JPS6064631A - Method for preparing high calorie gas and catalyst therefor - Google Patents

Method for preparing high calorie gas and catalyst therefor

Info

Publication number
JPS6064631A
JPS6064631A JP58173988A JP17398883A JPS6064631A JP S6064631 A JPS6064631 A JP S6064631A JP 58173988 A JP58173988 A JP 58173988A JP 17398883 A JP17398883 A JP 17398883A JP S6064631 A JPS6064631 A JP S6064631A
Authority
JP
Japan
Prior art keywords
group metal
catalyst
iron
platinum group
calorie
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58173988A
Other languages
Japanese (ja)
Other versions
JPH0212143B2 (en
Inventor
Satoyuki Inui
智行 乾
Yoshinobu Takegami
武上 善信
Seiji Nishida
清二 西田
Yoshiaki Ishigaki
石垣 喜章
Masanobu Uba
姥 政信
Junichi Yasumaru
純一 安丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Coke and Chemicals Co Ltd
Original Assignee
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Coke and Chemicals Co Ltd filed Critical Kansai Coke and Chemicals Co Ltd
Priority to JP58173988A priority Critical patent/JPS6064631A/en
Publication of JPS6064631A publication Critical patent/JPS6064631A/en
Publication of JPH0212143B2 publication Critical patent/JPH0212143B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To obtain gas containing a large amount of C2-4 hydrocarbon by bringing a catalyst, which is obtained by combining a carrier such as titanium oxide and a catalyst component having a three-component composition, into contact with low calorie gas. CONSTITUTION:A molded carrier, which is formed by subjecting titanium oxide to heat treatment at 500-800 deg.C, is impregnated with an aqueous solution containing platinum nitrate of chloride in an amount equal to the fine pore volume of said carrier and the impregnated carrier is dried in air while slowly tumbled at an atmospheric temp. Subsequently, this treated carrier is exposed to an atmosphere containing 10-20% of ammonia and 1-10% of steam for 2-3min and, thereafter, heated to 350 deg.C to form oxide which is, in turn, heated to 400 deg.C in a 10-20% hydrogen-containing stream diluted with inert gas and reduced while held at said temp. to obtain a platinum supported carrier. This carrier is further impregnated with, for example, an aqueous solution mixture containing ferrous metal nitrate and manganese nitrate and dried by air, subsequently dried under heating and subjected to ammonia treatment and treatment such as thermal decomposition or hydrogen reduction.

Description

【発明の詳細な説明】 本発明は、低カロリーガスから高カロリーカスを11)
るための触媒、およびその触媒を用いて水素と一酸化炭
素を含むガスあるいは水素と一酸化炭素と二酸化炭素を
含むガスから炭素数1〜4の1焚化水素を含む高カロリ
ー燃料用ガスを製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides high calorie residue from low calorie gas (11)
A catalyst for producing carbon dioxide, and using the catalyst to produce high-calorie fuel gas containing mono-combusted hydrogen having 1 to 4 carbon atoms from a gas containing hydrogen and carbon monoxide or a gas containing hydrogen, carbon monoxide, and carbon dioxide. It's about how to do it.

都市ガスとしては、従来、コークス炉ガスが主lんを占
めてきたが、近年生活環境の保護、供給方式の合理化、
無毒安全性等の観点から見直しが行なわれ、高カロリー
天然ガスへの転換が急ピッチで進められている。その為
コークス炉ガスは都市ガスとしての用途をせばめられつ
つあるが、J、(幹産業たる′3A鉄用コークスの生産
に伴って膨大な量が副生ずるので、この有効な用途を開
発することが手習な課題になっている。ところでこのコ
ークス炉カスを今後とも燃ネ゛1用として活用していく
ためには現在の低カロリー性をj31.善し、天然カス
に匹敵しイ1する様な高カロリーガスに変換することが
できればこの問題の1つの解決法になる。
Coke oven gas has traditionally been the main source of city gas, but in recent years there has been an increase in protection of the living environment, rationalization of supply methods,
Gas is being reviewed from the viewpoint of non-toxicity and safety, and the transition to high-calorie natural gas is progressing at a rapid pace. For this reason, the use of coke oven gas as city gas is being limited, but since a huge amount is produced as a by-product with the production of '3A coke, which is the main industry, it is important to develop effective uses for this. However, in order to continue to utilize this coke oven scum as a fuel source, it is necessary to improve its current low calorie property and make it comparable to natural scum. One solution to this problem would be to convert it into a high-calorie gas.

コークス炉カスや石炭又は重質油などのガス化カスの低
カロリー性は、水素、−酸化炭素及び二酸化炭素などを
多1.iに含有することによるので、それらを高カロリ
ー化するためには、上記の物質を、メタン、エタン、エ
チレン、プロパン、プロピレン、ブタンなどの炭化水素
に変換する必要がある。本発明渚等は上述の・1ν情に
鑑み、より高いカロリーj−す有する燃料用ガスをイ1
1るべく挿々研究の結果本発明を完成した。
The low calorie nature of gasified scum, such as coke oven dregs, coal or heavy oil, is due to its high content of hydrogen, carbon oxides and carbon dioxide. Therefore, in order to make them high in calories, it is necessary to convert the above substances into hydrocarbons such as methane, ethane, ethylene, propane, propylene, and butane. In view of the above-mentioned circumstances, Nagisa et al. of the present invention developed a fuel gas having a higher calorific value.
As a result of extensive research, the present invention was completed.

