JPS5946133A - Catalyst for preparing high calorie gas, preparation thereof and preparation of high calorie gas - Google Patents

Catalyst for preparing high calorie gas, preparation thereof and preparation of high calorie gas

Info

Publication number
JPS5946133A
JPS5946133A JP57155560A JP15556082A JPS5946133A JP S5946133 A JPS5946133 A JP S5946133A JP 57155560 A JP57155560 A JP 57155560A JP 15556082 A JP15556082 A JP 15556082A JP S5946133 A JPS5946133 A JP S5946133A
Authority
JP
Japan
Prior art keywords
group metal
catalyst
calorie gas
platinum group
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57155560A
Other languages
Japanese (ja)
Other versions
JPH0211304B2 (en
Inventor
Yoshinobu Takegami
武上 善信
Satoyuki Inui
智行 乾
Seiji Nishida
清二 西田
Yoshiaki Ishigaki
石垣 喜章
Masanobu Uba
姥 政信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Coke and Chemicals Co Ltd
Original Assignee
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Coke and Chemicals Co Ltd filed Critical Kansai Coke and Chemicals Co Ltd
Priority to JP57155560A priority Critical patent/JPS5946133A/en
Publication of JPS5946133A publication Critical patent/JPS5946133A/en
Publication of JPH0211304B2 publication Critical patent/JPH0211304B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To prepare a catalyst for preparing high calorie gas, by supporting ferrous metal as a catalyst substrate in combination with mangnanese oxide and platinum group metal by a carrier comprising silica and/or alumina. CONSTITUTION:Ferrous metal as a catalyst substrate is supported in combination with manganese oxide and platinum group metal on a carrier comprising silica and/or alumina. In this case, the ferrous metal is used in an amount of 3-15wt%; manganese oxide is used in such an amount that the atomic ratio of the ferrous metal element and the manganese element satisfies (5:1)-(5:4) and the platinum group metal is in such an amount that the atomic ratio of the ferrous metal element and the platinum group metal element satisfies (30:1)- (5:2). An especially pref. method in preparing this catalyst is one wherein the platinum group metal is at first supported by the carrier of silica or alumina and the ferrous metal and manganese oxide are subsequently supported simultaneously.

Description

【発明の詳細な説明】 本発明は、低カロリーガスから高カロリーガスを得るた
めの触媒、その製法および、水素と一酸化炭素を含むガ
スあるいは水素と一酸化炭素と二酸化炭素を含むガスか
ら炭素数1〜4の炭化水素を含む高カロリー燃料用ガス
を製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a catalyst for obtaining high calorie gas from low calorie gas, a method for producing the same, and a method for producing high calorie gas from low calorie gas. The present invention relates to a method for producing a high-calorie fuel gas containing hydrocarbons of numbers 1 to 4.

都市ガスとしては、従来、コークス炉ガスが主流を占め
てきたが、近年生活環境の保護、供給方式の合理化、無
毒安全性等の観点から見直しが行なわれ、高カロリー天
然ガスへの転換が急ピッチで進められている。その為コ
ークス炉ガスは都市ガスとしての用途をせばめられつつ
あるが、基幹産業たる製鉄用コークスの生産に伴って膨
大な量が副生するので、この有効な用途を開発すること
が重要な課題にになっている。ところでこのコークス炉
ガスを今後とも燃料用として活用していくためには現在
の低カロリー性を改善し、天然ガスに匹敵し得る様な高
カロリーガスに変換することが必要である。
Traditionally, coke oven gas has been the mainstream source of city gas, but in recent years it has been reviewed from the viewpoints of protecting the living environment, rationalizing supply methods, non-toxic safety, etc., and there is a sudden shift to high-calorie natural gas. Things are progressing on the pitch. For this reason, the use of coke oven gas as city gas is being limited, but since a huge amount is produced as a by-product in the production of coke for the core industry of steelmaking, it is an important issue to develop effective uses for this. It has become. However, in order to continue to utilize this coke oven gas as a fuel, it is necessary to improve its current low calorie property and convert it into a high calorie gas comparable to natural gas.

従来、代替天然ガス(SNG)の製造法としては、石炭
系資源からのガス、例えば石炭ガス化ガスからメタンを
合成するか、またはコークス炉ガスに高価なナフサやL
PGを添加し接触改質してメタン化する方法等が提案さ
れている。ここで得られる、メタン主体のSNGはせい
ぜい9,000Kcal/Nm^3ないしそれ以下のカ
ロリーを有するに過ぎず、天然ガスなみの都市ガスとし
て供給するためにはLPG等を添加して増熱する必要が
ある。
Traditionally, alternative natural gas (SNG) production methods have been to synthesize methane from gas from coal-based resources, such as coal gasified gas, or to add expensive naphtha or L to coke oven gas.
A method has been proposed in which PG is added and catalytically reformed to produce methane. The methane-based SNG obtained here only has a calorie of 9,000 Kcal/Nm^3 or less at most, and in order to supply it as city gas comparable to natural gas, it must be heated by adding LPG, etc. There is a need.

本発明者等は上述の事情に鑑み、より高いカロリー量を
有する燃料用ガスを得べく種々研究し、その結果本発明
を完成した。
In view of the above-mentioned circumstances, the present inventors conducted various studies in order to obtain a fuel gas having a higher calorie content, and as a result, completed the present invention.

即ち本発明の目的をより具体的に述べると、水素と一酸
化炭素を含むガス、あるいは水素と一酸化炭素と二酸化
炭素を含むガス(以下、単に低カロリーガスと称す)を
、従来知られている方法よりもはるかに高カロリーのガ
スに変換することのできる3元組成系触媒、その製造法
およびその触媒を使用して高カロリーガスを製造する方
法を提供しようとするにある。即ち本発明は、上述の触
媒に低カロリーガスを接触させることにより、メタンの
ほか、炭素数が2〜4の炭化水素をも含む高カロリーガ
スに変換することを目的とするものである。尚低カロリ
ーガスを炭化水素含有高カロリーガスに変換する場合、
一般に二酸化炭素が副生するので、従来はこれを分離除
去していたといういきさつがある。そこで本発明者等は
、2系統の3元組成系触媒を組み合わせることにより、
この副生二酸化炭素を同時に炭化水素化する方法を提供
することをも目的として掲げており、この目的が達成さ
れれば二酸化炭素の分離操作を必要としないという利点
が発揮される。
That is, to describe the purpose of the present invention more specifically, a gas containing hydrogen and carbon monoxide, or a gas containing hydrogen, carbon monoxide, and carbon dioxide (hereinafter simply referred to as a low-calorie gas) can be The purpose of the present invention is to provide a ternary composition catalyst capable of converting gas into a gas with a much higher calorie than the existing method, a method for producing the same, and a method for producing a high calorie gas using the catalyst. That is, the present invention aims at converting a low-calorie gas into a high-calorie gas containing not only methane but also hydrocarbons having 2 to 4 carbon atoms by contacting the above-mentioned catalyst with the low-calorie gas. When converting low calorie gas to high calorie gas containing hydrocarbons,
Generally, carbon dioxide is produced as a by-product, and traditionally this was separated and removed. Therefore, by combining two systems of ternary composition catalysts, the present inventors achieved the following:
Another objective is to provide a method for simultaneously converting this by-product carbon dioxide into hydrocarbons, and if this objective is achieved, there will be an advantage that no carbon dioxide separation operation is required.

