JP2016003849A - Combined air-conditioning water heater - Google Patents

Combined air-conditioning water heater Download PDF

Info

Publication number
JP2016003849A
JP2016003849A JP2014136268A JP2014136268A JP2016003849A JP 2016003849 A JP2016003849 A JP 2016003849A JP 2014136268 A JP2014136268 A JP 2014136268A JP 2014136268 A JP2014136268 A JP 2014136268A JP 2016003849 A JP2016003849 A JP 2016003849A
Authority
JP
Japan
Prior art keywords
cycle
refrigerant
hot water
heat exchanger
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014136268A
Other languages
Japanese (ja)
Inventor
三村 建治
Kenji Mimura
建治 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIMURA YOKO
Original Assignee
MIMURA YOKO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIMURA YOKO filed Critical MIMURA YOKO
Priority to JP2014136268A priority Critical patent/JP2016003849A/en
Publication of JP2016003849A publication Critical patent/JP2016003849A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air-conditioning water heater that utilizes a refrigeration cycle and a refrigerant cycle of a reverse Carnot cycle, and a Carnot cycle in a combined manner.SOLUTION: Unutilized heat energy conventionally discarded by being released into the atmosphere from a condenser to cool a refrigerant from a condenser is utilized by heat exchange for a refrigerant of a second cycle, through the use of a combined cycle comprising a first cycle of a refrigeration cycle of a reverse Carnot cycle and the second cycle of a refrigeration cycle and a power generation cycle of a Carnot cycle.

Description

本発明は、逆カルノーサイクルの冷凍サイクルの第1サイクルと、冷凍サイクル及び、カルノーサイクルの発電サイクルの第2サイクルからなる、複合サイクルを用いて、従来、凝縮器から冷媒を冷却するために大気に放出され、捨てられていた、未利用の熱エネルギーを、第2サイクルの冷媒との熱交換により活用する。
冷房給湯において、第2サイクルに冷凍サイクルを用いる場合は、まず第1サイクルの圧縮機により圧縮され、高圧、高温となった第1サイクルの冷媒との熱交換により、給湯用水を昇温する。そして第1サイクルの冷媒は凝縮器に流入し、第2サイクルの冷媒との熱交換により降温し、さらに第1サイクルの膨張弁を通過し低圧、低温となり、第一室内熱交換器により冷房を行う。また凝縮器に流入し第1サイクルの冷媒により昇温された、第2サイクルの冷媒は、熱交換器を経て第2サイクルの膨張器により低圧、低温となり第2室内熱交換器により冷房を行い、冷媒ポンプにより凝縮器に戻る。これにより第1室内熱交換器の冷房能力に、従来、大気に放出され、捨てられていた熱エネルギーを活用した、第2室内熱交器の冷房能力が加えられるので、大幅な冷房効率の向上となる。
第2サイクルにカルノーサイクルの発電サイクルを用いる場合は、冷凍サイクルを用いる場合に加えて、高温、高圧となった第2サイクルの冷媒の膨張機による駆動力で、発電を行い、第1サイクルの圧縮機と第2サイクルの冷媒ポンプの駆動を補助する。
また、暖房給湯において、第2サイクルに冷凍サイクルを用いる場合は、まず第1サイクルの圧縮機により圧縮され、高圧、高温となった第1サイクルの冷媒との熱交換により、給湯用水を昇温する。その後に第1サイクルの冷媒は第1室内熱交器に流入し暖房を行う。そして第1サイクルの冷媒は凝縮器に流入し、第2サイクルの冷媒との熱交換により降温し、さらに第1サイクルの膨張弁を通過し低圧、低温となり第1サイクルの圧縮機に戻る。
また第1サイクルの冷媒により昇温された、第2サイクルの冷媒は、第2室内熱交換器により暖房を行い、熱交換器を経て第2サイクルの膨張弁により低圧、低温となり冷媒ポンプにより送られて凝縮器に戻る。これにより第1室内熱交換器の暖房能力に、従来、大気に放出され、捨てられていた熱エネルギーを活用した、第2室内熱交器の暖房能力が加えられるので、大幅な暖房効率の向上となる。
第2サイクルにカルノーサイクルの発電サイクルを用いる場合は、冷凍サイクルを用いる場合に加えて、高温、高圧となった第2サイクルの冷媒の膨張機による駆動力で、発電を行い、第1サイクルの圧縮機と第2サイクルの冷媒ポンプの駆動を補助する。この様な冷暖房効率の向上と、膨張機による発電により、空調給湯装置の消費電力を大幅に低減する事のできる複合空調給湯装置に関するものである。
また、従来の凝縮器からの排熱の放出に比べて、本装置の排熱の放出は極めて少ないので、ヒートアイランド現象の対策におおいに有効であり、さらに、従来の室外熱交換器を廃して屋内一体型の空調装置をも可能とする複合空調給湯装置に関するものである。
The present invention uses a combined cycle consisting of a first cycle of a refrigeration cycle of a reverse Carnot cycle and a second cycle of a refrigeration cycle and a power generation cycle of a Carnot cycle to conventionally cool the refrigerant from the condenser to the atmosphere. The unused heat energy that has been released and discarded is utilized by heat exchange with the refrigerant in the second cycle.
In the case of using a refrigeration cycle for the second cycle in cooling hot water supply, first, the hot water supply water is heated by heat exchange with the refrigerant of the first cycle which has been compressed by the compressor of the first cycle and has become high pressure and high temperature. The refrigerant in the first cycle flows into the condenser, cools down by heat exchange with the refrigerant in the second cycle, passes through the expansion valve in the first cycle, becomes low pressure and low temperature, and is cooled by the first indoor heat exchanger. Do. Also, the refrigerant in the second cycle, which has flowed into the condenser and heated by the refrigerant in the first cycle, becomes low pressure and low temperature in the expander in the second cycle through the heat exchanger, and is cooled by the second indoor heat exchanger. The refrigerant pump returns to the condenser. As a result, the cooling capacity of the second indoor heat exchanger utilizing the heat energy previously released into the atmosphere and discarded is added to the cooling capacity of the first indoor heat exchanger, which greatly improves the cooling efficiency. It becomes.
When using a Carnot cycle power generation cycle for the second cycle, in addition to using a refrigeration cycle, power is generated by the driving force of the second cycle refrigerant expander at high temperature and pressure, and the first cycle Assists in driving the compressor and the second cycle refrigerant pump.
In addition, in the case of using a refrigeration cycle for the second cycle in heating hot water supply, the hot water supply water is heated by exchanging heat with the first cycle refrigerant that is first compressed by the compressor in the first cycle and becomes high pressure and high temperature. To do. Thereafter, the refrigerant in the first cycle flows into the first indoor heat exchanger and performs heating. Then, the refrigerant in the first cycle flows into the condenser, cools down by heat exchange with the refrigerant in the second cycle, passes through the expansion valve in the first cycle, becomes low pressure and low temperature, and returns to the compressor in the first cycle.
The second cycle refrigerant heated by the first cycle refrigerant is heated by the second indoor heat exchanger, passes through the heat exchanger, becomes low pressure and low temperature by the second cycle expansion valve, and is sent by the refrigerant pump. Returned to the condenser. As a result, the heating capacity of the second indoor heat exchanger, which uses the heat energy that has been released into the atmosphere and discarded in the past, is added to the heating capacity of the first indoor heat exchanger, which greatly improves the heating efficiency. It becomes.
When using a Carnot cycle power generation cycle for the second cycle, in addition to using a refrigeration cycle, power is generated by the driving force of the second cycle refrigerant expander at high temperature and pressure, and the first cycle Assists in driving the compressor and the second cycle refrigerant pump. The present invention relates to a combined air conditioning and hot water supply apparatus that can significantly reduce the power consumption of the air conditioning and hot water supply apparatus by improving the cooling and heating efficiency and generating power by an expander.
In addition, the exhaust heat emission of this device is extremely small compared to the exhaust heat release from the conventional condenser, so it is very effective for the countermeasures against the heat island phenomenon. The present invention relates to a combined air conditioning and hot water supply apparatus that also enables an integrated air conditioner.

現在、世界的に逆カルノーサイクルを原理とした空調給湯装置は、そのエネルギー効率の高さから、将来の低炭素社会への有力な切り札となっている。また、日本における空調給湯装置の技術は順調に発展し、世界をリードするに至っている。こういった環境において空調給湯装置の更なる性能向上及び、空調給湯技術の有効利用が求められている。Currently, air-conditioning water heaters based on the reverse Carnot cycle are a powerful trump card for future low-carbon societies because of their high energy efficiency. In addition, the technology of air conditioning and hot water supply equipment in Japan has been steadily developed and has led to the world. In such an environment, further performance improvement of the air conditioning and hot water supply apparatus and effective use of the air conditioning and hot water supply technology are required.

こういった環境において逆カルノーサイクルの冷凍サイクルと冷媒サイクル及び、カルノーサイクルを複合的に、かつ巧妙に活用した空調給湯装置の社会的な意義は計りしれない。
In such an environment, the social significance of the refrigeration cycle and refrigerant cycle of the reverse Carnot cycle and the air-conditioning hot water supply apparatus using the Carnot cycle in a complex and skillful manner cannot be measured.