即ち本発明の[■的をより具体的に述へると、水2←と
一酸化炭素を含むガス、あるいは水素と一酸化炭素と二
酸化炭素を含むカス(以下、弔に低カロリーカスと称す
)例えばコークス炉ガスを、従来知られている方法より
もはるかに高カロリーのガスに変換することのできる3
元組成系触媒、およびその触媒を使用して高カロリーガ
スを製造する方法を提供しようとするにある。即ち本発
明は、」−述の触媒に低カロリーガスを接触させること
により、メタンのほか、炭素数が2〜4の炭化水素をも
含む高カロリーガスに変換することを目的とするもので
ある。なお、低カロリーガスを炭化水素含イ1高カロリ
ーガスに変換する場合、一般に二酸化炭素が副生ずるの
で、従来はこれを分陶除大していたといういきさつがあ
る。そこで本発明において1走、上記3元組成系および
後記の3元組成系の2系統の触媒を組み合わせることに
より、この副生二酸化炭素を同時に炭化水素化する方法
を提供することも目的として掲げており、これにより二
酸化炭素の分動操作を必要としないという利点が発揮さ
れる。
That is, to describe the object of the present invention more specifically, gas containing water 2← and carbon monoxide, or sludge containing hydrogen, carbon monoxide, and carbon dioxide (hereinafter referred to as low-calorie sludge) ) For example, coke oven gas can be converted into a gas with a much higher calorie content than previously known methods.
An object of the present invention is to provide an original composition catalyst and a method for producing high-calorie gas using the catalyst. That is, the present invention aims to convert a low-calorie gas into a high-calorie gas containing not only methane but also hydrocarbons having 2 to 4 carbon atoms by bringing the low-calorie gas into contact with the above-mentioned catalyst. . In addition, when converting a low-calorie gas into a high-calorie gas containing hydrocarbons, carbon dioxide is generally produced as a by-product, and conventionally this has been separated and removed. Therefore, one object of the present invention is to provide a method for simultaneously converting this by-product carbon dioxide into hydrocarbons by combining two systems of catalysts, the above-mentioned ternary composition system and the ternary composition system described below. This provides the advantage of not requiring a splitting operation of carbon dioxide.

本発明をさらに詳細に説明する。まず本発明の触媒にお
けるII!体は酸化チタンであるが、 li+>に市販
されているものを使用することができる。このような担
体に担持させる触媒の基質としては鉄族金属が用いられ
るが、該鉄族金属としてはコバルト、鉄が特に好ましい
。そして、本発明の触媒は、この基質金属に、酸化マン
ガンおよび白金族金属をMlみ合わせ前記担体に担持さ
せた3元組成系触り’lである。ここで白金族金属とし
ては例えばルテニウム、ロジウム、パラジウム、白金ま
たはイリジウムのいずれかの金属、が挙げられる。
The present invention will be explained in further detail. First, II! in the catalyst of the present invention! The body is made of titanium oxide, but commercially available titanium oxide can be used. Iron group metals are used as substrates for catalysts supported on such carriers, and cobalt and iron are particularly preferred as the iron group metals. The catalyst of the present invention has a ternary composition in which manganese oxide and platinum group metal are combined with Ml on the substrate metal and supported on the carrier. Examples of platinum group metals include ruthenium, rhodium, palladium, platinum, and iridium.

本発明の触媒は、上記のように、担体として酸化チタン
よりなる担体を使用することを特徴とし、この担体と3
元組成の触媒成分を組み合わせたことにより、これに低
カロリーガスを接触させたとき02〜C4の炭化水素を
多く含むカスをfiることかできる。しかしてそのよう
な効果が奏せられる理由は、詳細は不明であるが、−1
一記稍体と触媒成分とをMlみ合わせることにより、担
体と触+2金属との複合効果が促進され、CO吸着性が
増大して炭素屯合活性が増加し、C2〜C4の炭化水素
生成が向上することによるものではないかと4fl定さ
れる。上記組み合わせにおいて、触媒基質となる鉄族金
属の担持量は全触媒に対し、3〜15%特に好ましくは
5〜12%である。また酸(IZマンガンの相持量は鉄
族金属元素対マンガン元素の原子比が(5:1)〜(5
: 4)の範囲を満足するように設定され、白金族金属
の稍持肚は鉄族金属元素対白金族金属元素の原子比が(
30:l)〜(5: 2)の範囲を満足するように設定
される。
As mentioned above, the catalyst of the present invention is characterized in that a carrier made of titanium oxide is used as a carrier, and this carrier and
By combining the catalyst components of the original composition, when a low calorie gas is brought into contact with the catalyst components, it is possible to remove scum containing a large amount of 02 to C4 hydrocarbons. However, the details of why such an effect is produced are unknown, but -1
By combining Ml of the above-mentioned solids and the catalyst component, the combined effect of the support and the catalytic metal is promoted, the CO adsorption is increased, the carbon binding activity is increased, and C2 to C4 hydrocarbons are produced. It is assumed that this is due to an improvement in the 4 fl. In the above combination, the supported amount of the iron group metal serving as the catalyst substrate is 3 to 15%, particularly preferably 5 to 12%, based on the total catalyst. In addition, the amount of acid (IZ manganese) is determined when the atomic ratio of iron group metal element to manganese element is (5:1) to (5:1).
: 4), and the atomic ratio of iron group metal elements to platinum group metal elements is (
It is set to satisfy the range of 30:1) to (5:2).

本発明の触媒を調製するに当っては通常含浸法あるいは
沈C法が用いられる。
In preparing the catalyst of the present invention, an impregnation method or a precipitation C method is usually used.