本発明をさらに詳細に説明する。まず本発明の触媒にお
ける担体はシリカまたはアルミナであるが、一般に市販
されているもの、例えば比表面積が200m^2/g以
下の範囲のものを使用することができる。上記のような
担体に担持させる触媒の基質としては鉄族金属が用いら
れるが、該鉄族金属としては、コバルトと鉄が特に好ま
しい。そして本発明の触媒は、この基質金属にマンガン
酸化物および白金族金属例えばルテニウム、ロジウム、
パラジウム、白金およびイリジウム等を組み合わせて前
記担体上に担持させたものである。
The present invention will be explained in further detail. First, the carrier in the catalyst of the present invention is silica or alumina, and any commercially available carrier may be used, for example, one having a specific surface area of 200 m^2/g or less. Iron group metals are used as substrates for the catalysts supported on the carriers as described above, and cobalt and iron are particularly preferred as the iron group metals. The catalyst of the present invention includes manganese oxide and platinum group metals such as ruthenium, rhodium,
A combination of palladium, platinum, iridium, etc. is supported on the carrier.

上記組み合わせにおいて、触媒基質となる鉄族金属の担
持量は全触媒に対して5〜15%(重量%、以下同じ)
、特に好ましくは4〜12%である。また、酸化マンガ
ンの担持量は、鉄族金属元素対マンガン元素の原子比が
(5:1)〜(5:4)の範囲を満足する様に設定され
、また白金族金属の担持量は鉄族金属元素対白金族金属
元素の原子比が(30:1)〜(5:2)の範囲を満足
する様に設定される。
In the above combination, the supported amount of iron group metal serving as a catalyst substrate is 5 to 15% (wt%, same below) based on the total catalyst.
, particularly preferably 4 to 12%. In addition, the amount of manganese oxide supported is set so that the atomic ratio of iron group metal element to manganese element satisfies the range of (5:1) to (5:4), and the amount of supported platinum group metal is set so that the atomic ratio of iron group metal element to manganese element satisfies the range of (5:1) to (5:4). The atomic ratio of group metal element to platinum group metal element is set to satisfy the range of (30:1) to (5:2).

本発明の触媒を調製するに当って特に好ましい方法はシ
リカまたはアルミナの担体に、まず白金族金属を担持さ
せる第1工程と、鉄族金属と酸化マンガンとを同時に担
持させる第2工程とよりなる。即ち上記手順にしたがっ
て各触媒成分を担持させて得られる触媒は、低カロリー
ガスをC_1〜C_4の炭化水素を含有する高カロリー
ガスに変換する能力が有効に発揮されるが、上記以外の
方法、例えば鉄族金属と酸化マンガンを先に担持させ、
そのあとで白金族金属を担持させるとか、白金族金属と
酸化マンガンと鉄族金属を同時に担持させたものでは3
元組成系触媒としての複合効果が充分発揮されず炭素数
1〜4の炭化水素を含む高カロリーガスを得ることは極
めて困難であることが本発明者等によって確認された。
A particularly preferred method for preparing the catalyst of the present invention comprises a first step of first supporting a platinum group metal on a silica or alumina carrier, and a second step of simultaneously supporting an iron group metal and manganese oxide. . That is, the catalyst obtained by supporting each catalyst component according to the above procedure effectively exhibits the ability to convert low calorie gas into high calorie gas containing C_1 to C_4 hydrocarbons, but methods other than the above, For example, by first supporting iron group metals and manganese oxide,
After that, a platinum group metal is supported, or a platinum group metal, manganese oxide, and an iron group metal are supported at the same time.
The present inventors have confirmed that it is extremely difficult to obtain a high-calorie gas containing hydrocarbons having 1 to 4 carbon atoms because the composite effect as a catalyst based on the original composition is not sufficiently exhibited.

本発明の触媒は、前記の基本的構成によって製造される
が、それをさらに具体的に述べる、シリカまたはアルミ
ナ担体に、鉄族金属、マンガン、白金族金属を、硝酸塩
水溶液または塩化物水溶液の形で噴霧、散布、浸漬等の
手段により含浸させたあと、乾燥、アンモニア処理、熱
分解、水素還元等の工程を順次施すことによって調製す
ることができる。なお、アンモニア処理工程は省略でき
る場合もある。
The catalyst of the present invention is produced according to the above-mentioned basic structure, but will be described more specifically. An iron group metal, manganese, or platinum group metal is added to a silica or alumina support in the form of an aqueous nitrate solution or an aqueous chloride solution. It can be prepared by impregnating it by means such as spraying, scattering, or dipping, and then sequentially performing steps such as drying, ammonia treatment, thermal decomposition, and hydrogen reduction. Note that the ammonia treatment step may be omitted in some cases.

本発明触媒の具体的な調整例を示すと次の通りである。Specific preparation examples of the catalyst of the present invention are as follows.