特許4918450Patent 4918450 特許5441844Patent 5441844

本発明は、逆カルノーサイクルの冷凍サイクルの第1サイクルと、冷凍サイクル及び、カルノーサイクルの発電サイクルの第2サイクルからなる、複合サイクルを用いて、従来、凝縮器から冷媒を冷却するために大気に放出され、捨てられていた、未利用の熱エネルギーを、第2サイクルの冷媒との熱交換により活用する。
冷房給湯において、第2サイクルに冷凍サイクルを用いる場合は、まず第1サイクルの圧縮機により圧縮され、高圧、高温となった第1サイクルの冷媒との熱交換により、給湯用水を昇温する。そして第1サイクルの冷媒は凝縮器に流入し、第2サイクルの冷媒との熱交換により降温し、さらに第1サイクルの膨張弁を通過し低圧、低温となり、第一室内熱交換器により冷房を行う。また凝縮器に流入し第1サイクルの冷媒により昇温された、第2サイクルの冷媒は、熱交換器を経て第2サイクルの膨張器により低圧、低温となり第2室内熱交換器により冷房を行い、冷媒ポンプにより凝縮器に戻る。これにより第1室内熱交換器の冷房能力に、従来、大気に放出され、捨てられていた熱エネルギーを活用した、第2室内熱交器の冷房能力が加えられるので、大幅な冷房効率の向上となる。
第2サイクルにカルノーサイクルの発電サイクルを用いる場合は、冷凍サイクルを用いる場合に加えて、高温、高圧となった第2サイクルの冷媒の膨張機による駆動力で、発電を行い、第1サイクルの圧縮機と第2サイクルの冷媒ポンプの駆動を補助する。
また、暖房給湯において、第2サイクルに冷凍サイクルを用いる場合は、まず第1サイクルの圧縮機により圧縮され、高圧、高温となった第1サイクルの冷媒との熱交換により、給湯用水を昇温する。その後に第1サイクルの冷媒は第1室内熱交器に流入し暖房を行う。そして第1サイクルの冷媒は凝縮器に流入し、第2サイクルの冷媒との熱交換により降温し、さらに第1サイクルの膨張弁を通過し低圧、低温となり第1サイクルの圧縮機に戻る。
また第1サイクルの冷媒により昇温された、第2サイクルの冷媒は、第2室内熱交換器により暖房を行い、熱交換器を経て第2サイクルの膨張弁により低圧、低温となり冷媒ポンプにより送られて凝縮器に戻る。これにより第1室内熱交換器の暖房能力に、従来、大気に放出され、捨てられていた熱エネルギーを活用した、第2室内熱交器の暖房能力が加えられるので、大幅な暖房効率の向上となる。
第2サイクルにカルノーサイクルの発電サイクルを用いる場合は、冷凍サイクルを用いる場合に加えて、高温、高圧となった第2サイクルの冷媒の膨張機による駆動力で、発電を行い、第1サイクルの圧縮機と第2サイクルの冷媒ポンプの駆動を補助する。この様な冷暖房効率の向上と、膨張機による発電により、空調給湯装置の消費電力を大幅に低減する事のできる複合空調給湯装置に関するものである。
また、従来の凝縮器からの排熱の放出に比べて、本装置の排熱の放出は極めて少ないので、ヒートアイランド現象の対策におおいに有効であり、さらに、従来の室外熱交換器を廃して屋内一体型の空調装置をも可能とする複合空調給湯装置である。
The present invention uses a combined cycle consisting of a first cycle of a refrigeration cycle of a reverse Carnot cycle and a second cycle of a refrigeration cycle and a power generation cycle of a Carnot cycle to conventionally cool the refrigerant from the condenser to the atmosphere. The unused heat energy that has been released and discarded is utilized by heat exchange with the refrigerant in the second cycle.
In the case of using a refrigeration cycle for the second cycle in cooling hot water supply, first, the hot water supply water is heated by heat exchange with the refrigerant of the first cycle which has been compressed by the compressor of the first cycle and has become high pressure and high temperature. The refrigerant in the first cycle flows into the condenser, cools down by heat exchange with the refrigerant in the second cycle, passes through the expansion valve in the first cycle, becomes low pressure and low temperature, and is cooled by the first indoor heat exchanger. Do. Also, the refrigerant in the second cycle, which has flowed into the condenser and heated by the refrigerant in the first cycle, becomes low pressure and low temperature in the expander in the second cycle through the heat exchanger, and is cooled by the second indoor heat exchanger. The refrigerant pump returns to the condenser. As a result, the cooling capacity of the second indoor heat exchanger utilizing the heat energy previously released into the atmosphere and discarded is added to the cooling capacity of the first indoor heat exchanger, which greatly improves the cooling efficiency. It becomes.
When using a Carnot cycle power generation cycle for the second cycle, in addition to using a refrigeration cycle, power is generated by the driving force of the second cycle refrigerant expander at high temperature and pressure, and the first cycle Assists in driving the compressor and the second cycle refrigerant pump.
In addition, in the case of using a refrigeration cycle for the second cycle in heating hot water supply, the hot water supply water is heated by exchanging heat with the first cycle refrigerant that is first compressed by the compressor in the first cycle and becomes high pressure and high temperature. To do. Thereafter, the refrigerant in the first cycle flows into the first indoor heat exchanger and performs heating. Then, the refrigerant in the first cycle flows into the condenser, cools down by heat exchange with the refrigerant in the second cycle, passes through the expansion valve in the first cycle, becomes low pressure and low temperature, and returns to the compressor in the first cycle.
The second cycle refrigerant heated by the first cycle refrigerant is heated by the second indoor heat exchanger, passes through the heat exchanger, becomes low pressure and low temperature by the second cycle expansion valve, and is sent by the refrigerant pump. Returned to the condenser. As a result, the heating capacity of the second indoor heat exchanger, which uses the heat energy that has been released into the atmosphere and discarded in the past, is added to the heating capacity of the first indoor heat exchanger, which greatly improves the heating efficiency. It becomes.
When using a Carnot cycle power generation cycle for the second cycle, in addition to using a refrigeration cycle, power is generated by the driving force of the second cycle refrigerant expander at high temperature and pressure, and the first cycle Assists in driving the compressor and the second cycle refrigerant pump. The present invention relates to a combined air conditioning and hot water supply apparatus that can significantly reduce the power consumption of the air conditioning and hot water supply apparatus by improving the cooling and heating efficiency and generating power by an expander.
In addition, the exhaust heat emission of this device is extremely small compared to the exhaust heat release from the conventional condenser, so it is very effective for countermeasures against the heat island phenomenon, and the conventional outdoor heat exchanger is abolished and used indoors. It is a complex air-conditioning hot-water supply device that also enables an integrated air-conditioning device.

現在、電気は、大規模な発電施設で発電するか、工場等での自家発電、各家庭等での個別の小規模発電で作られているが、大規模発電である原子力は事故時の被害の甚大さや核燃料廃棄物処理の問題、火力や天然ガスはCO2を排出し、水力及び、地熱、太陽熱、太陽光、風力等の再生可能エネルギーは規模や建設場所等の問題がある。工場等の自家発電も、CO2排出や燃料価格の変動等の問題があり、各家庭での太陽光、風力等の再生可能エネルギー利用は、共に気候に左右され不安定であり、また規模も限られる。この様な状況のなかで、より一層、エネルギーの有効利用を促進する必要が有る。Currently, electricity is generated by large-scale power generation facilities, or by private power generation in factories, etc., and individual small-scale power generation in each home, but nuclear power, which is large-scale power generation, is damaged during an accident. There is a problem of the size and construction location of hydropower and renewable energy such as geothermal, solar heat, solar and wind power. In-house power generation at factories also has problems such as CO2 emissions and fuel price fluctuations, and the use of renewable energy such as solar and wind power at each home is both unstable and unstable depending on the climate. It is done. In such a situation, it is necessary to further promote the effective use of energy.

本発明は、逆カルノーサイクルの冷凍サイクルの第1サイクルと、冷凍サイクル及び、カルノーサイクルの発電サイクルの第2サイクルからなる複合サイクルを用いて、従来、冷却するためだけに凝縮器から大気に放出され、捨てられていた、未利用の熱エネルギーを、第2サイクルの冷媒との熱交換により活用する。
第1サイクルの冷媒と、第2サイクルの冷媒を巧妙に熱交換し利用する事により、全体の冷暖房能力を向上させる事ができる複合空調給湯装置である。さらに、第2サイクルの膨張弁の替わりに膨張機を取り付けその駆動力を利用して発電を行い、第1サイクルの圧縮機と第2サイクルの冷媒ポンプの駆動を補助する。
これにより、空調給湯装置の消費電力を大幅に低減する事のできる、複合空調給湯装置である。
前記課題を解決するためには、本発明は冷媒サイクルを複合的に組み合わせる事により、従来、捨てられていた大気の熱エネルギーを活用して発電を行い、さらに複合サイクルの巧妙な熱交換により、空調給湯装置の消費電力を大幅に低減する事のできる複合空調給湯装置であり、新しい自然エネルギーの有効利用として極めて有用である。
The present invention uses a combined cycle consisting of the first cycle of the reverse Carnot cycle refrigeration cycle and the second cycle of the refrigeration cycle and the Carnot cycle power generation cycle, and is conventionally released from the condenser to the atmosphere only for cooling. Then, unused heat energy that has been discarded is utilized by heat exchange with the refrigerant in the second cycle.
It is a composite air-conditioning hot-water supply apparatus that can improve the overall cooling and heating capacity by skillfully exchanging and using the first-cycle refrigerant and the second-cycle refrigerant. Further, an expander is attached in place of the expansion valve in the second cycle, and electric power is generated using the driving force to assist in driving the compressor in the first cycle and the refrigerant pump in the second cycle.
Thereby, it is a composite air-conditioning hot-water supply apparatus which can reduce the power consumption of an air-conditioning hot-water supply apparatus significantly.
In order to solve the above-mentioned problems, the present invention combines the refrigerant cycles in combination to generate power by utilizing the thermal energy of the atmosphere that has been discarded in the past, and further through the sophisticated heat exchange of the combined cycle, It is a composite air-conditioning hot-water supply device that can greatly reduce the power consumption of the air-conditioning hot-water supply device, and is extremely useful as an effective use of new natural energy.

本発明は大気の熱エネルギーを利用する為、一年中24時間安定稼働が可能な省電力、複合空調給湯装置であり、各戸別、及び大規模施設、店舗等、どこにでも設置可能である。
また、凝縮器による排熱の放出が極めて少ないので、ヒートアイランド現象の対策におおいに有効である。
Since the present invention uses thermal energy of the atmosphere, it is a power-saving and combined air-conditioning hot-water supply device that can be stably operated for 24 hours all year round, and can be installed anywhere, such as each house, large-scale facility, store, etc.
In addition, since the exhaust heat emitted by the condenser is extremely small, it is very effective for the countermeasure against the heat island phenomenon.

以下、本発明による複合空調給湯装置を図1、図2、図3、図4に示す全体の構成図に基づいて説明する。Hereinafter, the composite air-conditioning hot-water supply apparatus according to the present invention will be described based on the entire configuration diagram shown in FIGS. 1, 2, 3, and 4.

図1、の冷房、給湯の場合は、第1サイクルの圧縮機1は外部駆動機16により駆動される。圧縮され高温、高圧となった1サイクルの冷媒は、冷媒配管11を経て給湯熱交換器22に流入し、貯湯タンク26から給湯ポンプ23により配管24を経て流入した冷水と熱交換を行い、排出され、四方弁21を経て凝縮器3において、冷媒ポンプ6により昇圧された第2サイクルの冷媒と熱交換し、冷媒配管8から受液器(図示略)を経て膨張弁2に入る。In the case of cooling and hot water supply in FIG. 1, the compressor 1 in the first cycle is driven by the external driving device 16. The compressed, high-temperature and high-pressure refrigerant flows into the hot water supply heat exchanger 22 through the refrigerant pipe 11, performs heat exchange with the cold water flowing in from the hot water storage tank 26 through the pipe 24 by the hot water supply pump 23, and is discharged. Then, in the condenser 3 through the four-way valve 21, heat exchange is performed with the refrigerant in the second cycle whose pressure is increased by the refrigerant pump 6, and the refrigerant enters the expansion valve 2 from the refrigerant pipe 8 through a liquid receiver (not shown).

図1、において、膨張弁2により膨張し低温、低圧となった第1サイクルの冷媒は冷媒配管9から四方弁21を経て、第1室内熱交換器5aに流入し冷房を行い、四方弁21、冷媒配管10を通り熱交換器4を経て、第1サイクルの圧縮機1に戻る。In FIG. 1, the refrigerant of the first cycle, which has been expanded by the expansion valve 2 and has become low temperature and low pressure, flows from the refrigerant pipe 9 through the four-way valve 21 and flows into the first indoor heat exchanger 5a for cooling. Then, the refrigerant pipe 10 passes through the heat exchanger 4 and returns to the first cycle compressor 1.

図1、において、給湯熱交換器22に流入し、昇温された温水は、配管25を経て貯湯タンク26に戻る。In FIG. 1, the hot water that has flowed into the hot water supply heat exchanger 22 and has been heated returns to the hot water storage tank 26 via the pipe 25.