本発明の触媒は、前記の基本的構成によって製造される
が、それをさらに具体的に述べると、酸化チタンよりな
る相体に、白金族金属、鉄族金属、マンガンを、硝酸塩
水溶液または塩化物水溶液の形で噴霧、散布、浸漬等の
手段により含浸させたあと、乾燥、アンモニア処理、熱
分解、水素還元等の工程を順次施して、まず3元組成系
111持休を調製する。なおこの調製にあたりアンモニ
ア処理工程は省略できる場合もある。本発明触媒の製造
例をさらに具体的に説明する。
The catalyst of the present invention is produced by the above-mentioned basic structure, but to describe it more specifically, a platinum group metal, an iron group metal, or manganese is added to a phase consisting of titanium oxide, and a nitrate aqueous solution or a chloride is added to the phase. First, a ternary composition system 111 is prepared by impregnating it in the form of an aqueous solution by means such as spraying, scattering, and dipping, and then sequentially performing steps such as drying, ammonia treatment, thermal decomposition, and hydrogen reduction. Note that in this preparation, the ammonia treatment step may be omitted in some cases. A manufacturing example of the catalyst of the present invention will be explained in more detail.

まず酸化チタンよりなる相体、またはこれを500〜8
00℃で熱処理した成形相体に、その細孔容積と環部の
白金族金属の硝酸塩または同塩化物の水溶液を含浸させ
、常温でゆるやかに転動ネせながら風乾する。なお乾燥
を速めるために。
First, a phase consisting of titanium oxide or 500 to 8
The molded phase heat-treated at 00° C. is impregnated with an aqueous solution of a platinum group metal nitrate or chloride in its pore volume and ring portion, and air-dried at room temperature while gently rolling. In order to speed up drying.

150°Cの温度に調節された市販の乾燥器を使用して
もよい。つぎに上記処理物を、10〜20%アンモニア
と1〜10%水蒸気を含む雰囲気中に2〜3分間曝露す
る。その後、空気中で約350°Cまでに加熱し、含浸
されている白金族金属硝酸111または同塩化物を熱分
解して酸化物とする。これを不活性ガスで希釈した水素
濃度10〜20%の気J&中で常温から400℃まで昇
温し、同温度に30分間保持して還元し、ついで同気流
中で常温まで冷却する。このようにして得られた白金族
全屈IL!持体に、前記と同じ含浸法により鉄族金属の
例えば硝酸塩水溶液と、マンカンの例えば硝酸1!1水
溶液との混合液を含浸させる。ついで前記白金族金属を
10持させる場合と同様に風乾または加熱乾仔、アンモ
ニア処理、熱分解、水素還元等の処理を施すことにより
、3元組成系触媒を得る。
A commercially available dryer regulated at a temperature of 150°C may be used. Next, the treated product is exposed to an atmosphere containing 10 to 20% ammonia and 1 to 10% water vapor for 2 to 3 minutes. Thereafter, it is heated to about 350° C. in air to thermally decompose the impregnated platinum group metal nitric acid 111 or its chloride into an oxide. This is heated from room temperature to 400° C. in air J& diluted with an inert gas and having a hydrogen concentration of 10 to 20%, held at the same temperature for 30 minutes for reduction, and then cooled to room temperature in the same air flow. The platinum group total yield IL obtained in this way! The support is impregnated with a mixed solution of an aqueous solution of iron group metal, for example, a nitrate, and a 1:1 aqueous solution of mankan, for example, nitric acid, by the same impregnation method as described above. Then, in the same manner as in the case where the platinum group metal is loaded with 10% of the platinum group metal, a ternary composition catalyst is obtained by performing treatments such as air drying or heating drying, ammonia treatment, thermal decomposition, and hydrogen reduction.

実用上この触媒はそのまま用いてもよいし、H2雰囲気
下で熱処理(450〜goo’c)を施して使用するこ
ともできる。
In practice, this catalyst may be used as it is, or may be used after being subjected to heat treatment (450 to goo'c) in an H2 atmosphere.

本発明の触媒によって、コークス炉ガス、ナフ妥や重質
油の水1本気改質ガス、さらには水性ガスや石炭ガス化
ガスのような低カロリーガスを炭素数1〜4の炭化水素
を含む高カロリーガスに変換するには、例えばつぎのよ
うにして行なうことができる。すなわち、以」−のよう
にして得られた触媒を反応塔に充填し、触媒層の温度を
150〜400℃、好ましくは260〜350℃に制御
しながら5〜30kg/cm G 、好ましくはlo〜
20 kg/cm2Gの加用下に触媒容量1文当り、1
〜10m”/hr 、好ましくは2〜5II13/h丁
の低カロリーガスを導入することにより触媒層内では、
ik素数が1〜4の炭化水素を含有すg高カロリーガス
が生成するがその際、副生じた水が次の0式で示すよう
に、B丁(料紙カロリーガス中の一酸化炭素とシフト反
応を起こして二酸化炭素を副生ずる。
With the catalyst of the present invention, low-calorie gases containing hydrocarbons having 1 to 4 carbon atoms, such as coke oven gas, naph gas, and heavy oil reformed gas, as well as water gas and coal gasification gas, can be used. The conversion into high calorie gas can be carried out, for example, as follows. That is, the catalyst obtained in the following manner is packed into a reaction tower, and the temperature of the catalyst layer is controlled at 150-400°C, preferably 260-350°C, at a rate of 5-30 kg/cm G, preferably lo ~
1 per liter of catalyst capacity under application of 20 kg/cm2G
By introducing a low calorie gas of ~10m''/hr, preferably 2~5II13/h, within the catalyst bed,
A high-calorie gas containing hydrocarbons with a prime number of 1 to 4 is generated, but at that time, the by-produced water is converted into carbon monoxide and carbon monoxide in the paper calorie gas, as shown in the following equation. A reaction occurs and carbon dioxide is produced as a by-product.