まず、シリカまたはアルミナよりなる成形担体に、その
細孔容積と等量の白金族金属硝酸塩または同塩化物の水
溶液を含浸させ、常温でゆるやかに担体を転動させなが
ら風乾する。つぎに上記処理物を、10〜11%アンモ
ニアと2〜6%水蒸気を含む雰囲気中に2〜3分間曝露
する。その後、空気中で約350℃までに加熱し、含浸
されている白金族金属硝酸塩または同塩化物を分解して
酸化物とする。これを不活性ガスで希釈した水素濃度1
0〜20%の気流中で常温から400℃まで昇温し同温
度で30分間保持して還元し、再び同気流中で常温まで
冷却する。このようにして得られた白金族金属担持体に
前記と同じ含浸法により、鉄族金属の例えば硝酸塩水溶
液と、マンガンの例えば硝酸塩水溶液との混合溶液を含
浸させる。ついで前記白金族金属を担持させる場合と同
様に風乾、アンモニア処理、熱分解、水素還元等の工程
を施すことにより、所望の3元組成系触媒を得ることが
できる。本発明の3元組成系触媒に、低カロリーガス例
えばコークス炉ガス、ナフサ重質油の水蒸気改質ガス更
には水性ガスや石炭ガス化ガス等を接触させると、これ
らガスは、メタンのほか、C_2〜C_4の炭化水素を
相当高濃度に含む高カロリーガスに変換される。
First, a molded carrier made of silica or alumina is impregnated with an aqueous solution of a platinum group metal nitrate or chloride in an amount equal to the pore volume of the carrier, and the carrier is air-dried at room temperature while being gently rolled. Next, the treated product is exposed for 2 to 3 minutes to an atmosphere containing 10 to 11% ammonia and 2 to 6% water vapor. Thereafter, it is heated to about 350° C. in air to decompose the impregnated platinum group metal nitrate or chloride into an oxide. Hydrogen concentration 1 diluted with inert gas
The temperature is raised from room temperature to 400° C. in a 0 to 20% air flow, maintained at the same temperature for 30 minutes for reduction, and then cooled to room temperature again in the same air flow. The platinum group metal support thus obtained is impregnated with a mixed solution of an aqueous nitrate solution of an iron group metal, for example, and an aqueous nitrate solution of manganese, by the same impregnation method as described above. Then, a desired ternary composition catalyst can be obtained by performing steps such as air drying, ammonia treatment, thermal decomposition, and hydrogen reduction in the same manner as in the case of supporting the platinum group metal. When the ternary composition catalyst of the present invention is brought into contact with a low-calorie gas such as coke oven gas, steam reformed gas of naphtha heavy oil, water gas, or coal gasification gas, these gases, in addition to methane, It is converted into a high-calorie gas containing a considerably high concentration of C_2 to C_4 hydrocarbons.

本発明の触媒によって、低カロリーガスを炭素数1〜4
の炭化水素を含む高カロリーガスに変換するには、例え
ばつぎのようにして行なうことができる。すなわち、以
上のようにして得られた触媒を反応塔に充填し、触媒層
の温度を150〜300℃、好ましくは180〜240
℃に制御しながら5〜30kg/cm^2G、好ましく
は10〜20kg/cm^2Gの加圧下に触媒容量1l
当り、1〜10m^3/hr、好ましくは2〜5cm^
3/hrの低カロリーガスを導入する。そうすると触媒
層内では、炭素熱が1〜4の炭化水素を含有する高カロ
リーガスが生成するがその際、副生した水が次の(1)
式で示すように、原料低カロリーガス中の一酸化炭素と
シフト反応を起こして二酸化炭素を副生する。また、場
合によっては、(2)式により原料低カロリーガス中の
一酸化炭素それ自体が不均化反応を起こし、二酸化炭素
を副生することもある。
By using the catalyst of the present invention, low calorie gas can be converted into carbon atoms having 1 to 4 carbon atoms.
The conversion into a high-calorie gas containing hydrocarbons can be carried out, for example, as follows. That is, the catalyst obtained as described above is packed into a reaction tower, and the temperature of the catalyst layer is set to 150 to 300°C, preferably 180 to 240°C.
℃ under a pressure of 5 to 30 kg/cm^2G, preferably 10 to 20 kg/cm^2G with a catalyst capacity of 1 liter.
per hour, 1~10m^3/hr, preferably 2~5cm^
3/hr low calorie gas is introduced. Then, in the catalyst layer, a high-calorie gas containing hydrocarbons with a carbon heat value of 1 to 4 is generated, but at that time, the by-product water is
As shown in the formula, a shift reaction occurs with carbon monoxide in the raw material low-calorie gas to produce carbon dioxide as a by-product. Further, in some cases, carbon monoxide itself in the raw material low-calorie gas may undergo a disproportionation reaction according to equation (2), and carbon dioxide may be produced as a by-product.

CO+H_2O=CO_2+H_2(1)2CO=CO
_2+C(2) 本発明では、上記炭化水素化反応による副生二酸化炭素
ガスが混入しているC_1〜C_4ガスをシリカまたは
アルミナよりなる担体にニッケル、希土類元素酸化物及
び白金族金属を担持させた3元組成系触媒に引続き接触
させることにより、該副生二酸化炭素をもメタンに変換
させることに成功した。
CO+H_2O=CO_2+H_2(1)2CO=CO
_2+C(2) In the present invention, C_1 to C_4 gases mixed with by-product carbon dioxide gas from the above hydrocarbonization reaction are supported on a carrier made of silica or alumina with nickel, rare earth element oxides, and platinum group metals. By subsequent contact with a ternary composition catalyst, the by-product carbon dioxide was also successfully converted into methane.

上記の副生二酸化炭素をメタンに変換させる3元組成系
触媒について説明すると、その調整に当っては、粒径が
例えば2〜4mmの粒状シリカまたはアルミナ(市販品
を必要に応じて乾燥し、水分を除去したものでよい)が
担体として使用される。
To explain the ternary composition catalyst for converting the above-mentioned by-product carbon dioxide into methane, its preparation involves drying granular silica or alumina (commercially available products as necessary) with a particle size of 2 to 4 mm, for example. The carrier is used as a carrier.