図1、により、冷媒ポンプ6により昇圧され凝縮器3を介して昇温された第2サイクルの冷媒は、四方弁21、冷媒配管15を通り熱交換器4において第1サイクルの冷媒と熱交換を行い、受液器(図示略)を経て膨張弁20に入り、低温、低圧となり、冷媒配管12、四方弁21を経て、第2室内熱交換器5bに流入し冷房を行い、四方弁21、冷媒配管13を通り、冷媒ポンプ6によって昇圧されて凝縮器3に戻る。As shown in FIG. 1, the second-cycle refrigerant whose pressure is increased by the refrigerant pump 6 and raised through the condenser 3 passes through the four-way valve 21 and the refrigerant pipe 15 and exchanges heat with the first-cycle refrigerant in the heat exchanger 4. The refrigerant enters the expansion valve 20 through a liquid receiver (not shown), becomes low temperature and low pressure, flows into the second indoor heat exchanger 5b through the refrigerant pipe 12 and the four-way valve 21, and is cooled. , Passing through the refrigerant pipe 13, being pressurized by the refrigerant pump 6 and returning to the condenser 3.

図2、の冷房、給湯の場合は、第1サイクルの圧縮機1は外部駆動機16により駆動される。圧縮され高温、高圧となった1サイクルの冷媒は、冷媒配管11を経て給湯熱交換器22に流入し、貯湯タンク26から給湯ポンプ23により配管24を経て流入した冷水と熱交換を行い、排出され、四方弁21を経て凝縮器3において、冷媒ポンプ6により昇圧された第2サイクルの冷媒と熱交換し、冷媒配管8から受液器(図示略)を経て膨張弁2に入る。In the case of cooling and hot water supply in FIG. 2, the compressor 1 in the first cycle is driven by the external driving device 16. The compressed, high-temperature and high-pressure refrigerant flows into the hot water supply heat exchanger 22 through the refrigerant pipe 11, performs heat exchange with the cold water flowing in from the hot water storage tank 26 through the pipe 24 by the hot water supply pump 23, and is discharged. Then, in the condenser 3 through the four-way valve 21, heat exchange is performed with the refrigerant in the second cycle whose pressure is increased by the refrigerant pump 6, and the refrigerant enters the expansion valve 2 from the refrigerant pipe 8 through a liquid receiver (not shown).

図2、において、膨張弁2により膨張し低温、低圧となった第1サイクルの冷媒は冷媒配管9から四方弁21を経て、第1室内熱交換器5aに流入し冷房を行い、四方弁21、熱交換器4を経て冷媒配管10を通り第1サイクルの圧縮機1に戻る。In FIG. 2, the refrigerant in the first cycle, which has been expanded by the expansion valve 2 to become low temperature and low pressure, flows from the refrigerant pipe 9 through the four-way valve 21 and flows into the first indoor heat exchanger 5a for cooling. Then, the heat exchanger 4 passes through the refrigerant pipe 10 and returns to the first cycle compressor 1.

図2、において、給湯熱交換器22に流入し、昇温された温水は、配管25を経て貯湯タンク26に戻る。In FIG. 2, the hot water that has flowed into the hot water supply heat exchanger 22 and has been heated returns to the hot water storage tank 26 via the pipe 25.

図2、により、冷媒ポンプ6により昇圧され、冷媒配管14を通り、凝縮器3において第1サイクルの冷媒により昇温された第2サイクルの冷媒は、冷媒配管15を通って膨張機7に流入する。According to FIG. 2, the second cycle refrigerant that has been pressurized by the refrigerant pump 6, passes through the refrigerant pipe 14, and is heated by the first cycle refrigerant in the condenser 3 flows into the expander 7 through the refrigerant pipe 15. To do.

図2、において第2サイクルの膨張機7に流入した冷媒は膨張し、駆動力を発生させ、2サイクルの発電機の19を駆動し発電を行う。In FIG. 2, the refrigerant that has flowed into the second cycle expander 7 expands, generates a driving force, and drives the two-cycle generator 19 to generate power.

図2、において膨張機7において発電を行い膨張し低温、低圧となった第2サイクルの冷媒は冷媒配管12を経て、熱交換器4において第1サイクルの冷媒と熱交換を行い、冷媒配管13から冷媒ポンプ6に戻る。In FIG. 2, the second cycle refrigerant which has been expanded by power generation in the expander 7 and has become low temperature and low pressure passes through the refrigerant pipe 12, and performs heat exchange with the first cycle refrigerant in the heat exchanger 4, and the refrigerant pipe 13. To the refrigerant pump 6.

図3、の暖房、給湯の場合は、第1サイクルの圧縮機1は外部駆動機16により駆動される。圧縮され高温、高圧となった1サイクルの冷媒は、冷媒配管11を経て給湯熱交換器22に流入し、貯湯タンク26から給湯ポンプ23により配管24を経て流入した冷水と熱交換を行い、排出され、四方弁21を経て第1室内熱交換器5aに流入し暖房を行い、四方弁21を通り凝縮器3において、冷媒ポンプ6により送られた第2サイクルの冷媒と熱交換し、冷媒配管8から受液器(図示略)を経て膨張弁2に入る。In the case of heating and hot water supply in FIG. 3, the compressor 1 in the first cycle is driven by the external drive unit 16. The compressed, high-temperature and high-pressure refrigerant flows into the hot water supply heat exchanger 22 through the refrigerant pipe 11, performs heat exchange with the cold water flowing in from the hot water storage tank 26 through the pipe 24 by the hot water supply pump 23, and is discharged. The refrigerant flows into the first indoor heat exchanger 5a through the four-way valve 21 to perform heating, passes through the four-way valve 21, and exchanges heat with the refrigerant in the second cycle sent by the refrigerant pump 6 in the condenser 3. 8 enters the expansion valve 2 through a liquid receiver (not shown).

図3、において、膨張弁2により膨張し低温、低圧となった第1サイクルの冷媒は、冷媒配管9、四方弁21、冷媒配管10を通り熱交換器4を経て、第1サイクルの圧縮機1に戻る。In FIG. 3, the refrigerant in the first cycle, which is expanded by the expansion valve 2 to become low temperature and low pressure, passes through the refrigerant pipe 9, the four-way valve 21, the refrigerant pipe 10, the heat exchanger 4, and the first cycle compressor. Return to 1.

図3、において、給湯熱交換器22に流入し、昇温された温水は、配管25を経て貯湯タンク26に戻る。In FIG. 3, the hot water that has flowed into the hot water supply heat exchanger 22 and has been heated returns to the hot water storage tank 26 via the pipe 25.

図3、により、凝縮器3を介して昇温された、第2サイクルの冷媒は、四方弁21、冷媒配管15、四方弁21を通って第2室内熱交換器5bに流入し暖房を行い、四方弁21を経て、熱交換器4において第1サイクルの冷媒と熱交換を行い、膨張弁20により膨張し低温、低圧となり冷媒配管12を通り、四方弁21を介して冷媒ポンプ6を経て凝縮器3に戻る。According to FIG. 3, the second cycle refrigerant heated through the condenser 3 flows into the second indoor heat exchanger 5 b through the four-way valve 21, the refrigerant pipe 15, and the four-way valve 21 to perform heating. The heat exchanger 4 exchanges heat with the refrigerant in the first cycle through the four-way valve 21, expands by the expansion valve 20, becomes low temperature and low pressure, passes through the refrigerant pipe 12, and passes through the refrigerant pump 6 through the four-way valve 21. Return to condenser 3.

図3、において、第2サイクル冷媒は温度センサー17により温度を検知され、循環ポンプ6の循環量を制御装置18により制御される事によって、適正な温度に保たれる。In FIG. 3, the temperature of the second cycle refrigerant is detected by the temperature sensor 17, and the circulation amount of the circulation pump 6 is controlled by the control device 18, so that the second cycle refrigerant is maintained at an appropriate temperature.

図4、の暖房、給湯の場合は、第1サイクルの圧縮機1は外部駆動機16により駆動される。圧縮され高温、高圧となった1サイクルの冷媒は、冷媒配管11を経て給湯熱交換器22に流入し、貯湯タンク26から給湯ポンプ23により配管24を経て流入した冷水と熱交換を行い、排出され、四方弁21を経て第1室内熱交換器5aに流入し暖房を行い、四方弁21を通り凝縮器3において、冷媒ポンプ6により昇圧された第2サイクルの冷媒と熱交換し、冷媒配管8から受液器(図示略)を経て膨張弁2に入る。In the case of heating and hot water supply in FIG. 4, the compressor 1 in the first cycle is driven by the external drive unit 16. The compressed, high-temperature and high-pressure refrigerant flows into the hot water supply heat exchanger 22 through the refrigerant pipe 11, performs heat exchange with the cold water flowing in from the hot water storage tank 26 through the pipe 24 by the hot water supply pump 23, and is discharged. The refrigerant flows into the first indoor heat exchanger 5a through the four-way valve 21 to perform heating, passes through the four-way valve 21, and exchanges heat with the refrigerant in the second cycle whose pressure is increased by the refrigerant pump 6 in the condenser 3. 8 enters the expansion valve 2 through a liquid receiver (not shown).

図4、において、膨張弁2により膨張し低温、低圧となった第1サイクルの冷媒は、冷媒配管9、四方弁21から熱交換器4において第2サイクルの冷媒と熱交換し、冷媒配管10を通り、第1サイクルの圧縮機1に戻る。In FIG. 4, the refrigerant in the first cycle, which has been expanded by the expansion valve 2 and has become low temperature and low pressure, exchanges heat with the refrigerant in the second cycle in the heat exchanger 4 from the refrigerant pipe 9 and the four-way valve 21. And return to the compressor 1 of the first cycle.

図4、において、給湯熱交換器22に流入し、昇温された温水は、配管25を経て貯湯タンク26に戻る。In FIG. 4, the hot water that has flowed into the hot water supply heat exchanger 22 and has been heated returns to the hot water storage tank 26 through the pipe 25.

図4、により、凝縮器3を介して昇温された、第2サイクルの冷媒は、冷媒配管15を通って膨張機7に流入する。According to FIG. 4, the refrigerant in the second cycle, which has been heated through the condenser 3, flows into the expander 7 through the refrigerant pipe 15.

図4、において第2サイクルの膨張機7に流入した冷媒は膨張し、駆動力を発生させ、2サイクルの発電機の19を駆動し発電を行う。In FIG. 4, the refrigerant flowing into the second cycle expander 7 expands, generates a driving force, and drives the two-cycle generator 19 to generate power.

図1、図3、において、第1室内熱交換器5aと第2室内熱交換器5bの冷暖房能力には違いが生じるが、それぞれを、一組にして運用する事などにより、冷暖房能力は大幅に向上する。In FIG. 1 and FIG. 3, there is a difference in the cooling / heating capacity of the first indoor heat exchanger 5a and the second indoor heat exchanger 5b. To improve.

ここで、複合空調給湯装置の第1サイクルの具体的な運転状態について、図5、において実線のP−h(モリエル)線図により説明する。
逆カルノーサイクルの第1サイクルにおける、点Aは圧縮機1に供給される冷媒の状態(例えば圧力0.584MPa、10℃)を示し、駆動機16で駆動される圧縮機1により圧縮され、高圧、高温となり、点Bにおいては(例えば圧力2.427MPa、86℃)となる。点Aから点Bへの状態変化は、等エントロピー変化となる。点Cは凝縮器から流出した冷媒の状態を示し(例えば圧力2.427MPa、42℃)となる。点Dは第1サイクル膨張弁2により膨張した後の第1室内熱交換器5aの入口における冷媒の状態を示し(例えば圧力0.584MPa、5℃)となる。点Cから点Dへの状態変化は、等比エンタルピー変化となる。
Here, a specific operation state of the first cycle of the composite air-conditioning hot-water supply apparatus will be described with reference to a solid Ph (Mollier) diagram in FIG.
Point A in the first cycle of the reverse Carnot cycle indicates the state of the refrigerant supplied to the compressor 1 (for example, a pressure of 0.584 MPa, 10 ° C.), which is compressed by the compressor 1 driven by the drive 16 and is high pressure. At point B (for example, pressure 2.427 MPa, 86 ° C.). A state change from point A to point B is an isentropic change. Point C shows the state of the refrigerant flowing out of the condenser (for example, pressure 2.427 MPa, 42 ° C.). Point D shows the state of the refrigerant at the inlet of the first indoor heat exchanger 5a after being expanded by the first cycle expansion valve 2 (for example, pressure 0.584 MPa, 5 ° C.). The state change from the point C to the point D is a geometric enthalpy change.