また、場合によっては、(マ)式により原料低カロリー
ガス中の一酸化炭素それ自体が不均化反応を起こし、二
耐化炭素を副生ずることもある。
Further, in some cases, carbon monoxide itself in the raw material low-calorie gas may undergo a disproportionation reaction according to equation (M), and bicarbonate may be produced as a by-product.

CO+H20=CO2+H2CO 2CO=CO2+C”j) 本発明では、上記炭化水素化反応による副生二酸化炭素
ガスが混入しているCi”Caガスを、シリカおよび/
またはアルミナよりなる相体にニッケル、希土類元素酸
化物及び白金敷金14を担持させた3元組成系触媒に引
続き接触させることにより、該副生二酸化炭素をもメタ
ンに変換させることができ、本発明はこの様な作用効果
をも含むものである。
CO+H20=CO2+H2CO 2CO=CO2+C"j) In the present invention, Ci"Ca gas mixed with by-product carbon dioxide gas from the above hydrocarbonization reaction is treated with silica and/or
Alternatively, the by-product carbon dioxide can also be converted into methane by subsequently contacting it with a ternary composition catalyst in which nickel, rare earth element oxide, and platinum deposit 14 are supported on a phase made of alumina, and the present invention also includes such effects.

」−記の副生二酸化炭素をメタンに変換させる3元組成
系触媒について説明すると、その調整に当っては、粒径
が例えば2〜4IIlff+の粒状シリカまたはアルミ
ナ(市阪品を必要に応じて乾燥し、水分を除去したもの
でよい)が担体として使用される。上記相体に担持させ
る触媒は基質がニッケルであり、このノ、(負金属に希
土類元素酸化物、例えばランタン、セリウム、プラセオ
ジウム、トリウムまたはサマリウムの酸化物の1種と白
金族金属、例えばルテニウム、白金、パラジウム、ロジ
ウムまたはイリジウムの1種を組み合わせたも・のであ
るが、触媒効果および経済性を考慮した場合は、前記希
土類元素の酸化物としては酸化ランク。
To explain the three-component catalyst that converts by-product carbon dioxide into methane, it is necessary to use granular silica or alumina (Ichisaka product) with a particle size of, for example, 2 to 4IIff+, as necessary. The carrier may be dried and dehydrated). The catalyst supported on the above-mentioned phase has a substrate of nickel, (the negative metal being one of the oxides of rare earth elements such as lanthanum, cerium, praseodymium, thorium or samarium and a platinum group metal such as ruthenium). It is a combination of one of platinum, palladium, rhodium, or iridium, but when considering the catalytic effect and economic efficiency, it is ranked as oxidation as an oxide of the rare earth element.

ンや酸化セリウムが、また白金族金属としてはルテニウ
ムやパラジウムが最も好ましいものとしで挙げることが
できる。゛〕;記組み合わせにおいて、触+y ?!、
t;質となるニッケルの担持量は全触媒に対して3〜1
2%、特に好ましくは4〜8%の範囲である。また希土
類元素の酸化物はニッケル元素対希土類元素の原子比が
(2:1)〜(10:1)を満足する様に設定し、更に
白金族金属はニッケル元素対白金族金属元素の原子比が
(10:1)〜(30:1)を満足する様に設定して各
々担持させることが好ましい。なお、各触媒成分を、上
記範囲を越えて担持させても触媒効果はそれ以上向」ニ
せず、むしろ担体細孔の閉塞等を起こして触媒性能が却
って低下する傾向があるので好ましくない。この3元組
成系触媒の製造に当っては、シリカおよび/またはアル
ミナの粒状担体に、ニッケル、希土類元素および白金族
金属を、例えば硝酸塩水溶液の形で噴霧、散布、浸漬等
の手段により含浸させ、自然乾燥または60〜150°
Cの加温乾燥に千1した後アンモニア処理。
Among the platinum group metals, ruthenium and palladium are most preferred.゛〕;In the above combination, touch + y? ! ,
t: The amount of nickel supported is 3 to 1 for the total catalyst
2%, particularly preferably in the range 4-8%. In addition, the oxide of rare earth elements is set so that the atomic ratio of nickel element to rare earth element satisfies (2:1) to (10:1), and the atomic ratio of nickel element to platinum group metal element is set for platinum group metals. It is preferable to set and support each so as to satisfy (10:1) to (30:1). It should be noted that even if each catalyst component is supported in an amount exceeding the above-mentioned range, the catalytic effect will not be improved any further, but rather the pores of the carrier will be clogged and the catalytic performance will tend to deteriorate, which is not preferable. In producing this ternary composition catalyst, a granular support of silica and/or alumina is impregnated with nickel, rare earth elements, and platinum group metals, for example in the form of an aqueous nitrate solution, by means such as spraying, scattering, or dipping. , air dry or 60~150°
After heating and drying C, ammonia treatment was performed.

熱分解および水素還元を行なう。またこの触媒を調整す
るに当っては、ニッケル、希土類元素酸化物および白金
族金属についてそれぞれ別個に任意の順序で、あるいは
その2種以−]二を組み合わせてシリカおよび/または
アルミナの粒状担体に担持させるが、該担体にまず、白
金族金属を相持させ、ついでニッケルと希土類元素酸化
物を同時にII!持させるような手順で行なって得られ
る触媒は、二酸化炭素から炭化水素への変換性が特に優
れている。
Performs thermal decomposition and hydrogen reduction. In preparing this catalyst, nickel, rare earth element oxides, and platinum group metals may be used individually in any order, or in combination of two or more of them on a granular carrier of silica and/or alumina. First, a platinum group metal is supported on the support, and then nickel and a rare earth element oxide are simultaneously supported on the support II! Catalysts obtained by such a procedure have particularly excellent conversion properties from carbon dioxide to hydrocarbons.