上記担体に担持させる触媒は基質がニッケルであり、こ
の基質金属に希土類元素酸化物(例えばランタン、セリ
ウム、プラセオジウム、トリウム、またはサマリウムの
酸化物の一種)と白金族金属(例えばルテニウム、白金
、パラジウム、ロジウム、またはイリジウムの一種)を
組み合わせたものであるが、触媒効果および経済性を考
慮した場合は、前希土類元素の酸化物としては酸化ラン
タンや酸化セリウムが、また白金族金属としてはルテニ
ウムやパラジウムが最も好ましいものとして挙げること
ができる。上記組み合わせにおいて、触媒基質となるニ
ッケルの担持量は全触媒に対して3〜12%、とくに好
ましくは4〜6%の範囲である。また希土類元素の酸化
物はニッケル元素対希土類元素の原子比が(2:1)〜
(10:1)を満足する様に説定し、更に白金族金属は
ニッケル元素対白金族金属元素の原子比が(10:1)
〜(30:1)を満足する様に説定して各々担持させる
ことが好ましい。なお、各触媒成分を、上記範囲を越え
て担持させても触媒効果はそれ以上向上せず、むしろ担
体細孔の閉塞等を起こして触媒性能が却って低下する傾
向があるので好ましくない。この3元組成系触媒の製造
に当っては、シリカまたはアルミナの粒状担体に、ニッ
ケル、希土類元素、および白金族金属を、例えば硝酸塩
水溶液の形で噴霧、散布、浸漬等の手段により含浸させ
、自然乾燥または60〜100℃の加温乾燥に付した後
アンモニア処理、熱分解、および水素還元を行う。また
この触媒を調整するに当っては、ニッケル、希土類元素
酸化物および白金族金属についてそれぞれ別個に任意の
順序で、あるいはその2種以上を組み合わせてシリカま
たはアルミナの粒状担体に担持させるが、該担体にまず
、白金族金属を担持させ、ついでニッケルと希土類元素
酸化物を同時に担持させるような手順で行なって得られ
る触媒は、二酸化炭素から炭化水素への変換性が特に優
れている。
The substrate of the catalyst supported on the carrier is nickel, and the substrate metal is a rare earth element oxide (for example, a type of oxide of lanthanum, cerium, praseodymium, thorium, or samarium) and a platinum group metal (for example, ruthenium, platinum, palladium). , rhodium, or iridium), but when considering the catalytic effect and economic efficiency, lanthanum oxide and cerium oxide are recommended as oxides of rare earth elements, and ruthenium and cerium oxide are used as platinum group metals. Palladium can be mentioned as the most preferred. In the above combination, the supported amount of nickel serving as a catalyst substrate is in the range of 3 to 12%, particularly preferably 4 to 6%, based on the total catalyst. In addition, in rare earth element oxides, the atomic ratio of nickel element to rare earth element is (2:1) ~
(10:1), and furthermore, platinum group metal has an atomic ratio of nickel element to platinum group metal element of (10:1).
It is preferable to support each of them so as to satisfy the ratio of 30:1 to 30:1. It should be noted that even if each catalyst component is supported in an amount exceeding the above range, the catalytic effect will not be improved any further, but rather the pores of the carrier will be clogged and the catalytic performance will tend to deteriorate, which is not preferable. In producing this ternary composition catalyst, a granular support of silica or alumina is impregnated with nickel, rare earth elements, and platinum group metals, for example in the form of an aqueous nitrate solution, by spraying, scattering, dipping, etc. After natural drying or heating drying at 60 to 100°C, ammonia treatment, thermal decomposition, and hydrogen reduction are performed. In preparing this catalyst, nickel, rare earth element oxides, and platinum group metals may be supported on a silica or alumina granular support individually in any order or in combination of two or more thereof. Catalysts obtained by first supporting a platinum group metal on a carrier and then simultaneously supporting nickel and a rare earth element oxide have particularly excellent conversion properties from carbon dioxide to hydrocarbons.

なお触媒の具体的な調整例を示すと次の通りである。す
なわち、シリカまたはアルミナの粒状担体に、白金族金
属塩類例えば硝酸塩や塩化物の水溶液を、担体の空隙を
充填する量だけ含浸させ、風乾又は60〜100℃で加
温乾燥する。このときの白金族金属の硝酸塩や同塩化物
の濃度は含浸液中に所定の担持量が含有されるようにし
乾燥及びアンモニア処理後大気中で前記含浸物を350
℃に加熱することによって前記硝酸塩や塩化物を分解す
る。このようにして得られた白金族金属担持体に、ニッ
ケル無機酸塩例えば硝酸塩の水溶液と希土類元素の無機
酸塩例えば硝酸塩の水溶液との混合溶液を含浸させ、前
記白金族金属を担持させた場合と同様に幹燥、アンモニ
ア処理、熱分解を行ない、更にこれを不活性ガスで希釈
した水素濃度10〜20%の気流中で常温から400℃
まで昇温し、同温度で30分間保持して還元し、ついで
同気流中で常温まで冷却することによって触媒の製造を
完結する。
A specific example of adjusting the catalyst is as follows. That is, a granular carrier of silica or alumina is impregnated with an aqueous solution of a platinum group metal salt, such as a nitrate or a chloride, in an amount sufficient to fill the voids in the carrier, and then dried in the air or heated at 60 to 100°C. At this time, the concentration of platinum group metal nitrates and platinum chlorides is determined so that a predetermined amount is contained in the impregnating solution, and after drying and ammonia treatment, the impregnated material is heated to 350 ml in the atmosphere.
The nitrates and chlorides are decomposed by heating to .degree. When the platinum group metal support thus obtained is impregnated with a mixed solution of an aqueous solution of a nickel inorganic acid salt, such as a nitrate, and an aqueous solution of an inorganic acid salt of a rare earth element, such as a nitrate, to support the platinum group metal. The trunk was dried, ammonia treated, and thermally decomposed in the same manner as above, and further diluted with inert gas and heated from room temperature to 400°C in an air stream with a hydrogen concentration of 10 to 20%.
The production of the catalyst is completed by raising the temperature to 100%, maintaining the same temperature for 30 minutes for reduction, and then cooling to room temperature in the same air flow.

本発明により高カロリーガスを生成させるに当っては、
前記鉄族金属−マンガン酸化物−白金族金属よりなる3
元組成系触媒を充填した反応塔に、前記の条件で原料の
低カロリーガスを導入する。
In producing high calorie gas according to the present invention,
3 consisting of the iron group metal-manganese oxide-platinum group metal
A low-calorie gas as a raw material is introduced under the above conditions into a reaction column filled with a catalyst based on the original composition.

ここで生成したガス中に副生二酸化炭素が含有される場
合には引きつづいて該ガスを、ニッケル−希土類元素酸
化物−白金族金属からなる第2の3元組成系触媒の充填
された別の反応塔に導入するか、あるいは、上記2種の
触媒を1つの反応塔に直列に充填しておき、低カロリー
ガスをまず本発明の鉄族金属−酸化マンガン−白金族金
属からなる第1の3元組成系触媒層に接触させ、つぎに
、第2の3元組成系触媒層に接触させるようにしてもよ
い。この場合における第1の触媒容積は一酸化炭素の転
化率が100%に達するのに必要な最少量、第2の触媒
容積は含有される二酸化炭素の転化率が100%に達す
るのに必要な量であればよい。なお、実際の操作では、
第1の触媒層の温度よりも、第2の触媒層の温度を約5
0℃程度高く保持する方が二酸化炭素の炭化水素への完
全転化がより容易となる。
If by-product carbon dioxide is contained in the gas generated here, the gas is subsequently transferred to a separate chamber filled with a second ternary composition catalyst consisting of nickel, rare earth element oxide, and platinum group metal. Alternatively, the above two types of catalysts may be packed in series in one reaction column, and the low calorie gas is first introduced into the first reactor of the present invention consisting of iron group metal-manganese oxide-platinum group metal. It may be brought into contact with the first ternary composition catalyst layer, and then brought into contact with the second ternary composition catalyst layer. In this case, the first catalyst volume is the minimum amount necessary to reach a conversion rate of 100% of carbon monoxide, and the second catalyst volume is the minimum amount necessary to reach a conversion rate of 100% of the contained carbon dioxide. Any amount is fine. In addition, in actual operation,
The temperature of the second catalyst layer is about 5% lower than the temperature of the first catalyst layer.
If the temperature is maintained at about 0° C., complete conversion of carbon dioxide into hydrocarbons becomes easier.

