning refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014103759A JP2015210070A (en) 2014-04-28 2014-04-28 Complex air-conditioning refrigeration system

Publications (1)

Publication Number Publication Date
JP2015210070A true JP2015210070A (en) 2015-11-24

Family

ID=54612390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014103759A Pending JP2015210070A (en) 2014-04-28 2014-04-28 Complex air-conditioning refrigeration system

Country Status (1)

Country Link
JP (1) JP2015210070A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019138563A (en) * 2018-02-12 2019-08-22 株式会社デンソー Internal heat exchange device for heat pump
JP2019184227A (en) * 2018-03-30 2019-10-24 満夫 山田 Cooling device with power generation function

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019138563A (en) * 2018-02-12 2019-08-22 株式会社デンソー Internal heat exchange device for heat pump
JP2019184227A (en) * 2018-03-30 2019-10-24 満夫 山田 Cooling device with power generation function
JP7114079B2 (en) 2018-03-30 2022-08-08 満夫 山田 Cooling device with power generation function

Similar Documents

Publication Publication Date Title
US10598392B2 (en) Solar energy system
US20090126381A1 (en) Trigeneration system and method
JP2005527730A (en) Cold power generation plant
EP3926257A1 (en) Transducing method and system
JP2012247081A (en) Composite system cum power generation and heat pump
WO2019114536A1 (en) Constructed cold source energy recovery system, heat engine system and energy recovery method
JP6649141B2 (en) Compressed air storage power generator
US9869495B2 (en) Multi-cycle power generator
RU2006147231A (en) HEAT ENGINE
KR20170075097A (en) Generation system using supercritical carbon dioxide and method of driving the same by heat sink temperature
CN102589196A (en) Air-conditioning hot water system capable of comprehensively utilizing energy
CN202382470U (en) R32 air-cooled water chiller heat pump unit with EVI (enhanced vapor injection) compressor
CN205297661U (en) Take waste heat power generation system of calorimeter back to
CN102435004A (en) Multifunctional high-temperature water outlet air conditioner heat pump unit
KR101043043B1 (en) Air conditioning and heating system using heat recovery type of heat pump
JP2015210070A (en) Complex air-conditioning refrigeration system
JP5312644B1 (en) Air conditioning power generation system
KR101315918B1 (en) Organic rankine cycle for using low temperature waste heat and absorbtion type refrigerator
JP2015068630A (en) Heat pump device and cogeneration device
JP2016003849A (en) Combined air-conditioning water heater
CN103615293B (en) Carbon dioxide heat pump and organic working medium combined power generation system
CN102367747A (en) Novel air energy isothermal engine
KR101977884B1 (en) Heat pump system for recovery waste heat and coldness
KR20180067094A (en) Hybrid heat pump system
KR101170712B1 (en) Using a gas engine heat pump geothermal heating and cooling systems