なお」−記3元組成系触媒の具体的な調整例を示すと次
の通りである。すなわち、シリカおよび/またはアルミ
ナの粒状担体に、白金族金属JiX類例えば硝酸11!
や塩化物の水溶液を、担体の細孔容積と環部だけ含浸さ
せ、風乾又は60〜150℃で加温乾燥する。このとき
の白金族金属の硝fIII塩や同塩化物の濃度は含浸液
中に所定の担持量が含有されるようにし乾燥及びアンモ
ニア処理後大気中で前記含浸物を350℃に加熱するこ
とによって前記硝酸塩や塩化物を分解する。このように
してイ1)られた白金族金属相持体に、ニッケル無a酸
n1例えば硝酸塩の水溶液と希土類元素の無機酸塩例え
ば硝酸塩の水溶液との混合溶液を含浸させ、前記白金族
金属を担持させた場合と同様に乾燥、アンモニア処理、
熱分解を行ない、更にこれを不活性ガスで希釈した水素
濃度10〜20%の気流中で常温から400℃までA温
し、同温度で30分間保持して還元し、ついで同気流中
で常温まで冷却することによって触媒の製造を完結する
A specific example of preparation of the ternary composition catalyst is as follows. That is, a granular support of silica and/or alumina is coated with platinum group metals JiX, such as nitric acid 11!
Only the pore volume and the ring portion of the carrier are impregnated with an aqueous solution of chloride or chloride, and the carrier is air-dried or dried by heating at 60 to 150°C. At this time, the concentration of the platinum group metal nitrate fIII salt or the same chloride is determined by making sure that the impregnating solution contains a predetermined amount of the nitrate, and heating the impregnated product to 350°C in the atmosphere after drying and ammonia treatment. Decomposes the nitrates and chlorides. The platinum group metal support thus prepared in step (1) is impregnated with a mixed solution of an aqueous solution of nickel acetic acid n1, such as nitrate, and an aqueous solution of an inorganic acid salt of a rare earth element, such as nitrate, to support the platinum group metal. Drying, ammonia treatment, and
This is thermally decomposed, then heated from room temperature to 400℃ in an air stream with a hydrogen concentration of 10 to 20% diluted with an inert gas, kept at the same temperature for 30 minutes to reduce, and then heated to room temperature in the same air stream. The production of the catalyst is completed by cooling to

本発明により高カロリーガスを生成させるに当っては、
前記鉄族金属−酸化マンガン−白金族金属よりなる3元
組成系触媒を充填した反応塔に、前記の条件で原料の低
カロリーガスを導入する。ここで生成したガス中に副生
二酸化炭素が含有されている場へには引きつづいて該ガ
スを、ニッケルー希土類元素酸化物−白金族金属からな
る第2の3元組成系触媒の充填された別の反応塔に導入
するか、あるいは、上記2種の触媒を1つの反応塔に直
列に充填しておき、低カロリーガスをまず本発明の前記
第1の3元組成系触媒層に接触させ、つぎに第2の3元
組成系触媒層に接触させるようにしてもよい。この場合
における第1の触媒容積は一酸化炭素の転化率が100
%に達するのに必要な最少量、第2の触媒容積は含有さ
れる二酸化炭素の転化率が100%に達するのに必要な
六であればよい。
In producing high calorie gas according to the present invention,
A low-calorie gas as a raw material is introduced under the above-mentioned conditions into the reaction tower filled with the ternary composition catalyst consisting of iron group metal-manganese oxide-platinum group metal. The gas generated here contains by-product carbon dioxide, and the gas is then transferred to a second ternary composition catalyst consisting of nickel, rare earth element oxide, and platinum group metal. Alternatively, the above two types of catalysts may be packed in series in one reaction column, and the low calorie gas may be first brought into contact with the first ternary composition catalyst layer of the present invention. , and then may be brought into contact with the second ternary composition catalyst layer. In this case, the first catalyst volume has a carbon monoxide conversion rate of 100
%, the second catalyst volume may be as much as 6 required to reach 100% conversion of the carbon dioxide contained.

本発明の触媒に低カロリーガスを接触させた場合は、従
来の触媒では達成されなかった[原料ガス中の全炭素酸
化物の完全利用」が果され、しかも、従来の触媒に比べ
て炭素数2〜4の炭化水素をより多く含む高カロリーガ
スを収1j)することができる。さらに、本発明の触媒
を使用しメタンのほか炭素数2〜4の炭化水素を含む高
カロリーガスを得るに当って、ニッケル、希J二類元素
酸化物、白金族金属よりなる第2の3元組成系触媒を組
み合わせて接触させることにより、副生二酸化炭素を完
全にメタン化することができるから、二酸化炭素の分離
回収装置が不要であり、プロセス上極めて有効である。
When the catalyst of the present invention is brought into contact with a low-calorie gas, [complete utilization of all carbon oxides in the raw material gas], which was not achieved with conventional catalysts, is achieved, and moreover, the number of carbon atoms is higher than that of conventional catalysts. A high-calorie gas containing more 2-4 hydrocarbons can be collected 1j). Furthermore, in order to obtain a high-calorie gas containing hydrocarbons having 2 to 4 carbon atoms in addition to methane using the catalyst of the present invention, a second tertiary gas consisting of nickel, a dilute J2 element oxide, and a platinum group metal is used. By bringing the original composition catalysts together and bringing them into contact, by-product carbon dioxide can be completely methanized, so a carbon dioxide separation and recovery device is not required, which is extremely effective in terms of the process.