本発明の触媒に低カロリーガスを接触させた場合は、従
来の触媒では達成されなかった「原料ガス中の全炭素酸
化物の完全利用」が果され、しかも、従来の触媒に比べ
て炭素数2〜4の炭化水素をより多く含む高カロリーガ
スを収得することができる。さらに、本発明の触媒を使
用しメタンのほか炭素類2〜4の炭化水素を含む高カロ
リーガスを得るに当って、ニッケル、希土類元素酸化物
、白金族金属よりなる第2の3元組成系触媒を組み合わ
せて接触させることにより、副生二酸化炭素を完全にメ
タン化することができるから、二酸化炭素の分離回収装
置が不要であり、プロセス上極めて有効である。
When the catalyst of the present invention is brought into contact with a low-calorie gas, "complete utilization of all carbon oxides in the raw material gas", which was not achieved with conventional catalysts, is achieved, and moreover, the number of carbon atoms is higher than that of conventional catalysts. A high-calorie gas containing more 2-4 hydrocarbons can be obtained. Furthermore, in obtaining a high-calorie gas containing hydrocarbons having 2 to 4 carbon atoms in addition to methane using the catalyst of the present invention, a second ternary composition system consisting of nickel, a rare earth element oxide, and a platinum group metal is used. By bringing a combination of catalysts into contact, the by-product carbon dioxide can be completely methanated, so a carbon dioxide separation and recovery device is not required, which is extremely effective in terms of the process.

次に、本発明を実施例よって説明するが、本発明はその
要旨を逸脱しない限り、以下の実施例をしんしゃくして
種々変更実施することができる。
Next, the present invention will be explained with reference to examples, but the present invention can be modified and implemented in various ways without departing from the gist of the invention.

尚説明中「部」とあるのは重量部を表わす。In the description, "parts" represent parts by weight.

実施例1 比表面積170m^2/gの市販アルミナ担体(5.0
9部)に、RuCl_3・H_2O(0.107部)を
水(4部)に溶かした水溶液を噴霧法により含浸させ、
ついでゆるやかに転動しながら一晩風乾し含浸物を得た
。この含浸物をあらかじめ10〜11容量%のアンモニ
アと6容量%水蒸気になるように調整した雰囲気120
秒間曝露し、ついで空気中で約850℃までに加熱して
金属塩を分解酸化した。つぎに水素濃度20容量%を含
む窒素気流を導通しながら電気炉中常温から400℃ま
で昇温し、その温度で30分間保持して金属酸化物を還
元した。ついで同気流中で常温まで冷却し、ルテニウム
触媒(5.13部)を得た。
Example 1 A commercially available alumina carrier with a specific surface area of 170 m^2/g (5.0
9 parts) was impregnated with an aqueous solution of RuCl_3 H_2O (0.107 parts) dissolved in water (4 parts) by a spray method,
Then, the impregnated product was obtained by air-drying it overnight while rolling gently. This impregnated material was prepared in an atmosphere 120 in which the atmosphere was adjusted to 10 to 11% by volume of ammonia and 6% by volume of water vapor.
The metal salt was exposed for seconds and then heated to about 850° C. in air to decompose and oxidize the metal salt. Next, the temperature was raised from room temperature to 400° C. in an electric furnace while passing a nitrogen stream containing a hydrogen concentration of 20% by volume, and the temperature was maintained at that temperature for 30 minutes to reduce the metal oxide. The mixture was then cooled to room temperature in the same air flow to obtain a ruthenium catalyst (5.13 parts).

このルテニウム触媒にCo(NO_3)_2・6H_2
O(1.4部)およびMn(NO_3)_3・6H_2
O(0.26部)を水(4部)に溶解した溶液を、前記
と同じ操作方法で含浸、乾燥、還元処理を行い5%Co
−0.9%Mn_2O_3−0.35%Ruを担持させ
た3元組成系触媒(5.37部)を得た。
Co(NO_3)_2・6H_2 on this ruthenium catalyst
O (1.4 parts) and Mn (NO_3)_3・6H_2
A solution of O (0.26 parts) dissolved in water (4 parts) was impregnated, dried, and reduced in the same manner as above to obtain 5% Co.
A ternary composition catalyst (5.37 parts) supporting -0.9% Mn_2O_3 -0.35% Ru was obtained.

実施例2 比表面積100m^2/gの市販シリカ担体(6.87
部)に、RuCl_3・3H_2O(0.057部)を
水(5部)に溶かした水溶液を噴霧法により含浸させ、
ついでゆるやかに転動しながら一晩風乾し含浸物を得た
。この含浸物をあらかじめ10〜11容量%のアンモニ
アと6容量%の水蒸気になるように調整した雰囲気に1
20秒間曝露し、ついで空気中で約350℃までに加熱
して金属塩を分解酸化した。つぎに、水素濃度20容量
%を含む窒素気流を導通しながら、約1時間で常温から
400℃まで昇温しその温度で30分間保持して金属酸
化物を還元した。ついで同気流中で常温まで冷却し、ル
テニウム触媒(6.9部)を得た。このルテニウム触媒
にCo(NO_3)_2・6H_2O(1.847部)
およびMn(NO_3)_3・6H_2O(0.383
部)を水(5部)に溶解した溶液を前記と同じ操作方法
で含浸、乾燥、還元処理を行い4.6%Co−2.8%
Mn_2O_3−0.67%Ruを担持させた3元組成
系触媒(7.33部)を得た。
Example 2 A commercially available silica carrier with a specific surface area of 100 m^2/g (6.87
part) was impregnated with an aqueous solution of RuCl_3.3H_2O (0.057 parts) dissolved in water (5 parts) by a spraying method,
Then, the impregnated product was obtained by air-drying it overnight while rolling gently. This impregnated material was placed in an atmosphere adjusted in advance to have 10 to 11% by volume of ammonia and 6% by volume of water vapor.
It was exposed for 20 seconds and then heated in air to about 350°C to decompose and oxidize the metal salt. Next, while passing a nitrogen stream containing a hydrogen concentration of 20% by volume, the temperature was raised from room temperature to 400° C. over about 1 hour and held at that temperature for 30 minutes to reduce the metal oxide. The mixture was then cooled to room temperature in the same air stream to obtain a ruthenium catalyst (6.9 parts). Co(NO_3)_2.6H_2O (1.847 parts) was added to this ruthenium catalyst.
and Mn(NO_3)_3・6H_2O(0.383
Part) dissolved in water (5 parts) was impregnated, dried, and reduced in the same manner as above to obtain 4.6%Co-2.8%
A ternary composition catalyst (7.33 parts) supporting Mn_2O_3-0.67% Ru was obtained.