ここで、複合空調給湯装置の第2サイクルが、カルノーサイクルの発電サイクルの場合の具体的な運転状態について、図5、において一点鎖線のP−h(モリエル)線図により説明する。発電サイクルの第2サイクルにおける、点A’は第1サイクルの冷媒により凝縮器3において昇温され、第2サイクル膨張機7に供給される冷媒の状態(例えば圧力1.943MPa、68℃)を示し、第2サイクル膨張機7により膨張し、低圧、低温となり、点B’においては(例えば圧力0.681MPa、12℃)となる。点A’から点B’への状態変化は、等エントロピー変化となる。点C’は熱交換器4から流出した冷媒の状態を示し(例えば圧力0.681MPa、10℃)となる。点D’は第2サイクル冷媒ポンプ6により昇圧された後の、凝縮器3の入口における冷媒の状態を示し(例えば圧力1.943MPa、36℃)となる。点C’から点D’への状態変化は、等エントロピー変化となる。Here, a specific operation state in the case where the second cycle of the composite air-conditioning hot-water supply apparatus is a Carnot cycle power generation cycle will be described with reference to a one-dot chain line Ph (Mollier) diagram in FIG. Point A ′ in the second cycle of the power generation cycle is heated in the condenser 3 by the refrigerant in the first cycle, and the state of the refrigerant (for example, pressure 1.943 MPa, 68 ° C.) supplied to the second cycle expander 7 is changed. It expands by the 2nd cycle expander 7, becomes low pressure and low temperature, and becomes a point B '(for example, pressure 0.681MPa, 12 degreeC). The state change from the point A ′ to the point B ′ is an isentropic change. Point C ′ indicates the state of the refrigerant flowing out of the heat exchanger 4 (for example, pressure 0.681 MPa, 10 ° C.). Point D ′ indicates the state of the refrigerant at the inlet of the condenser 3 after being pressurized by the second cycle refrigerant pump 6 (for example, pressure 1.943 MPa, 36 ° C.). The state change from the point C ′ to the point D ′ is an isentropic change.

ここで、複合空調給湯装置の発電量について、図5のP−h(モリエル)線図により説明する。この図において、膨張機7、冷媒ポンプ6、の全断熱効率が1であり、発電機19の発電効率が100%であり、配管、その他、機器等のいかなる損失も無い場合に得られる理論電力は、カルノーサイクルの第2サイクルより発生する比エンタルピーの値、第2サイクルの膨張機7の理論膨張動力Δiを加えた値に、冷媒の循環流量を乗じた値となる。Here, the power generation amount of the combined air conditioning and hot water supply apparatus will be described with reference to the Ph (Mollier) diagram of FIG. In this figure, the theoretical power obtained when the total adiabatic efficiency of the expander 7 and the refrigerant pump 6 is 1, the power generation efficiency of the generator 19 is 100%, and there is no loss of piping or other equipment. Is a value obtained by multiplying the value of the specific enthalpy generated from the second cycle of the Carnot cycle and the theoretical expansion power Δi of the expander 7 of the second cycle by the circulating flow rate of the refrigerant.

冷房給湯時の複合空調給湯装置の第2サイクルが冷凍サイクルの場合示す構成図。The block diagram which shows the case where the 2nd cycle of the compound air-conditioning hot-water supply apparatus at the time of cooling hot water supply is a refrigerating cycle. 冷房給湯時の複合空調給湯装置の第2サイクルがカルノーサイクルの発電サイクルの場合示す構成図。The block diagram which shows the case where the 2nd cycle of the compound air-conditioning hot-water supply apparatus at the time of cooling hot water supply is a Carnot cycle power generation cycle. 暖房給湯時の複合空調給湯装置の第2サイクルが冷凍サイクルの場合示す構成図。The block diagram which shows the case where the 2nd cycle of the composite air-conditioning hot-water supply apparatus at the time of heating hot-water supply is a refrigerating cycle. 暖房給湯時の複合空調給湯装置の第2サイクルがカルノーサイクルの発電サイクルの場合示す構成図。The block diagram which shows the case where the 2nd cycle of the composite air-conditioning hot-water supply apparatus at the time of heating hot-water supply is a Carnot cycle power generation cycle. 冷房給湯時の複合空調給湯装置の第1サイクル及び第2サイクルが発電サイクルの場合のP−h線図。The Ph diagram in case the 1st cycle and 2nd cycle of a compound air-conditioning hot-water supply apparatus at the time of cooling hot water supply are power generation cycles.

1・・・第1サイクルの圧縮機、2・・・第1サイクルの膨張弁、3・・・凝縮器、4・・・熱交換器、5a・・・第1室内熱交換器、5b・・・第2室内熱交換器、6・・・冷媒ポンプ、7・・・第2サイクルの膨張機、8、9、10、11・・・第1サイクルの冷媒配管、12、13、14,15・・・第2サイクルの冷媒配管、16・・・駆動機、17・・・温度センサー、18・・・制御装置、19・・・第2サイクル発電機、20・・・第2サイクルの膨張弁、21・・・四方弁、22・・・給湯熱交換器、23・・・給湯ポンプ、24、25・・・給湯配管、26・・・貯湯タンク、DESCRIPTION OF SYMBOLS 1 ... 1st cycle compressor, 2 ... 1st cycle expansion valve, 3 ... Condenser, 4 ... Heat exchanger, 5a ... 1st indoor heat exchanger, 5b .. Second indoor heat exchanger, 6 ... refrigerant pump, 7 ... second cycle expander, 8, 9, 10, 11 ... first cycle refrigerant piping, 12, 13, 14, 15 ... 2nd cycle refrigerant piping, 16 ... drive machine, 17 ... temperature sensor, 18 ... control device, 19 ... 2nd cycle generator, 20 ... 2nd cycle Expansion valve, 21 ... four-way valve, 22 ... hot water supply heat exchanger, 23 ... hot water supply pump, 24, 25 ... hot water supply piping, 26 ... hot water storage tank,

Claims (17)