次に、本発明を実施例によって説明するが、本発明はそ
の要旨を逸脱しない限り、以下の実施例をしんしゃくし
て種々変更実施することができる。尚説明中「部」とあ
るのは重湯部を表わす。
Next, the present invention will be described with reference to examples, but the present invention can be modified in various ways by modifying the following examples without departing from the gist thereof. In the explanation, "part" refers to the heavy bathing part.

実施例1 市販の酸化チタン担体を電気炉にて常温から500℃ま
で4〜6時間で昇温し、同温度に30分間保持して熱処
理した。常温まで冷却した上記熱処理担体20部に、R
IJC13・3H201,1部を水5部に溶解させた水
溶液を噴霧法により含浸させ、ついでゆるやかに転動さ
せながら一夜風乾し含浸物を得た。この含浸物をあらか
じめ10−11容量%のアンモニアと6容州%の水蒸気
になるように調整した雰囲気に2分間曝露してアンモニ
ア処理し、ついで空気中で約350℃まで加熱して、含
浸させたRu金属塩を熱分解して酸化物とした。これを
電気炉に入れ、水素を20容I五%の濃度で含む窒素気
流を導通しながら常温から400℃まで1時間で昇温し
、その温度を30分間保持して還元した後、同気流中で
常温まで冷却してRuJ11持体20.5部を得た。次
にRu担持体21.0部に、Co (NO3)2 ・6
H2012,3部およびMn (NO3) 2 ・6H
205,3部を木5部に溶解した溶液の】/2量を前記
と同様の噴霧法により含浸させたあと、転帰、アンモニ
ア処理、熱分解を行ない、冷却後、さらに残りの上記溶
液を上記と同じ操作法で含浸させ、乾燥、アンモニア処
理、熱分解を行ない、前記と同様の方法テi元処理して
、io%C0−6%Mn203−2%Ruの3元組成系
触媒24.4部を得た。
Example 1 A commercially available titanium oxide carrier was heated in an electric furnace from room temperature to 500° C. over 4 to 6 hours, and then maintained at the same temperature for 30 minutes for heat treatment. To 20 parts of the heat-treated carrier cooled to room temperature, R
The sample was impregnated with an aqueous solution prepared by dissolving 1 part of IJC13.3H201 in 5 parts of water by a spraying method, and then air-dried overnight while gently rolling to obtain an impregnated product. This impregnated material was ammonia-treated by exposing it to an atmosphere pre-adjusted to 10-11% ammonia and 6% water vapor by volume for 2 minutes, and then heated in air to about 350°C to impregnate it. The Ru metal salt was thermally decomposed to form an oxide. This was placed in an electric furnace, and the temperature was raised from room temperature to 400°C in 1 hour while passing a nitrogen stream containing 20 volumes of hydrogen at a concentration of 5%, and after reducing by holding that temperature for 30 minutes, the same air stream was heated. The mixture was cooled to room temperature to obtain 20.5 parts of RuJ11 carrier. Next, Co (NO3)2 ・6 was added to 21.0 parts of the Ru support.
H2012, 3 parts and Mn (NO3) 2 ・6H
205.3 parts of a solution dissolved in 5 parts of wood was impregnated by the same spraying method as above, followed by ammonia treatment, thermal decomposition, and after cooling, the remaining solution was added to the above solution. Impregnation, drying, ammonia treatment, and thermal decomposition were carried out in the same manner as above, and the same procedure as above was performed to prepare a catalyst with a ternary composition of io%C0-6%Mn203-2%Ru24.4 I got the department.

実施例2 実施例1の方法によって得られた触媒−にへ第1表に示
す一組成よりなる低カロリーの供試ガスを圧力10 k
g/cm G 、 S■5500h r−’ 、温度3
20°Cで1回通過させたところ、CO転化率100%
で第2表に示す組成よりなるガスを得た。
Example 2 A low-calorie test gas having a composition shown in Table 1 was heated to a pressure of 10 k to the catalyst obtained by the method of Example 1.
g/cm G, S■5500hr-', temperature 3
After one pass at 20°C, CO conversion rate was 100%.
A gas having the composition shown in Table 2 was obtained.

第1表 第2表 以北の結果から明らかなように、生成ガス中の02〜C
aの炭化水素含有率が高く高カロリーのカスが得られる
ことが分る。
As is clear from the results from Table 1 and Table 2 onward, 02-C in the produced gas
It can be seen that a high-calorie residue with a high hydrocarbon content can be obtained.

実施例3 実施例1と同じ触l1M(第1の触媒)と市販のシリカ
111体に7.5%N i−3,6%La203−0.
5%RuをJ11持させた第2の触媒とを組み合わせ、
実施例1の場合と同一組成の水素および一酸化炭素を含
む供試ガスを第1の触媒上に、ついで第2の触媒」二に
1回通過させた。なお、この時の条件は、第1の触媒」
−を通過させるときは5v5500h r−” 、温度
330°C1圧力10kg/cI112Gで、第2の触
媒」二を通過させるときは、Sv]000h r−’ 
、温度290°C−C−あり、ソ(7)他の条件は第1
の触媒上を通過させる場合と同様に行った。この結果C
O転化率は100%で第3表に示す組成よりなる高カロ
リーガスを77+だ。
Example 3 The same catalyst as in Example 1 was used, and 7.5% Ni-3, 6% La203-0.
In combination with a second catalyst containing 5% Ru at J11,
A test gas containing hydrogen and carbon monoxide having the same composition as in Example 1 was passed over the first catalyst and then through the second catalyst once every second. In addition, the conditions at this time are the first catalyst.
When passing through the second catalyst, Sv]000h r-'
, temperature 290°C - C - Yes, Se (7) Other conditions are the first
The same procedure was used for passing the sample over the catalyst. This result C
The O conversion rate is 100% and the high calorie gas having the composition shown in Table 3 is 77+.