実施例3 実施例1の方法によってアルミナ成形担体(直径1mm
×長さ5〜10mm)に、5%Co−0.9%Mn_2
O_3−0.35%Ruを担持させた触媒上へ、第1表
に示す供試ガスを圧力10kg/cm^2G、SV25
00hr^−^1温度230℃で1回通過させたところ
CO転化率100%で、第2表に示す組成よりなるガス
を得た。なお、比較のために実施例1における場合と同
一サイズのアルミナ成形担体に5%コバルトを部持させ
た一元組成系触媒上に、第1表に示す供試ガスを本実施
例と同一条件で1回通過させた場合の結果を第2表に併
記する。
Example 3 An alumina molded carrier (diameter 1 mm) was prepared by the method of Example 1.
x length 5-10 mm), 5%Co-0.9%Mn_2
O_3-The test gas shown in Table 1 was applied onto the catalyst supporting 0.35% Ru at a pressure of 10 kg/cm^2G and SV25.
When the gas was passed once at a temperature of 230° C. for 00 hr^-^1, a gas having the composition shown in Table 2 was obtained with a CO conversion rate of 100%. For comparison, the test gas shown in Table 1 was applied under the same conditions as in this example on a monocomponent catalyst in which 5% cobalt was supported on an alumina molded carrier of the same size as in Example 1. The results of one pass are also listed in Table 2.

以上の結果から明らかなとおり、実施例1の触媒を用い
た場合は、比較例の触媒を用いた場合に較べて、生成ガ
ス中のC_2〜C_4炭化水素含有率が高い。
As is clear from the above results, when the catalyst of Example 1 is used, the content of C_2 to C_4 hydrocarbons in the produced gas is higher than when the catalyst of Comparative Example is used.

実施例4 実施例2の方法によってシリカ成形担体(直径0.5〜
2mm)に、4.6%Co−2.8%Mn_2O_3−
0.67%Ruを担持させた触媒上へ、実施例3の場合
と同一の水素と一酸化炭素とからなる供試ガスを実施例
3に述べた条件と同様の圧力、SVおよび温度条件で1
回通過させたところ、CO転化率100%で、第3表に
示す組成よりなるガスを得た。
Example 4 A silica molded carrier (diameter 0.5~
2mm), 4.6%Co-2.8%Mn_2O_3-
The same test gas consisting of hydrogen and carbon monoxide as in Example 3 was applied onto the catalyst supporting 0.67% Ru under the same pressure, SV and temperature conditions as described in Example 3. 1
When the gas was passed through the gas twice, a gas having the composition shown in Table 3 was obtained with a CO conversion rate of 100%.

実施例5 実施例2の方法によってシリカ成形担体(直径0.5〜
2mm)に、4.6%Co−2.8%Mn_2O_3−
0.67%Ruを担持させた本発明の触媒(第1の触媒
)と、同じシリカ成形担体に4.3%Ni−2.4%L
a_2O_3−0.67%Ruを担持した第2の触媒と
を組み合わせ、実施例3の場合と同一組成の水素および
一酸化炭素を含む供試ガスを第1の触媒上、ついで第2
の触媒上を1回通過させた。
Example 5 A silica molded carrier (diameter 0.5~
2mm), 4.6%Co-2.8%Mn_2O_3-
The catalyst of the present invention (first catalyst) supporting 0.67% Ru and 4.3%Ni-2.4%L on the same silica molded support.
a_2O_3-A second catalyst supporting 0.67% Ru, and a test gas containing hydrogen and carbon monoxide having the same composition as in Example 3 was applied to the first catalyst and then to the second catalyst.
was passed over the catalyst once.

なお、この時の条件は、第1の触媒上を通過させるとき
はSV2500hr^−^1、温度240℃、圧力20
kg/cm^3Gで、第2の触媒上を通過させるときは
、SV1600hr^−^1であり、その他の条件は第
1の触媒上を通過させる場合と同様に行った。
The conditions at this time are: SV 2500hr^-^1, temperature 240℃, pressure 20℃ when passing over the first catalyst.
kg/cm^3G, and when passing over the second catalyst, the SV was 1600hr^-^1, and the other conditions were the same as when passing over the first catalyst.

この結果CO転化率は100%で第4表に示す組成より
なるガスを得た。
As a result, a gas having a composition shown in Table 4 was obtained with a CO conversion rate of 100%.

以上の結果から明らかなとおり、本発明による第1の触
媒と第2の触媒とを組み合わせ、これに水素と一酸化炭
素とを含む低カロリーガスを接触させることにより、メ
タンのほか、炭素数が2〜4の炭化水素を含有し、二酸
化炭素を含有しない高カロリーガスが得られることが分
かる。
As is clear from the above results, by combining the first catalyst and the second catalyst according to the present invention and bringing them into contact with a low-calorie gas containing hydrogen and carbon monoxide, the number of carbon atoms in addition to methane can be reduced. It can be seen that a high calorie gas containing 2 to 4 hydrocarbons and no carbon dioxide is obtained.

実施例6 実施例5で使用したものと同じ2つの触媒を組み合わせ
、第5表に示すような組成の供試ガスを第1の触媒上、
ついで第2の触媒上を1回通過させた。なおこのときの
条件は第1の触媒上をSV2,000hr、温度240
℃、圧力20kg/cm^3Gで通過させ、ついで第2
の触媒上を通過させる時は、SV1,000hr^−^
1、温度280℃で、その他の条件は、第1の触媒上を
通過させる場合と同様とした。この結果、CO転化率は
100%で、第6表に示す組成よりなるガスを得た。
Example 6 The same two catalysts used in Example 5 were combined, and a test gas having the composition shown in Table 5 was applied to the first catalyst.
It was then passed once over a second catalyst. The conditions at this time were SV 2,000 hr on the first catalyst and temperature 240 hr.
℃, pressure 20kg/cm^3G, and then the second
When passing over the catalyst, SV1,000hr^-^
1. The temperature was 280° C., and the other conditions were the same as in the case of passing over the first catalyst. As a result, a gas having a CO conversion rate of 100% and a composition shown in Table 6 was obtained.