冷房給湯において、圧縮機に給湯熱交換器と凝縮器と受液器(図示略)と膨張弁と第1室内熱交換器と熱交換器を冷媒が循環する様に順番に冷媒配管で接続した逆カルノーサイクルの冷凍サイクルの第1サイクルと、第1サイクルの凝縮器と熱交換器を第2の受液器(図示略)と第2サイクルの膨張弁と第2室内熱交換器と冷媒ポンプを冷媒が循環する様に順番に冷媒配管で接続した冷凍サイクルの第2サイクルからなる複合サイクルを有する複合空調給湯装置において、第1サイクルの圧縮機により高温となった冷媒により給湯熱交換器において給湯水を昇温した後、従来、凝縮器から冷媒を冷却するために、大気に放出されていた、未利用の熱エネルギーを活用して、凝縮器により、第2サイクルの冷媒を昇温し、第2サイクル膨張弁により膨張させ、第2サイクルの第2室内熱交換器を介して冷房を行い、従来の第1サイクルの第1室内熱交換器の冷房能力に加える事により、全体の冷房給湯能力と冷房給湯効率を向上させる事ができることを特徴とする複合空調給湯装置。In cooling hot water supply, a hot water supply heat exchanger, a condenser, a receiver (not shown), an expansion valve, a first indoor heat exchanger, and a heat exchanger are connected to the compressor in order by refrigerant piping so that the refrigerant circulates. The first cycle of the reverse Carnot cycle, the condenser and heat exchanger of the first cycle, the second liquid receiver (not shown), the expansion valve of the second cycle, the second indoor heat exchanger, and the refrigerant pump In a combined air-conditioning hot water supply apparatus having a combined cycle consisting of a second cycle of a refrigeration cycle in which refrigerant is circulated in order so that the refrigerant circulates in the hot water supply heat exchanger by the refrigerant having become high temperature by the compressor of the first cycle After raising the temperature of the hot water, the second cycle refrigerant is heated by the condenser by utilizing the unused heat energy that has been released to the atmosphere in order to cool the refrigerant from the condenser. To the second cycle expansion valve The entire cooling and hot water supply capacity and cooling hot water supply efficiency are obtained by performing expansion through the second indoor heat exchanger in the second cycle and adding to the cooling capacity of the first indoor heat exchanger in the conventional first cycle. Combined air-conditioning hot water supply apparatus characterized by being able to improve. 冷房給湯において、圧縮機に給湯熱交換器と凝縮器と受液器(図示略)と膨張弁と第1室内熱交換器と熱交換器を冷媒が循環する様に順番に冷媒配管で接続した逆カルノーサイクルの冷凍サイクルの第1サイクルと、第1サイクルの凝縮器に第2サイクルの発電機を組み付けられた膨張機と第1サイクルの熱交換器と冷媒ポンプを冷媒が循環する様に順番に冷媒配管で接続した発電サイクルの第2サイクルからなる複合サイクルを有する複合空調給湯装置において、第1サイクルの圧縮機により高温となった冷媒により給湯熱交換器において給湯水を昇温した後、凝縮器における熱交換により、第2サイクルの冷媒を昇温し、その膨張力による第2サイクル膨張機の駆動力で、発電を行い、従来の第1サイクルの第1室内熱交換器の冷房能力に加える事により、全体の冷房給湯能力と冷房給湯効率を向上させる事ができることを特徴とする複合空調給湯装置。In cooling hot water supply, a hot water supply heat exchanger, a condenser, a receiver (not shown), an expansion valve, a first indoor heat exchanger, and a heat exchanger are connected to the compressor in order by refrigerant piping so that the refrigerant circulates. The first cycle of the reverse Carnot cycle, the expander in which the second cycle generator is assembled to the condenser of the first cycle, the heat exchanger of the first cycle, and the refrigerant pump are circulated in order. In the combined air conditioning and hot water supply apparatus having the combined cycle consisting of the second cycle of the power generation cycle connected to the refrigerant pipe, the temperature of the hot water in the hot water supply heat exchanger is increased by the refrigerant that has become high temperature by the compressor of the first cycle, The temperature of the refrigerant in the second cycle is increased by heat exchange in the condenser, power is generated by the driving force of the second cycle expander by the expansion force, and the cooling capacity of the first indoor heat exchanger in the conventional first cycle By adding, complex air-conditioning hot-water supply device, characterized in that it is possible to improve the overall cooling water heating capacity and cooling the hot water supply efficiency. 冷房給湯において、圧縮機に給湯熱交換器と凝縮器と受液器(図示略)と膨張弁と第1室内熱交換器と熱交換器を冷媒が循環する様に順番に冷媒配管で接続した逆カルノーサイクルの冷凍サイクルの第1サイクルと、第1サイクルの凝縮器と熱交換器を第2の受液器(図示略)と第2サイクルの膨張弁と第2室内熱交換器と冷媒ポンプとを冷媒が循環する様に順番に冷媒配管で接続した冷凍サイクルの第2サイクルからなる複合サイクルを有する複合空調給湯装置において、第1サイクルの圧縮機により高温となった冷媒により給湯熱交換器において給湯水を昇温した後、従来、冷却するためだけに凝縮器により、大気に放出されていた未利用の熱エネルギーを活用して、第2サイクルの冷媒と、第1サイクルの冷媒を熱交換し利用する事により、全体の冷房給湯能力と冷房給湯効率を向上させるため、第2サイクルの冷媒の循環量を温度センサーにより検知して制御し、常に最適な温度と循環量を保つ事ができる様にした事を特徴とする複合空調給湯装置。In cooling hot water supply, a hot water supply heat exchanger, a condenser, a receiver (not shown), an expansion valve, a first indoor heat exchanger, and a heat exchanger are connected to the compressor in order by refrigerant piping so that the refrigerant circulates. The first cycle of the reverse Carnot cycle, the condenser and heat exchanger of the first cycle, the second liquid receiver (not shown), the expansion valve of the second cycle, the second indoor heat exchanger, and the refrigerant pump In a combined air-conditioning hot water supply apparatus having a combined cycle consisting of a second cycle of a refrigeration cycle in which refrigerant is circulated in order so that the refrigerant circulates, a hot water supply heat exchanger using the refrigerant that has become high temperature by the compressor in the first cycle After the temperature of the hot water is raised in step 2, the second cycle refrigerant and the first cycle refrigerant are heated by utilizing the unused thermal energy that has been released to the atmosphere by a condenser for cooling only in the past. To exchange and use In order to improve the overall cooling hot water supply capacity and cooling hot water supply efficiency, the circulation amount of the refrigerant in the second cycle is detected and controlled by the temperature sensor so that the optimum temperature and circulation amount can always be maintained. A combined air conditioning and hot water supply system. 暖房給湯において、圧縮機に給湯熱交換器と第1室内熱交換器と凝縮器と受液器(図示略)と膨張弁と熱交換器を冷媒が循環する様に順番に冷媒配管で接続した逆カルノーサイクルの冷凍サイクルの第1サイクルと、第1サイクルの凝縮器に第2室内熱交換器と第1サイクルの熱交換器と第2の受液器(図示略)と第2サイクルの膨張弁と冷媒ポンプを冷媒が循環する様に順番に冷媒配管で接続した冷凍サイクルの第2サイクルからなる複合サイクルを有する複合空調給湯装置において、第1サイクルの圧縮機により高温となった冷媒により給湯熱交換器において給湯水を昇温した後、従来、冷却するためだけに凝縮器により、大気に放出されていた未利用の熱エネルギーを活用して、凝縮器により、第2サイクルの冷媒を昇温し、第2サイクルの第2室内熱交換器を介して暖房を行い、従来の第1サイクルの第1室内熱交換器の暖房能力に加える事により、全体の暖房給湯能力と暖房給湯効率を向上させる事ができることを特徴とする複合空調給湯装置。In heating hot water supply, a hot water supply heat exchanger, a first indoor heat exchanger, a condenser, a receiver (not shown), an expansion valve, and a heat exchanger are connected to the compressor in order by refrigerant piping so that the refrigerant circulates. The first cycle of the reverse Carnot cycle, the condenser of the first cycle, the second indoor heat exchanger, the first cycle heat exchanger, the second liquid receiver (not shown), and the expansion of the second cycle In a combined air-conditioning hot water supply apparatus having a combined cycle consisting of a second cycle of a refrigeration cycle in which refrigerant is circulated in order so that the refrigerant circulates through a valve and a refrigerant pump, After raising the temperature of the hot water in the heat exchanger, the second cycle refrigerant is raised by the condenser by utilizing the unused thermal energy that has been released to the atmosphere by the condenser only for cooling. Warm up the second rhino Heating through the second indoor heat exchanger of the air and adding to the heating capacity of the first indoor heat exchanger of the conventional first cycle, the overall heating hot water supply capacity and heating hot water supply efficiency can be improved A combined air conditioning and hot water supply system. 暖房給湯において、圧縮機に給湯熱交換器と第1室内熱交換器と凝縮器と受液器(図示略)と膨張弁と熱交換器を冷媒が循環する様に順番に冷媒配管で接続した逆カルノーサイクルの冷凍サイクルの第1サイクルと、第1サイクルの凝縮器と第2サイクルの発電機を組み付けられた膨張機と第1サイクルの熱交換器と冷媒ポンプを冷媒が循環する様に順番に冷媒配管で接続した発電サイクルの第2サイクルからなる複合サイクルを有する複合空調給湯装置において、第1サイクルの圧縮機により高温となった冷媒により給湯熱交換器において給湯水を昇温した後、従来、冷却するためだけに凝縮器により、大気に放出されていた未利用の熱エネルギーを活用して、凝縮器における熱交換により、第2サイクルの冷媒を昇温し、その膨張力による第2サイクル膨張機の駆動力で、発電を行い、従来の第1サイクルの第1室内熱交換器の暖房能力に加える事により、全体の暖房給湯能力と暖房給湯効率を向上させる事ができることを特徴とする複合空調給湯装置。In heating hot water supply, a hot water supply heat exchanger, a first indoor heat exchanger, a condenser, a receiver (not shown), an expansion valve, and a heat exchanger are connected to the compressor in order by refrigerant piping so that the refrigerant circulates. The first cycle of the refrigeration cycle of the reverse Carnot cycle, the expander assembled with the condenser of the first cycle and the generator of the second cycle, the heat exchanger of the first cycle, and the refrigerant pump in order so that the refrigerant circulates. In the combined air conditioning and hot water supply apparatus having the combined cycle consisting of the second cycle of the power generation cycle connected to the refrigerant pipe, the temperature of the hot water in the hot water supply heat exchanger is increased by the refrigerant that has become high temperature by the compressor of the first cycle, Conventionally, by utilizing the unused thermal energy released to the atmosphere by the condenser only for cooling, the refrigerant in the second cycle is heated by the heat exchange in the condenser, and the expansion force By generating electricity with the driving force of the second cycle expander and adding to the heating capacity of the first indoor heat exchanger of the conventional first cycle, the overall heating hot water supply capacity and heating hot water supply efficiency can be improved. A combined air conditioning hot water supply system. 暖房給湯において、圧縮機に給湯熱交換器と第1室内熱交換器と凝縮器と受液器(図示略)と膨張弁と熱交換器を冷媒が循環する様に順番に冷媒配管で接続した逆カルノーサイクルの冷凍サイクルの第1サイクルと、第1サイクルの凝縮器に第2室内熱交換器と第1サイクルの熱交換器と第2の受液器(図示略)と第2サイクルの膨張弁と冷媒ポンプを冷媒が循環する様に順番に冷媒配管で接続した冷凍サイクルの第2サイクルからなる複合サイクルを有する複合空調給湯装置において、第1サイクルの圧縮機により高温となった冷媒により給湯熱交換器において給湯水を昇温した後、従来、冷却するためだけに凝縮器により、大気に放出されていた未利用の熱エネルギーを活用して、第2サイクルの冷媒と、第1サイクルの冷媒を熱交換し利用する事により、全体の暖房給湯能力と暖房給湯効率を向上させるため、第2サイクルの冷媒の循環量を温度センサーにより検知して制御し、常に最適な温度と循環量を保つ事ができる様にした事を特徴とする複合空調給湯装置。In heating hot water supply, a hot water supply heat exchanger, a first indoor heat exchanger, a condenser, a receiver (not shown), an expansion valve, and a heat exchanger are connected to the compressor in order by refrigerant piping so that the refrigerant circulates. The first cycle of the reverse Carnot cycle, the condenser of the first cycle, the second indoor heat exchanger, the first cycle heat exchanger, the second liquid receiver (not shown), and the expansion of the second cycle In a combined air-conditioning hot water supply apparatus having a combined cycle consisting of a second cycle of a refrigeration cycle in which refrigerant is circulated in order so that the refrigerant circulates through a valve and a refrigerant pump, After raising the temperature of the hot water in the heat exchanger, conventionally, the second cycle refrigerant and the first cycle are utilized by utilizing the unused thermal energy released to the atmosphere by the condenser only for cooling. Heat exchange of the refrigerant In order to improve the overall heating and hot water supply capacity and heating hot water supply efficiency, the circulation amount of the refrigerant in the second cycle is detected and controlled by the temperature sensor, so that the optimum temperature and circulation amount can always be maintained. A combined air-conditioning hot water supply system characterized by 冷房給湯において、第1サイクルは、圧縮機と給湯熱交換器と凝縮器と受液器(図示略)と膨張弁と第1室内熱交換器と熱交換器を冷媒が循環する様に順番に冷媒配管で接続され、圧縮機により圧縮され、高温、高圧となった第1サイクルの冷媒は給湯熱交換器に流入し、給湯水を昇温した後、凝縮器において、第2サイクルの冷媒と熱交換を行い、受液器(図示略)を経て膨張弁に流入した後、低温、低圧となり、第1室内熱交換器に流入し冷房を行い、熱交換器を経て圧縮機に戻る事により冷凍サイクルが構成されている。
高温、高圧となった第1サイクルの冷媒により給湯熱交換器において昇温された給湯水は給湯配管を経て給湯ポンプにより循環し、貯湯タンクに蓄えられる。
第2サイクルの冷凍サイクルは、第1サイクルの凝縮器と第1サイクルの熱交換器と第2の受液器(図示略)と第2サイクルの膨張弁と第2室内熱交換器と冷媒ポンプを冷媒が循環する様に順番に冷媒配管で接続され、凝縮器において第1サイクルの冷媒と熱交換し高温、高圧となった冷媒が、熱交換器において第1サイクルの冷媒により凝縮され、受液器(図示略)を経て第2サイクルの膨張弁に流入し、低温、低圧となり、第2室内熱交換器に流入し、冷房を行った後に冷媒ポンプに入り、昇圧され凝縮器に戻る事により構成されている。従来、冷却するためだけに凝縮器により大気に放出されていた、第1サイクルの未利用の熱エネルギーを、凝縮器における第2サイクルの冷媒との熱交換により活用し、第2サイクルの膨張弁により膨張させ低温、低圧となった冷媒により第2室内熱交換器において冷房を行う。この様に従来の第1サイクルの第1室内熱交換器の冷房能力に、第2サイクルの第2室内熱交換器の冷房能力加える事により、全体の冷房給湯能力と冷房給湯効率を大幅に向上させる事ができることを特徴とする複合空調給湯装置。
In the cooling hot water supply, the first cycle is performed in order so that the refrigerant circulates through the compressor, the hot water supply heat exchanger, the condenser, the liquid receiver (not shown), the expansion valve, the first indoor heat exchanger, and the heat exchanger. The refrigerant of the first cycle, which is connected by the refrigerant pipe and compressed by the compressor and becomes high temperature and high pressure, flows into the hot water supply heat exchanger, warms the hot water, and then in the condenser, After exchanging heat and flowing into the expansion valve through a liquid receiver (not shown), the temperature becomes low temperature and low pressure, flows into the first indoor heat exchanger, cools, returns to the compressor through the heat exchanger A refrigeration cycle is configured.
The hot water heated in the hot water heat exchanger by the high-temperature and high-pressure refrigerant in the first cycle is circulated by the hot water pump through the hot water piping and stored in the hot water storage tank.