第3表 以1−の結果から明らかなように、本発明の第1の触6
Mと、第2の触媒とを組み合わせ、これに第1表に示す
ような組成分の供試ガスを接触させることにより、l 
l 、 800kca l/Nm3の高カロリーカスを
tILることかでき、この原理を低カロリーカス燃料の
高カロリー化に応用すれば、相当高カロリーなカス燃料
を得ることができることがわかる。
As is clear from the results in Table 3 and 1-1, the first approach of the present invention 6
By combining M and a second catalyst and bringing them into contact with a test gas having a composition shown in Table 1, l
1, 800 kcal/Nm3 can be reduced to tIL, and if this principle is applied to increase the calorie content of low-calorie waste fuel, it is understood that considerably high-calorie waste fuel can be obtained.

出願人 乾 智 行 同 武上善信 同 関西熱化学株式会社Applicant Tomoyuki Inui Same Yoshinobu Takegami Kansai Thermochemical Co., Ltd.

Claims (1)

【特許請求の範囲】 (+)触媒基質としての鉄族金属に、酸化マンカンおよ
び白金族金属を組み合わせ、醇化チタンよりなるII!
体に担持させてなることを特徴とする高カロリーガス製
造用触媒。 (2)触媒基質としての鉄族金属がコバルトまたは鉄の
いずれかである特許請求の範囲第1項記載の高カロリー
ガス製造用触媒。 (3)白金族金属がルテニウム、ロジウム、パラジウム
、白金またはイリジウムのいずれかである4+i訂請求
の範囲第1項または第2項記載の高カロリーガス製造用
触媒。 (4)鉄族金属:3〜15%(重量%の意味、以下同じ
)、 酸化マンガン:鉄族金属元素対マンガン元素の原子比が
(5:I)〜 (5:4)を満足する量、 白金族金属:鉄族金属元素対白金族金属元素の原子比が
(30:1)〜(5:2)を満足する祉 である特許請求の範囲第1〜3項のいずれかに記載の高
カロリーガス製造用触媒。 (5)触媒基質としての鉄族金属に、酸化マンガンおよ
び白金族金属を組み合わせ、酸化チタンよりなる11,
1体に担持させてなる触媒」二に、水素と−・酸化炭素
を含むガスあるいは水素と一酸化炭素と一酸化炭素を含
むガスを導通することを特徴とする高カロリーガスの製
造方法。 (6)触りv基質としての鉄族金属がコバルトまたは鉄
のいずれかである特許請求の範囲第5項記載の高カロリ
ーカスの製造方法。 (7)白金族金属がルテニウム、ロジウム、パラジウム
、白金またはイリジウムのいずれかである特許請求の範
囲第5又は第6項記載の高カロリーガスの製造方法。 (8)鉄族金属:3〜15%、 醇化マンガン二級族金属元素対マンカン元素の原子比が
(5:I)〜 (5:4)を満足する量、 白金族金属:鉄族金属元素対白金族金属元素の原子比が
(30:I)〜(5:2)を満足する星 である特許請求の範囲第5〜7項のいずれかに記・1夕
の高カロリーカスの製造方法。 (9)触媒基質としてのコバルトまたは鉄のいずれかよ
りなる鉄族金属に酸化マンカンおよび白金族金属を組み
合わせ、酸化チタンよりなる担体に111持させた第1
の触媒上に、水素と一酸化炭素を含むガスあるいは水素
と一酸化炭素と二酸化炭素を含むカスを導通し、ついで
触媒ノ、(質としてのニッケルに希土類元素の酸化物と
白金族金属とをAllみ合わせ、シリカおよび/または
アルミナよりなる担体に担持させた第2の触媒上に導通
することを特徴とする高カロリーカスの製造方法。 (lO)鉄h’j金属:3〜15%、 醇化マンガン:鉄族金属元素対マンガン元素の原子比が
(5:1)〜 (5:4)を満足する¥、 白金族金属:鉄族金属元素対白金族金属元素の原子比が
(30:1)〜(5+2)を満足する品 である特許請求の範囲第9項又は10項記載の高カロリ
ーガスの製造方法。
[Claims] (+) II consisting of titanium liquefied by combining an iron group metal as a catalyst substrate with mankanoxide and a platinum group metal!
A catalyst for producing high-calorie gas, which is characterized by being supported on the body. (2) The catalyst for producing high-calorie gas according to claim 1, wherein the iron group metal as the catalyst substrate is either cobalt or iron. (3) The catalyst for producing high-calorie gas according to claim 1 or 2, wherein the platinum group metal is ruthenium, rhodium, palladium, platinum or iridium. (4) Iron group metal: 3 to 15% (meaning by weight %, the same applies hereinafter), Manganese oxide: an amount where the atomic ratio of iron group metal element to manganese element satisfies (5:I) to (5:4) , Platinum group metal: The atomic ratio of iron group metal element to platinum group metal element satisfies (30:1) to (5:2), according to any one of claims 1 to 3. Catalyst for high calorie gas production. (5) 11, which is made of titanium oxide by combining manganese oxide and platinum group metal with iron group metal as a catalyst substrate;
2. A method for producing a high-calorie gas, which comprises conducting a gas containing hydrogen and carbon oxide, or a gas containing hydrogen, carbon monoxide, and carbon monoxide. (6) The method for producing a high-calorie waste according to claim 5, wherein the iron group metal as the substrate is either cobalt or iron. (7) The method for producing a high-calorie gas according to claim 5 or 6, wherein the platinum group metal is ruthenium, rhodium, palladium, platinum or iridium. (8) Iron group metal: 3 to 15%, an amount that satisfies the atomic ratio of manganese secondary group metal element to mankane element (5:I) to (5:4), platinum group metal: iron group metal element A method for producing high-calorie scum in one night according to any one of claims 5 to 7, wherein the atomic ratio of platinum group metal element to platinum group metal element satisfies (30:I) to (5:2). . (9) A first compound in which an iron group metal consisting of either cobalt or iron as a catalyst substrate is combined with mancan oxide and a platinum group metal, and 111 is supported on a support consisting of titanium oxide.
A gas containing hydrogen and carbon monoxide or a scum containing hydrogen, carbon monoxide and carbon dioxide is passed over the catalyst, and then a rare earth element oxide and a platinum group metal are introduced into the catalyst (nickel as a material). A method for producing a high-calorie scum, characterized by conducting on a second catalyst supported on a carrier made of All alloy, silica and/or alumina. (lO) iron h'j metal: 3 to 15%, Manganese acidified: The atomic ratio of the iron group metal element to the manganese element satisfies (5:1) to (5:4), Platinum group metal: The atomic ratio of the iron group metal element to the platinum group metal element satisfies (30: The method for producing a high-calorie gas according to claim 9 or 10, which is a product that satisfies conditions 1) to (5+2).
JP58173988A 1983-09-20 1983-09-20 Method for preparing high calorie gas and catalyst therefor Granted JPS6064631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58173988A JPS6064631A (en) 1983-09-20 1983-09-20 Method for preparing high calorie gas and catalyst therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58173988A JPS6064631A (en) 1983-09-20 1983-09-20 Method for preparing high calorie gas and catalyst therefor