以上の結果から明らかなように、本発明の第1の触媒と
、第2の触媒とを組み合わせ、これに第5表に示すよう
な組成分の供試ガスを接触させることにより、10,0
00Kcal/Nm^3の高カロリーガスを得ることが
でき、なおかつ供試ガス中に含有される酸素も、反応の
選択性になんら影響を与えることなく完全に除去できる
ことが分かる。
As is clear from the above results, by combining the first catalyst of the present invention and the second catalyst and bringing them into contact with the test gas having the composition shown in Table 5, a
It can be seen that a high calorie gas of 00 Kcal/Nm^3 can be obtained, and that oxygen contained in the sample gas can also be completely removed without any effect on the selectivity of the reaction.

−190− −191− −192− −193− −194− −195− −196−-190- -191- -192- -193- -194- -195- -196-

Claims (15)

【特許請求の範囲】[Claims] (1)シリカまたはアルミナよりなる担体に、触媒基質
としての鉄族金属に酸化マンガンと白金族金属とを組み
合わせて担持させてなることを特徴とする高カロリーガ
ス製造用触媒。
(1) A catalyst for producing a high-calorie gas, characterized in that a carrier made of silica or alumina supports a combination of manganese oxide and a platinum group metal on an iron group metal as a catalyst substrate.
(2)鉄族金属がコバルトまたは鉄のいずれかである特
許請求の範囲第1項記載の高カロリーガス製造用触媒。
(2) The catalyst for producing high-calorie gas according to claim 1, wherein the iron group metal is either cobalt or iron.
(3)白金族金属がルテニウム、ロジウム、パラジウム
、白金またはイリジウムのいずれかである特許請求の範
囲第1又は2項記載の高カロリーガス製造用触媒。
(3) The catalyst for producing high-calorie gas according to claim 1 or 2, wherein the platinum group metal is ruthenium, rhodium, palladium, platinum or iridium.
(4)鉄族金属:5〜15%(重量%、以下同じ)酸化
マンガン:鉄族金属元素対マンガン元素の原子比が(5
:1)〜(5:4)を満足する量、白金族金属:鉄族金
属元素対白金族金属元素の原子比が(30:1)〜(5
:2)を満足する量である特許請求の範囲第1〜3項の
いずれかに記載の高カロリーガス製造用触媒。
(4) Iron group metal: 5 to 15% (weight%, same hereinafter) Manganese oxide: The atomic ratio of iron group metal element to manganese element is (5%)
:1) to (5:4), and the atomic ratio of platinum group metal: iron group metal element to platinum group metal element is (30:1) to (5).
The catalyst for producing high-calorie gas according to any one of claims 1 to 3, which is in an amount satisfying: 2).
(5)シリカまたはアルミナよりなる担体に、白金族金
属を担持させる第1工程と、鉄族金属と酸化マンガンを
同時に担持させる第2工程とよりなることを特徴とする
高カロリーガス製造用触媒の製造法。
(5) A catalyst for producing high-calorie gas, comprising a first step of supporting a platinum group metal on a carrier made of silica or alumina, and a second step of simultaneously supporting an iron group metal and manganese oxide. Manufacturing method.
(6)鉄族金属がコバルトまたは鉄のいずれかである触
媒を製造する特許請求の範囲第5項記載の高カロリーガ
ス製造用触媒の製造法。
(6) The method for producing a catalyst for producing high-calorie gas according to claim 5, wherein the iron group metal is either cobalt or iron.
(7)白金族金属がルテニウム、ロジウム、パラジウム
、白金またはイリジウムのいずれかである触媒を製造す
る特許請求の範囲第5又は6項記載の高カロリーガス製
造用触媒の製造法。
(7) The method for producing a catalyst for producing a high-calorie gas according to claim 5 or 6, which produces a catalyst in which the platinum group metal is ruthenium, rhodium, palladium, platinum, or iridium.
(8)鉄族金属:5〜12%、酸化マンガン:鉄族金属
元素対マンガン元素の原子比が(5:1)〜(5:4)
を満足する量、白金族金属:鉄族金属元素対白金族金属
の原子比が(30:1)〜(5:2)を満足する量であ
る触媒を製造する特許請求の範囲第5〜7項のいずれか
に記載の高カロリーガス製造用触媒の製造法。
(8) Iron group metal: 5 to 12%, manganese oxide: atomic ratio of iron group metal element to manganese element is (5:1) to (5:4)
Claims 5 to 7 for producing a catalyst in which the atomic ratio of platinum group metal: iron group metal element to platinum group metal is in an amount that satisfies (30:1) to (5:2). A method for producing a catalyst for producing high-calorie gas according to any one of paragraphs.
(9)シリカまたはアルミナよりなる担体に、触媒基質
としての鉄族金属に酸化マンガンと白金族金属とを組み
合わせて担持させてなる触媒上に、水素と一酸化炭素を
含むガス、あるいは水素と一酸化炭素と二酸化炭素を含
むガスを導通することを特徴とする高カロリーガスの製
造法。
(9) A gas containing hydrogen and carbon monoxide, or a gas containing hydrogen and carbon monoxide, is applied onto a catalyst made of a combination of manganese oxide and platinum group metal supported on an iron group metal as a catalyst substrate on a carrier made of silica or alumina. A method for producing high-calorie gas, characterized by conducting a gas containing carbon oxide and carbon dioxide.
(10)鉄属金属がコバルトまたは鉄のいずれかである
触媒を用いる特許請求の範囲第9項記載の高カロリーガ
スの製造法。
(10) The method for producing high-calorie gas according to claim 9, which uses a catalyst in which the ferrous metal is either cobalt or iron.
(11)白金族金属がルテニウム、ロジウム、パラジウ
ム、白金またはイリジウムのいずれかである触媒を用い
る特許請求の範囲第9又は10項記載の高カロリーガス
の製造法。
(11) The method for producing a high-calorie gas according to claim 9 or 10, using a catalyst in which the platinum group metal is ruthenium, rhodium, palladium, platinum or iridium.
(12)鉄族金属:5〜15%、酸化マンガン:鉄族金
属元素対マンガン元素の原子比が(5:1)〜(5:4
)を満足する量、白金族金属:鉄族金属元素対白金族金
属元素の原子比が(30:1)〜(5:2)を満足する
量である触媒を用いる特許請求の範囲第9〜11項のい
ずれかに記載の高カロリーガスの製造法。
(12) Iron group metal: 5 to 15%, manganese oxide: atomic ratio of iron group metal element to manganese element is (5:1) to (5:4)
), and the atomic ratio of platinum group metal: iron group metal element to platinum group metal element is (30:1) to (5:2). 12. The method for producing high-calorie gas according to any one of Item 11.
(13)シリカまたはアルミナよりなる担体に、触媒基
質としてのコバルトまたは鉄のいずれかよりなる鉄族金
属に酸化マンガンと白金属金属とを組み合わせて担持さ
せた第1触媒上に水素と一酸化炭素を含むガスあるいは
水素と一酸化炭素と二酸化炭素を含むガスを導通し、つ
いで、シリカまたはアルミナよりなる担体に、触媒基質
としてのニッケルに希土類元素の酸化物と白金族金属と
を組み合わせて担持させる第2触媒上に前記工程で得ら
れたガスを導通することを特徴とする高カロリーガスの
製造法。
(13) Hydrogen and carbon monoxide are placed on a first catalyst in which a combination of manganese oxide and platinum metal is supported on a carrier made of silica or alumina, and an iron group metal made of either cobalt or iron as a catalyst substrate. or a gas containing hydrogen, carbon monoxide, and carbon dioxide, and then a combination of a rare earth element oxide and a platinum group metal is supported on nickel as a catalyst substrate on a carrier made of silica or alumina. A method for producing a high-calorie gas, which comprises passing the gas obtained in the step over a second catalyst.
(14)白金族金属がルテニウム、ロジウム、パラジウ
ム、白金またはイリジウムのいずれかである第1触媒を
用いる特許請求の範囲第13項記載の高カロリーガスの
製造法。
(14) The method for producing a high-calorie gas according to claim 13, using the first catalyst in which the platinum group metal is ruthenium, rhodium, palladium, platinum, or iridium.
(15)鉄族金属:5〜15%、 酸化マンガン:鉄族金属元素対マンガン元素の原子比が
(5:1)〜(5:4)を満足する量、白金族金属:鉄
族金属元素対白金族金属元素の原子比が(30:1)〜
(5:2)を満足する量である第1触媒を用いる特許請
求の範囲第13又は14項記載の高カロリーガスの製造
法。
(15) Iron group metal: 5 to 15%, manganese oxide: an amount that satisfies the atomic ratio of iron group metal element to manganese element (5:1) to (5:4), platinum group metal: iron group metal element Atomic ratio of platinum group metal element to (30:1) ~
15. The method for producing high-calorie gas according to claim 13 or 14, using the first catalyst in an amount that satisfies the ratio (5:2).
JP57155560A 1982-09-06 1982-09-06 Catalyst for preparing high calorie gas, preparation thereof and preparation of high calorie gas Granted JPS5946133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57155560A JPS5946133A (en) 1982-09-06 1982-09-06 Catalyst for preparing high calorie gas, preparation thereof and preparation of high calorie gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57155560A JPS5946133A (en) 1982-09-06 1982-09-06 Catalyst for preparing high calorie gas, preparation thereof and preparation of high calorie gas