The second cycle refrigeration cycle includes a first cycle condenser, a first cycle heat exchanger, a second liquid receiver (not shown), a second cycle expansion valve, a second indoor heat exchanger, and a refrigerant pump. The refrigerant is connected in order so that the refrigerant circulates, and the refrigerant that has exchanged heat with the refrigerant in the first cycle in the condenser and becomes high temperature and high pressure is condensed in the heat exchanger by the refrigerant in the first cycle and received. It flows into the expansion valve of the second cycle through the liquid device (not shown), becomes low temperature and low pressure, flows into the second indoor heat exchanger, cools, enters the refrigerant pump, and is pressurized and returns to the condenser. It is comprised by. Conventionally, the unused heat energy of the first cycle, which has been released into the atmosphere by the condenser only for cooling, is utilized by heat exchange with the refrigerant of the second cycle in the condenser, and the expansion valve of the second cycle Cooling is performed in the second indoor heat exchanger by the refrigerant that has been expanded by the low temperature and low pressure. Thus, by adding the cooling capacity of the second indoor heat exchanger of the second cycle to the cooling capacity of the first indoor heat exchanger of the conventional first cycle, the overall cooling hot water supply capacity and cooling hot water supply efficiency are greatly improved. A combined air-conditioning hot water supply device characterized in that
冷房給湯において、第1サイクルは、圧縮機と給湯熱交換器と凝縮器と受液器(図示略)と膨張弁と第1室内熱交換器と熱交換器を冷媒が循環する様に順番に冷媒配管で接続され、圧縮機により圧縮され、高温、高圧となった第1サイクルの冷媒が給湯熱交換器に流入し、給湯水を昇温した後、凝縮器において、第2サイクルの冷媒と熱交換を行い、受液器(図示略)を経て膨張弁に流入し、低温、低圧となり、第1室内熱交換器に流入し冷房を行い、熱交換器を通り、圧縮機に戻る事により、冷凍サイクルが構成されている。
高温、高圧となった第1サイクルの冷媒により給湯熱交換器において昇温された給湯水は給湯配管を経て給湯ポンプにより循環し、貯湯タンクに蓄えられる。
第2サイクルの発電サイクルは、第1サイクルの凝縮器と第2サイクルの発電機を組み付けられた膨張機と第1サイクルの熱交換器と冷媒ポンプを冷媒が循環する様に順番に冷媒配管で接続され、凝縮器において第1サイクルの冷媒と熱交換し高温、高圧となった冷媒が、第2サイクルの発電機を組み付けられた膨張機に流入し、発電を行い、低温、低圧となり、熱交換器に流入し、第1サイクルの冷媒と熱交換を行い、冷媒ポンプにより昇圧され凝縮器に戻る事により構成されている。従来、冷却するためだけに凝縮器により大気に放出されていた、第1サイクルの未利用の熱エネルギーを、凝縮器における第2サイクルの冷媒との熱交換により活用し、第2サイクルの膨張機により発電を行う。この様に従来の第1サイクルの第1室内熱交換器の冷房能力に、第2サイクルの発電能力を加える事により、全体の冷房給湯能力と冷房給湯効率を大幅に向上させる事ができることを特徴とする複合空調給湯装置。
In the cooling hot water supply, the first cycle is performed in order so that the refrigerant circulates through the compressor, the hot water supply heat exchanger, the condenser, the liquid receiver (not shown), the expansion valve, the first indoor heat exchanger, and the heat exchanger. The first cycle refrigerant, which is connected by the refrigerant pipe and compressed by the compressor and becomes high temperature and high pressure, flows into the hot water supply heat exchanger and raises the temperature of the hot water supply, and then in the condenser, After heat exchange, it flows into the expansion valve via the liquid receiver (not shown), becomes low temperature and low pressure, flows into the first indoor heat exchanger, cools, passes through the heat exchanger, and returns to the compressor The refrigeration cycle is configured.
The hot water heated in the hot water heat exchanger by the high-temperature and high-pressure refrigerant in the first cycle is circulated by the hot water pump through the hot water piping and stored in the hot water storage tank.
The power generation cycle of the second cycle is made up of refrigerant pipes in order so that the refrigerant circulates through the expander assembled with the condenser of the first cycle and the generator of the second cycle, the heat exchanger of the first cycle, and the refrigerant pump. The refrigerant, which is connected and exchanges heat with the refrigerant in the first cycle in the condenser and becomes high temperature and high pressure, flows into the expander assembled with the generator in the second cycle, generates electricity, becomes low temperature and low pressure, The refrigerant flows into the exchanger, exchanges heat with the refrigerant in the first cycle, is pressurized by the refrigerant pump, and returns to the condenser. Conventionally, the second cycle expander utilizes heat energy from the first cycle, which has been released to the atmosphere by the condenser only for cooling, by heat exchange with the second cycle refrigerant in the condenser. To generate electricity. Thus, by adding the power generation capacity of the second cycle to the cooling capacity of the first indoor heat exchanger of the conventional first cycle, the overall cooling hot water supply capacity and cooling hot water supply efficiency can be greatly improved. Combined air conditioning and hot water supply equipment.
暖房給湯において、第1サイクルは、圧縮機と給湯熱交換器と第1室内熱交換器と凝縮器と受液器(図示略)と膨張弁と熱交換器を冷媒が循環する様に順番に冷媒配管で接続され、圧縮機により圧縮され、高温、高圧となった第1サイクルの冷媒が給湯熱交換器に流入し、給湯水を昇温した後、第1室内熱交換器に流入し暖房を行い、凝縮器に流入し、第2サイクルの冷媒と熱交換を行い、受液器(図示略)を経て膨張弁に流入した後、低温、低圧となり、熱交換器を通り圧縮機に戻る事により、冷凍サイクルが構成されている。
高温、高圧となった第1サイクルの冷媒により給湯熱交換器において昇温された給湯水は給湯配管を経て給湯ポンプにより循環し、貯湯タンクに蓄えられる。
第2サイクルの冷凍サイクルは、第1サイクルの凝縮器と第2室内熱交換器と第1サイクルの熱交換器と第2の受液器(図示略)と第2サイクルの膨張弁と冷媒ポンプを冷媒が循環する様に順番に冷媒配管で接続され、凝縮器において第1サイクルの冷媒と熱交換し高温、高圧となった冷媒が、第2室内熱交換器に流入し、暖房を行い、熱交換器において第1サイクルの冷媒と熱交換した後に、第2の受液器(図示略)と第2サイクルの膨張弁に流入し、低温、低圧となり、冷媒ポンプにより昇圧され、凝縮器に戻る事により、構成されている。従来、冷却するためだけに凝縮器により大気に放出されていた、第1サイクルの未利用の熱エネルギーを、凝縮器における第2サイクルの冷媒との熱交換により活用し、第2サイクルの高温、となった冷媒により第2室内熱交換器において暖房を行う。この様に従来の第1サイクルの第1室内熱交換器の暖房能力に、第2サイクルの第2室内熱交換器の暖房能力加える事により、全体の暖房給湯能力と暖房給湯効率を大幅に向上させる事ができることを特徴とする複合空調給湯装置。
In the heating and hot water supply, the first cycle is performed in order so that the refrigerant circulates through the compressor, the hot water supply heat exchanger, the first indoor heat exchanger, the condenser, the liquid receiver (not shown), the expansion valve, and the heat exchanger. The refrigerant of the first cycle, which is connected by the refrigerant piping and compressed by the compressor and becomes high temperature and high pressure, flows into the hot water supply heat exchanger, raises the temperature of the hot water supply water, and then flows into the first indoor heat exchanger for heating. And flows into the condenser, exchanges heat with the refrigerant in the second cycle, flows into the expansion valve via a liquid receiver (not shown), then becomes low temperature and low pressure, returns to the compressor through the heat exchanger. Thus, a refrigeration cycle is configured.
The hot water heated in the hot water heat exchanger by the high-temperature and high-pressure refrigerant in the first cycle is circulated by the hot water pump through the hot water piping and stored in the hot water storage tank.
The second cycle refrigeration cycle includes a first cycle condenser, a second indoor heat exchanger, a first cycle heat exchanger, a second liquid receiver (not shown), a second cycle expansion valve, and a refrigerant pump. The refrigerant is connected in order so that the refrigerant circulates, and the refrigerant that has exchanged heat with the refrigerant of the first cycle in the condenser and has become high temperature and high pressure flows into the second indoor heat exchanger, performs heating, After heat exchange with the refrigerant in the first cycle in the heat exchanger, the refrigerant flows into the second receiver (not shown) and the expansion valve in the second cycle, becomes low temperature and low pressure, and is pressurized by the refrigerant pump. It is composed by returning. Conventionally, the unused heat energy of the first cycle, which has been released to the atmosphere by the condenser only for cooling, is utilized by heat exchange with the refrigerant of the second cycle in the condenser, and the high temperature of the second cycle, Heating is performed in the second indoor heat exchanger by the refrigerant thus obtained. Thus, by adding the heating capacity of the second indoor heat exchanger of the second cycle to the heating capacity of the first indoor heat exchanger of the conventional first cycle, the overall heating hot water supply capacity and heating hot water supply efficiency are greatly improved. A combined air-conditioning hot water supply device characterized in that
暖房給湯において、第1サイクルは、圧縮機と給湯熱交換器と第1室内熱交換器と凝縮器と受液器(図示略)と膨張弁と熱交換器を冷媒が循環する様に順番に冷媒配管で接続され、圧縮機により圧縮され、高温、高圧となった第1サイクルの冷媒が給湯熱交換器に流入し、給湯水を昇温した後、第1室内熱交換器に流入し暖房を行い、凝縮器に流入し、第2サイクルの冷媒と熱交換を行い、受液器(図示略)を経て膨張弁に流入し低温、低圧となり、四方弁を経て、熱交換器を通り圧縮機に戻る事により、冷凍サイクルが構成されている。高温、高圧となった第1サイクルの冷媒により給湯熱交換器において昇温された給湯水は給湯配管を経て給湯ポンプにより循環し、貯湯タンクに蓄えられる。
第2サイクルの発電サイクルは、第1サイクルの凝縮器と第2サイクルの発電機を組み付けられた膨張機と熱交換器と冷媒ポンプを冷媒が循環する様に順番に冷媒配管で接続され、凝縮器において第1サイクルの冷媒と熱交換し高温、高圧となった冷媒が、第2サイクルの発電機を組み付けられた膨張機に流入し、発電を行い、熱交換器において第1サイクルの冷媒と熱交換した後で、冷媒ポンプにより昇圧され、凝縮器に戻る事により、構成されている。従来、冷却するためだけに凝縮器により大気に放出されていた、第1サイクルの未利用の熱エネルギーを、凝縮器における第2サイクルの冷媒との熱交換により活用し、第2サイクルの高温、となった冷媒により第2の膨張機において発電を行う。この様に従来の第1サイクルの第1室内熱交換器の暖房能力に、第2サイクルの発電能力を加える事により、全体の暖房能力と暖房効率を大幅に向上させる事ができることを特徴とする複合空調給湯装置。
In the heating and hot water supply, the first cycle is performed in order so that the refrigerant circulates through the compressor, the hot water supply heat exchanger, the first indoor heat exchanger, the condenser, the liquid receiver (not shown), the expansion valve, and the heat exchanger. The refrigerant of the first cycle, which is connected by the refrigerant piping and compressed by the compressor and becomes high temperature and high pressure, flows into the hot water supply heat exchanger, raises the temperature of the hot water supply water, and then flows into the first indoor heat exchanger for heating. , Flows into the condenser, exchanges heat with the refrigerant in the second cycle, flows into the expansion valve through the receiver (not shown), becomes low temperature and low pressure, passes through the four-way valve, and is compressed through the heat exchanger By returning to the machine, the refrigeration cycle is configured. The hot water heated in the hot water heat exchanger by the high-temperature and high-pressure refrigerant in the first cycle is circulated by the hot water pump through the hot water piping and stored in the hot water storage tank.
The power generation cycle of the second cycle is connected by refrigerant piping in order so that the refrigerant circulates through the expander, the heat exchanger, and the refrigerant pump assembled with the condenser of the first cycle and the generator of the second cycle. The refrigerant that has exchanged heat with the refrigerant in the first cycle and has become high temperature and high pressure flows into the expander in which the generator in the second cycle is assembled, generates electric power, and the refrigerant in the first cycle After heat exchange, the pressure is raised by the refrigerant pump and returned to the condenser. Conventionally, the unused heat energy of the first cycle, which has been released to the atmosphere by the condenser only for cooling, is utilized by heat exchange with the refrigerant of the second cycle in the condenser, and the high temperature of the second cycle, Electric power is generated in the second expander by the refrigerant. Thus, by adding the power generation capability of the second cycle to the heating capability of the first indoor heat exchanger of the conventional first cycle, the overall heating capability and heating efficiency can be greatly improved. Combined air conditioning and hot water supply system.
冷房給湯において、第1サイクルは、圧縮機と給湯熱交換器と四方弁と凝縮器と受液器(図示略)と膨張弁と四方弁と第1室内熱交換器と四方弁と熱交換器を冷媒が循環する様に順番に冷媒配管で接続され、圧縮機により圧縮され、高温、高圧となった第1サイクルの冷媒は給湯熱交換器に流入し、給湯水を昇温した後、四方弁を経て凝縮器において、第2サイクルの冷媒と熱交換を行い、受液器(図示略)を経て膨張弁に流入した後、低温、低圧となり、四方弁を経て、第1室内熱交換器に流入し冷房を行い、再び四方弁を通り熱交換器を経て圧縮機に戻る事により冷凍サイクルが構成されている。
高温、高圧となった第1サイクルの冷媒により給湯熱交換器において昇温された給湯水は給湯配管を経て給湯ポンプにより循環し、貯湯タンクに蓄えられる。
第2サイクルの冷凍サイクルは、第1サイクルの凝縮器と四方弁と第1サイクルの熱交換器と第2の受液器(図示略)と第2サイクルの膨張弁と四方弁と第2室内熱交換器と四方弁と冷媒ポンプを冷媒が循環する様に順番に冷媒配管で接続され、凝縮器において第1サイクルの冷媒と熱交換し高温、高圧となった冷媒が、四方弁を介して熱交換器において第1サイクルの冷媒により凝縮され、受液器(図示略)を経て膨張弁に流入し、低温、低圧となり、さらに四方弁を経て第2室内熱交換器に流入し、冷房を行い、さらに四方弁を経て冷媒ポンプに入り、昇圧され凝縮器に戻る事により構成されている。従来、冷却するためだけに凝縮器により大気に放出されていた、第1サイクルの未利用の熱エネルギーを、凝縮器における第2サイクルの冷媒との熱交換により活用し、第2サイクルの膨張弁により膨張させ低温、低圧となった冷媒により第2室内熱交換器において冷房を行う。この様に従来の第1サイクルの第1室内熱交換器の冷房能力に、第2サイクルの第2室内熱交換器の冷房能力加える事により、全体の冷房給湯能力と冷房給湯効率を大幅に向上させる事ができることを特徴とする複合空調給湯装置。
In the cooling hot water supply, the first cycle includes a compressor, a hot water supply heat exchanger, a four-way valve, a condenser, a liquid receiver (not shown), an expansion valve, a four-way valve, a first indoor heat exchanger, a four-way valve, and a heat exchanger. The refrigerant in the first cycle, which is connected by refrigerant pipes in order so that the refrigerant circulates and is compressed by the compressor and becomes high temperature and high pressure, flows into the hot water supply heat exchanger, raises the temperature of the hot water supply, In the condenser through the valve, heat exchange with the refrigerant in the second cycle is performed, and after flowing into the expansion valve through the liquid receiver (not shown), the temperature becomes low temperature and low pressure, and through the four-way valve, the first indoor heat exchanger The refrigeration cycle is configured by cooling the air, cooling it, passing through the four-way valve, and returning to the compressor through the heat exchanger.
The hot water heated in the hot water heat exchanger by the high-temperature and high-pressure refrigerant in the first cycle is circulated by the hot water pump through the hot water piping and stored in the hot water storage tank.