Publications (2)

Publication Number Publication Date
JPS6064631A true JPS6064631A (en) 1985-04-13
JPH0212143B2 JPH0212143B2 (en) 1990-03-19

Family

ID=15970691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58173988A Granted JPS6064631A (en) 1983-09-20 1983-09-20 Method for preparing high calorie gas and catalyst therefor

Country Status (1)

Country Link
JP (1) JPS6064631A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6759440B2 (en) 2000-07-03 2004-07-06 Shell Oil Company Catalyst and process for the preparation of hydrocarbons
US10035134B2 (en) * 2014-09-10 2018-07-31 Umicore Ag & Co. Kg Coating suspension

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6759440B2 (en) 2000-07-03 2004-07-06 Shell Oil Company Catalyst and process for the preparation of hydrocarbons
US10035134B2 (en) * 2014-09-10 2018-07-31 Umicore Ag & Co. Kg Coating suspension

Also Published As

Publication number Publication date
JPH0212143B2 (en) 1990-03-19

Similar Documents

Publication Publication Date Title
US4239658A (en) Catalysts for the conversion of relatively low molecular weight hydrocarbons to higher molecular weight hydrocarbons and the regeneration of the catalysts
US3361535A (en) Method for production of high purity hydrogen
CN101244969A (en) Continuous aromatization and catalyst regeneration device and method thereof
RU2003121025A (en) FISCHER-TROPHES CATALYST
KR20130005848A (en) Iron-cobalt catalyst, manufacturing method same and method for obtaining water-gas shift reaction activity and for highly selective liquid fuel production in fischer-tropsch synthesis using iron-cobalt catalyst
RU2005111977A (en) METHOD FOR SUPPRESSING HYDROGENOLYSIS OF SUSPENSION OF THE CATALYST AND METHOD OF ACTIVATING THE CATALYST IN SYNTHESIS OF FISCHER-TROPH AND METHOD OF PRODUCING HYDROCARBONS FROM SYNTHESIS-GAS
JPS58201728A (en) Manufacture of aromatic compound
US4242103A (en) Cyclic two step process for production of methane from carbon monoxide
WO2008047321A1 (en) Hydrogen production method by direct decomposition of natural gas and lpg
JPS61246135A (en) Conversion of paraffinic hydrocarbon to aromatic hydrocarbon
CA1138477A (en) Methanation of carbon monoxide with improved catalyst regeneration
JPS6064631A (en) Method for preparing high calorie gas and catalyst therefor
JPS62294442A (en) Reducing catalyst
JPS59179154A (en) Catalyst for producing high calory gas and its production and production of high calory gas
JPS60132649A (en) Catalyst for preparing high calorie gas, its preparation and preparation of high calorie gas
JPH04200713A (en) Manufacture of high-purity carbon monoxide
JPS5946133A (en) Catalyst for preparing high calorie gas, preparation thereof and preparation of high calorie gas
JPS62153102A (en) Production of hydrogen gas using coke oven gas as raw material
JPH0558776B2 (en)
KR102579471B1 (en) System and process for producing syngas and carbon monoxide using dioxide dry sorbents
JPH0211305B2 (en)
JPS58174239A (en) Three-component catalyst for removing oxygen from gas containing oxygen consisting essentially of gaseous hydrogen and its production
KR20180099060A (en) Catalyst for reforming of methane, and CO2 reforming of methane
JPH0496995A (en) Production of high-btu gas
US1892973A (en) Production of unsaturated gaseous hydrocarbons and hydrogen