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP62147319A Division JPS62294442A (en) 1987-06-13 1987-06-13 Reducing catalyst

Publications (2)

Publication Number Publication Date
JPS5946133A true JPS5946133A (en) 1984-03-15
JPH0211304B2 JPH0211304B2 (en) 1990-03-13

Family

ID=15608719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57155560A Granted JPS5946133A (en) 1982-09-06 1982-09-06 Catalyst for preparing high calorie gas, preparation thereof and preparation of high calorie gas

Country Status (1)

Country Link
JP (1) JPS5946133A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005079979A1 (en) * 2004-02-24 2005-09-01 Japan Oil, Gas And Metals National Corporation Catalyst for producing hydrocarbons, method for preparing the same, and method for producing hydrocarbons using the same
JP2008519679A (en) * 2004-11-13 2008-06-12 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Catalyst for producing carbon nanotubes by decomposing gaseous carbon compounds with heterogeneous catalysts

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5799338A (en) * 1980-06-04 1982-06-21 Riyoneezu De Apurikashion Kata Catalytic lump for heterogeneous system catalyst reaction

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5799338A (en) * 1980-06-04 1982-06-21 Riyoneezu De Apurikashion Kata Catalytic lump for heterogeneous system catalyst reaction

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005079979A1 (en) * 2004-02-24 2005-09-01 Japan Oil, Gas And Metals National Corporation Catalyst for producing hydrocarbons, method for preparing the same, and method for producing hydrocarbons using the same
US7612013B2 (en) 2004-02-24 2009-11-03 Japan Oil, Gas And Metals National Corporation Hydrocarbon-producing catalyst, process for producing the same, and process for producing hydrocarbons using the catalyst
JP2008519679A (en) * 2004-11-13 2008-06-12 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Catalyst for producing carbon nanotubes by decomposing gaseous carbon compounds with heterogeneous catalysts
US9409779B2 (en) 2004-11-13 2016-08-09 Covestro Deutschland Ag Catalyst for producing carbon nanotubes by means of the decomposition of gaseous carbon compounds on a heterogeneous catalyst

Also Published As

Publication number Publication date
JPH0211304B2 (en) 1990-03-13

Similar Documents

Publication Publication Date Title
Chen et al. Effect of preparation methods on the catalytic properties of zeolite-supported ruthenium in the Fischer-Tropsch synthesis
JPH09502414A (en) Process for producing hydrogen / carbon monoxide mixture or hydrogen from methane
JP2003531795A (en) Method for producing hydrogen by partial oxidation of hydrocarbons
RU2003121025A (en) FISCHER-TROPHES CATALYST
Ishihara et al. Effect of alloying on CO hydrogenation activity over SiO2-supported Co Ni alloy catalysts
JPH07144902A (en) Method for steam refoaming of hydrocarbon
Koyano et al. States of Pd in Pd/H–ZSM-5 and Pd/Na–ZSM-5 catalysts and catalytic activity for the reduction of NO by CH4 in the presence of O2
CA1138477A (en) Methanation of carbon monoxide with improved catalyst regeneration
JPS5946133A (en) Catalyst for preparing high calorie gas, preparation thereof and preparation of high calorie gas
JPS58120501A (en) Manufacture of synthetic gas
JP2885153B2 (en) Catalyst material for producing SNG and method for producing SNG
JPH0535018B2 (en)
CA1209804A (en) Methanol conversion process
JPH0211306B2 (en)
JPS6323742A (en) Reduction catalyst
JPH07185342A (en) Catalyst and method for decomposing nitrogen oxide
JPS60132649A (en) Catalyst for preparing high calorie gas, its preparation and preparation of high calorie gas
JPH0212143B2 (en)
JP3302402B2 (en) Ammonia decomposition catalyst
JPH0211305B2 (en)
KR20180099060A (en) Catalyst for reforming of methane, and CO2 reforming of methane
WO1986001499A1 (en) Fischer-tropsch catalyst
BG109348A (en) Method for the processing of natural gas into fuels
JPS58174239A (en) Three-component catalyst for removing oxygen from gas containing oxygen consisting essentially of gaseous hydrogen and its production
JPS593401B2 (en) Kangen gas no seizouhouhou