The second cycle refrigeration cycle includes a first cycle condenser, a four-way valve, a first cycle heat exchanger, a second liquid receiver (not shown), a second cycle expansion valve, a four-way valve, and a second chamber. The refrigerant pipes are connected in order so that the refrigerant circulates through the heat exchanger, the four-way valve, and the refrigerant pump. In the condenser, the high-temperature and high-pressure refrigerant exchanges heat with the refrigerant in the first cycle, and passes through the four-way valve. In the heat exchanger, it is condensed by the refrigerant in the first cycle, flows into the expansion valve via a liquid receiver (not shown), becomes low temperature and low pressure, further flows into the second indoor heat exchanger through a four-way valve, and cools it. This is done by entering the refrigerant pump through a four-way valve, increasing the pressure, and returning to the condenser. Conventionally, the unused heat energy of the first cycle, which has been released into the atmosphere by the condenser only for cooling, is utilized by heat exchange with the refrigerant of the second cycle in the condenser, and the expansion valve of the second cycle Cooling is performed in the second indoor heat exchanger by the refrigerant that has been expanded by the low temperature and low pressure. Thus, by adding the cooling capacity of the second indoor heat exchanger of the second cycle to the cooling capacity of the first indoor heat exchanger of the conventional first cycle, the overall cooling hot water supply capacity and cooling hot water supply efficiency are greatly improved. A combined air-conditioning hot water supply device characterized in that
冷房給湯において、第1サイクルは、圧縮機と給湯熱交換器と四方弁と凝縮器と受液器(図示略)と膨張弁と四方弁と第1室内熱交換器と四方弁と熱交換器を冷媒が循環する様に順番に冷媒配管で接続され、圧縮機により圧縮され、高温、高圧となった第1サイクルの冷媒が給湯熱交換器に流入し、給湯水を昇温した後、四方弁を経て凝縮器において、第2サイクルの冷媒と熱交換を行い、受液器(図示略)を経て膨張弁に流入し、低温、低圧となり、四方弁を経て、第1室内熱交換器に流入し冷房を行い、再び四方弁を経て熱交換器を通り、圧縮機に戻る事により冷凍サイクルが構成されている。
高温、高圧となった第1サイクルの冷媒により給湯熱交換器において昇温された給湯水は給湯配管を経て給湯ポンプにより循環し、貯湯タンクに蓄えられる。
第2サイクルの発電サイクルは、第1サイクルの凝縮器と第2サイクルの発電機を組み付けられた膨張機と第1サイクルの熱交換器と冷媒ポンプを冷媒が循環する様に順番に冷媒配管で接続され、凝縮器において第1サイクルの冷媒と熱交換し高温、高圧となった冷媒が、第2サイクルの発電機を組み付けられた膨張機に流入し、発電を行い、低温、低圧となり、熱交換器に流入し、第1サイクルの冷媒と熱交換を行い、冷媒ポンプにより昇圧され凝縮器に戻る事により、構成されている。従来、冷却するためだけに凝縮器により大気に放出されていた、第1サイクルの未利用の熱エネルギーを、凝縮器における第2サイクルの冷媒との熱交換により活用し、第2サイクルの膨張機により発電を行う。この様に従来の第1サイクルの第1室内熱交換器の冷房能力に、第2サイクルの発電能力を加える事により、全体の冷房給湯能力と冷房給湯効率を大幅に向上させる事ができることを特徴とする複合空調給湯装置。
In the cooling hot water supply, the first cycle includes a compressor, a hot water supply heat exchanger, a four-way valve, a condenser, a liquid receiver (not shown), an expansion valve, a four-way valve, a first indoor heat exchanger, a four-way valve, and a heat exchanger. The refrigerant in the first cycle, which is connected by refrigerant pipes in order so that the refrigerant circulates and is compressed by the compressor and becomes high temperature and high pressure, flows into the hot water supply heat exchanger and raises the temperature of the hot water supply. In the condenser through the valve, heat exchange with the refrigerant in the second cycle is performed, flows into the expansion valve through the liquid receiver (not shown), becomes low temperature and low pressure, passes through the four-way valve, and enters the first indoor heat exchanger. The refrigeration cycle is constructed by flowing in and cooling, and again passing through the four-way valve, passing through the heat exchanger, and returning to the compressor.
The hot water heated in the hot water heat exchanger by the high-temperature and high-pressure refrigerant in the first cycle is circulated by the hot water pump through the hot water piping and stored in the hot water storage tank.
The power generation cycle of the second cycle is made up of refrigerant pipes in order so that the refrigerant circulates through the expander assembled with the condenser of the first cycle and the generator of the second cycle, the heat exchanger of the first cycle, and the refrigerant pump. The refrigerant, which is connected and exchanges heat with the refrigerant in the first cycle in the condenser and becomes high temperature and high pressure, flows into the expander assembled with the generator in the second cycle, generates electricity, becomes low temperature and low pressure, The refrigerant flows into the exchanger, exchanges heat with the refrigerant in the first cycle, is pressurized by the refrigerant pump, and returns to the condenser. Conventionally, the second cycle expander utilizes heat energy from the first cycle, which has been released to the atmosphere by the condenser only for cooling, by heat exchange with the second cycle refrigerant in the condenser. To generate electricity. Thus, by adding the power generation capacity of the second cycle to the cooling capacity of the first indoor heat exchanger of the conventional first cycle, the overall cooling hot water supply capacity and cooling hot water supply efficiency can be greatly improved. Combined air conditioning and hot water supply equipment.
暖房給湯において、第1サイクルは、圧縮機と給湯熱交換器と四方弁と第1室内熱交換器と四方弁と凝縮器と受液器(図示略)と膨張弁と四方弁と熱交換器を冷媒が循環する様に順番に冷媒配管で接続され、圧縮機により圧縮され、高温、高圧となった第1サイクルの冷媒が給湯熱交換器に流入し、給湯水を昇温した後、第1室内熱交換器に流入し暖房を行い、四方弁を経て凝縮器に流入し、第2サイクルの冷媒と熱交換を行い、受液器(図示略)を経て膨張弁に流入した後、低温、低圧となり、四方弁を経て、熱交換器を通り圧縮機に戻る事により、冷凍サイクルが構成されている。
高温、高圧となった第1サイクルの冷媒により給湯熱交換器において昇温された給湯水は給湯配管を経て給湯ポンプにより循環し、貯湯タンクに蓄えられる。
第2サイクルの冷凍サイクルは、第1サイクルの凝縮器と四方弁を介して、第2室内熱交換器と四方弁を介して第1サイクルの熱交換器と第2の受液器(図示略)と第2サイクルの膨張弁と四方弁と冷媒ポンプを冷媒が循環する様に順番に冷媒配管で接続され、凝縮器において第1サイクルの冷媒と熱交換し高温、高圧となった冷媒が、四方弁を介して第2室内熱交換器に流入し、暖房を行い、四方弁を介して熱交換器において第1サイクルの冷媒と熱交換した後、第2の受液器(図示略)と第2サイクルの膨張弁に流入し、低温、低圧となり、さらに四方弁を経て冷媒ポンプにより昇圧され、凝縮器に戻る事により、構成されている。従来、冷却するためだけに凝縮器により大気に放出されていた、第1サイクルの未利用の熱エネルギーを、凝縮器における第2サイクルの冷媒との熱交換により活用し、第2サイクルの高温、となった冷媒により第2室内熱交換器において暖房を行う。この様に従来の第1サイクルの第1室内熱交換器の暖房能力に、第2サイクルの第2室内熱交換器の暖房能力加える事により、全体の暖房給湯能力と暖房給湯効率を大幅に向上させる事ができることを特徴とする複合空調給湯装置。
In the heating and hot water supply, the first cycle includes a compressor, a hot water supply heat exchanger, a four-way valve, a first indoor heat exchanger, a four-way valve, a condenser, a receiver (not shown), an expansion valve, a four-way valve, and a heat exchanger. The refrigerant of the first cycle, which is connected by refrigerant pipes in order so that the refrigerant circulates and is compressed by the compressor and becomes high temperature and high pressure flows into the hot water supply heat exchanger, raises the temperature of the hot water supply, 1 Flowing into the indoor heat exchanger, heating, flowing into the condenser via the four-way valve, exchanging heat with the refrigerant in the second cycle, flowing into the expansion valve via the receiver (not shown), The refrigeration cycle is configured by low pressure, passing through a four-way valve, passing through a heat exchanger, and returning to the compressor.
The hot water heated in the hot water heat exchanger by the high-temperature and high-pressure refrigerant in the first cycle is circulated by the hot water pump through the hot water piping and stored in the hot water storage tank.
The refrigeration cycle of the second cycle includes a condenser and a four-way valve of the first cycle, a heat exchanger of the first cycle and a second liquid receiver (not shown) via a second indoor heat exchanger and a four-way valve. ) And the second cycle expansion valve, the four-way valve, and the refrigerant pump are connected in order so that the refrigerant circulates, and the refrigerant exchanges heat with the refrigerant in the first cycle in the condenser and becomes a high temperature and high pressure, After flowing into the second indoor heat exchanger via the four-way valve, heating, and exchanging heat with the refrigerant of the first cycle in the heat exchanger via the four-way valve, the second liquid receiver (not shown) and It flows into the expansion valve of the second cycle, becomes low temperature and low pressure, is further pressurized by a refrigerant pump through a four-way valve, and returns to the condenser. Conventionally, the unused heat energy of the first cycle, which has been released to the atmosphere by the condenser only for cooling, is utilized by heat exchange with the refrigerant of the second cycle in the condenser, and the high temperature of the second cycle, Heating is performed in the second indoor heat exchanger by the refrigerant thus obtained. Thus, by adding the heating capacity of the second indoor heat exchanger of the second cycle to the heating capacity of the first indoor heat exchanger of the conventional first cycle, the overall heating hot water supply capacity and heating hot water supply efficiency are greatly improved. A combined air-conditioning hot water supply device characterized in that
暖房給湯において、第1サイクルは、圧縮機と給湯熱交換器と四方弁と第1室内熱交換器と四方弁と凝縮器と受液器(図示略)と膨張弁と四方弁と熱交換器を冷媒が循環する様に順番に冷媒配管で接続され、圧縮機により圧縮され、高温、高圧となった第1サイクルの冷媒が給湯熱交換器に流入し、給湯水を昇温した後、第1室内熱交換器に流入し暖房を行い、四方弁を経て凝縮器に流入し、第2サイクルの冷媒と熱交換を行い、受液器(図示略)を経て膨張弁に流入し低温、低圧となり、四方弁を経て、熱交換器を通り圧縮機に戻る事により、冷凍サイクルが構成されている。
高温、高圧となった第1サイクルの冷媒により給湯熱交換器において昇温された給湯水は給湯配管を経て給湯ポンプにより循環し、貯湯タンクに蓄えられる。
第2サイクルの発電サイクルは、第1サイクルの凝縮器と第2サイクルの発電機を組み付けられた膨張機と熱交換器と冷媒ポンプが冷媒が循環する様に順番に冷媒配管で接続され、凝縮器において第1サイクルの冷媒と熱交換し高温、高圧となった冷媒が、第2サイクルの発電機を組み付けられた膨張機に流入し、発電を行い、熱交換器において第1サイクルの冷媒と熱交換した後で、冷媒ポンプにより昇圧され、凝縮器に戻る事により、構成されている。従来、冷却するためだけに凝縮器により大気に放出されていた、第1サイクルの未利用の熱エネルギーを、凝縮器における第2サイクルの冷媒との熱交換により活用し、第2サイクルの高温、となった冷媒により第2の膨張機において発電を行う。この様に従来の第1サイクルの第1室内熱交換器の暖房能力に、第2サイクルの発電能力を加える事により、全体の暖房能力と暖房効率を大幅に向上させる事ができることを特徴とする複合空調給湯装置。
In the heating and hot water supply, the first cycle includes a compressor, a hot water supply heat exchanger, a four-way valve, a first indoor heat exchanger, a four-way valve, a condenser, a receiver (not shown), an expansion valve, a four-way valve, and a heat exchanger. The refrigerant of the first cycle, which is connected by refrigerant pipes in order so that the refrigerant circulates and is compressed by the compressor and becomes high temperature and high pressure flows into the hot water supply heat exchanger, raises the temperature of the hot water supply, 1 Flows into the indoor heat exchanger, heats it, flows into the condenser via a four-way valve, exchanges heat with the refrigerant in the second cycle, flows into the expansion valve via a receiver (not shown), and runs at low temperature and low pressure Thus, the refrigeration cycle is configured by passing through the four-way valve, passing through the heat exchanger, and returning to the compressor.
The hot water heated in the hot water heat exchanger by the high-temperature and high-pressure refrigerant in the first cycle is circulated by the hot water pump through the hot water piping and stored in the hot water storage tank.
The power generation cycle of the second cycle is connected by refrigerant piping in order so that the refrigerant circulates between the expander, the heat exchanger, and the refrigerant pump assembled with the first cycle condenser and the second cycle generator. The refrigerant that has exchanged heat with the refrigerant in the first cycle and has become high temperature and high pressure flows into the expander in which the generator in the second cycle is assembled, generates electric power, and the refrigerant in the first cycle After heat exchange, the pressure is raised by the refrigerant pump and returned to the condenser. Conventionally, the unused heat energy of the first cycle, which has been released to the atmosphere by the condenser only for cooling, is utilized by heat exchange with the refrigerant of the second cycle in the condenser, and the high temperature of the second cycle, Electric power is generated in the second expander by the refrigerant. Thus, by adding the power generation capability of the second cycle to the heating capability of the first indoor heat exchanger of the conventional first cycle, the overall heating capability and heating efficiency can be greatly improved. Combined air conditioning and hot water supply system.
請求項1又は3又は4又は6又は7又は9又は11又は13において、第1サイクルと、第2サイクルに、それぞれ複数の室内熱交換器を有し、室内熱交換器を個々に直列に重ねて配置するなど、それぞれの冷房特性に合った組み合わせが出来ることを特徴とする複合空調給湯装置。In Claim 1 or 3 or 4 or 6 or 7 or 9 or 11 or 13, it has a plurality of indoor heat exchangers in the first cycle and the second cycle, respectively, and the indoor heat exchangers are individually stacked in series. A combined air-conditioning hot water supply system that can be combined to suit each cooling characteristic. 請求項1又は2又は3又は4又は5又は6又は7又は8又は9又は10又は11又は12又は13又は14において、第1サイクルの冷媒と、第2サイクルの冷媒をそれぞれの特性に合った異なった冷媒、水、ブライン等、を用いることを特徴とする複合空調給湯装置。Claim 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 wherein the refrigerant of the first cycle and the refrigerant of the second cycle are matched to the respective characteristics A combined air-conditioning hot-water supply apparatus using different refrigerants, water, brine, and the like. 請求項1又は2又は3又は4又は5又は6又は7又は8又は9又は10又は11又は12又は13又は14において、従来の室外熱交換器を廃して一体型の屋内冷凍装置であることを特徴とする複合空調装置。Claim 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 that the conventional outdoor heat exchanger is eliminated and is an integrated indoor refrigeration system Characteristic composite air conditioner.
JP2014136268A 2014-06-13 2014-06-13 Combined air-conditioning water heater Pending JP2016003849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014136268A JP2016003849A (en) 2014-06-13 2014-06-13 Combined air-conditioning water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014136268A JP2016003849A (en) 2014-06-13 2014-06-13 Combined air-conditioning water heater

Publications (1)

Publication Number Publication Date
JP2016003849A true JP2016003849A (en) 2016-01-12

Family

ID=55223242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014136268A Pending JP2016003849A (en) 2014-06-13 2014-06-13 Combined air-conditioning water heater

Country Status (1)

Country Link
JP (1) JP2016003849A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109974326A (en) * 2019-03-11 2019-07-05 李国斌 It is a kind of to evaporate cold solar energy and air heat source combined heat-pump recuperation of heat unit
CN113701397A (en) * 2021-08-09 2021-11-26 三峡大学 Geothermal energy grading high-efficiency multi-capacity system and operation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109974326A (en) * 2019-03-11 2019-07-05 李国斌 It is a kind of to evaporate cold solar energy and air heat source combined heat-pump recuperation of heat unit
CN109974326B (en) * 2019-03-11 2023-08-01 瀚润联合高科技发展(北京)有限公司 Evaporation cold solar energy and air heat source composite heat pump heat recovery unit
CN113701397A (en) * 2021-08-09 2021-11-26 三峡大学 Geothermal energy grading high-efficiency multi-capacity system and operation method thereof
CN113701397B (en) * 2021-08-09 2022-12-02 三峡大学 Geothermal energy grading high-efficiency multi-capacity system and operation method thereof

Similar Documents

Publication Publication Date Title
US20160298498A1 (en) Energy Storage and Retrieval Systems
WO2019114536A1 (en) Constructed cold source energy recovery system, heat engine system and energy recovery method
US9869495B2 (en) Multi-cycle power generator
JP2012247081A (en) Composite system cum power generation and heat pump
US10344626B2 (en) Hybrid power generation system
Dumont et al. Design, modeling and experimentation of a reversible HP-ORC prototype
US10731515B2 (en) Hybrid type power generation system
RU2006147231A (en) HEAT ENGINE
CN102589196A (en) Air-conditioning hot water system capable of comprehensively utilizing energy
CN102435004A (en) Multifunctional high-temperature water outlet air conditioner heat pump unit
CN106403283B (en) Hot water type heat pump system
JP2016003849A (en) Combined air-conditioning water heater
KR100760520B1 (en) Compact co-generation arrangements using a waste heat
JP5312644B1 (en) Air conditioning power generation system
KR101315918B1 (en) Organic rankine cycle for using low temperature waste heat and absorbtion type refrigerator
CN103868276A (en) Superconductive composite source heat pump system
JP2015210070A (en) Complex air-conditioning refrigeration system
CN103615293B (en) Carbon dioxide heat pump and organic working medium combined power generation system
KR20180067094A (en) Hybrid heat pump system
KR20210092106A (en) Environment-friendly, high-efficiency heat pump system with reduced energy and carbon emissions for both industrial steam, hot water and cold water
KR101170712B1 (en) Using a gas engine heat pump geothermal heating and cooling systems
JP2015203561A (en) Complex air conditioner
CN202382477U (en) Multifunctional air conditioning heat pump unit capable of discharging high temperature water
JP2016001098A (en) Combined air conditioning device
WO2011107651A1 (en) Arrangement for transferring and utilizing heat energy