JPS6129778B2 - - Google Patents

Info

Publication number
JPS6129778B2
JPS6129778B2 JP53026627A JP2662778A JPS6129778B2 JP S6129778 B2 JPS6129778 B2 JP S6129778B2 JP 53026627 A JP53026627 A JP 53026627A JP 2662778 A JP2662778 A JP 2662778A JP S6129778 B2 JPS6129778 B2 JP S6129778B2
Authority
JP
Japan
Prior art keywords
catalyst
rare earth
reaction
carbon dioxide
group metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53026627A
Other languages
Japanese (ja)
Other versions
JPS54119385A (en
Inventor
Satoyuki Inui
Masaki Funabiki
Toshinori Iwana
Tadashi Setsume
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2662778A priority Critical patent/JPS54119385A/en
Publication of JPS54119385A publication Critical patent/JPS54119385A/en
Publication of JPS6129778B2 publication Critical patent/JPS6129778B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Industrial Gases (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、二元細孔構造を有する担体上に基質
としての鉄族金属−希土類酸化物−白金族金属系
活性成分を担持した新規な触媒、その製法ならび
にこの触媒を用いて二酸化炭素及び/又は一酸化
炭素をメタン化する方法に関する。 現在、水性ガス中の一酸化炭素を水素によりメ
タン化してガス燃料の熱量を増加させるため、あ
るいはアンモニア合成用の水素の純度を上げるた
め、ニツケル触媒によるメタン化方法が実用され
ている。しかしニツケル触媒の活性は比較的低
く、比較的高温で反応操作を行う必要があり、そ
のため半融を伴う可能性も大きく、寿命に欠点が
ある。また一般に反応中の触媒表面に炭素質の析
出が顕著であつて、これによる触媒の劣化が起こ
りやすいこと、ならびに微量の硫黄化合物により
強い被毒を受けやすいなどの欠点もある。炭素析
出に対しては、アルカリ金属の炭酸塩などの添加
によりこれを防ぐ方法が研究されているが、基本
的な解決はまだ得られていない。一方ルテニウム
触媒が一酸化炭素のメタン化反応にとつて最高の
活性を示すことが古くから知られているが、この
場合は炭素数2以上の炭化水素の副生が大きく、
メタン生成の選択性は一般に不良である。またル
テニウム触媒は硫黄化合物による被毒に対する抵
抗がニツケル触媒に比べてかなり大きいなどの利
点があるとされているが、ルテニウムが極めて高
価であること、その酸化物が揮発性を有し触媒寿
命が短いなどの難点があるため、メタン化用の工
業触媒としては採用されていない。 本発明の目的は、従来の一酸化炭素のメタン化
触媒の上記の諸欠点を基本的に克服するととも
に、従来のメタン化触媒の性能とは逆に、二酸化
炭素のメタン化を一酸化炭素の場合よりも格段に
上まわる反応能率で行いうる触媒ならびにこれを
用いるメタン化方法を提供することにある。 本発明者らは、ミクロ−マクロ細孔構造を有す
る成形担体上に、触媒基質としての鉄族金属と希
土類元素の酸化物及び白金属金属とが組み合わせ
て担持された、新規な還元用鉄族金属−希土類酸
化物−白金族金属系担持触媒が、高いメタン化活
性、高いメタン生成選択率、優れた安定性及び寿
命を示すことを見出した。 本発明の触媒によれば、上記の従来法の能率を
改善するばかりでなく、地球上に無尽蔵にある水
と炭素又は二酸化炭素を基礎原料として、代表的
なクリーンガス燃料であるメタンを大量に合成す
るための方法の工業的成立が見込まれる。また本
発明の触媒により、製鉄工程で発生する高炉ガス
に含まれる大量の一酸化炭素、水と一酸化炭素の
転化反応による水素製造の際に副生する大量の二
酸化炭素、ならびに炭化水素系燃料の燃焼生成物
としての二酸化炭素の有効な化学的利用あるいは
循環利用の道を開くことが可能となる。 本発明の触媒の担体としてはミクロ−マクロ二
元細孔構造を有するものが用いられる。そのミク
ロ細孔径は40〜200Å、マクロ細孔径は3000〜
8000Åが好ましく、この種の二元細孔構造を有す
るアルミナ又は好ましくはシリカの成形体が用い
られる。成形体の形としては、例えば直径3〜4
mmの球状物が好ましいが、その他の形状であつて
もよい。ミクロ及びマクロの細孔の両方を含むも
のであれば、一般に市販品も本発明の触媒の担体
として使用できるが、ミクロ一元細孔担体を高温
焼成してマクロ細孔を発生させて二元細孔系とす
るか、あるいはマクロ一元細孔担体に対しゾル状
に分散された6〜7nmの球状シリカ(Du pont社
製)を用いて、細孔壁面にミクロ細孔を形成する
微粒子の層を作ることによりそれぞれ二元細孔系
としてもよい。特に好ましい担体は例えば次のよ
うにして製造することができる。均質な無アルカ
リシリカゲル粉末を成形し、高温例えば800℃で
焼成したのち王水で処理し、次いで水洗したのち
200℃で乾燥すると、ミクロ−マクロ二元細孔構
造を有するシリカ成形担体が得られる。 担体上に施される触媒成分の基質は鉄族金属、
例えばニツケル、コバルト又は鉄である。この基
質金属に希土類元素の酸化物、例えばランタン、
セリウム、プラセオジウム又はサマリウムの酸化
物及び白金族金属、例えばルテニウム、ロジウ
ム、白金、パラジウム又はイリジウムを組み合せ
る。鉄族金属の担持量は全触媒に対して3〜12重
量%が好ましい。希土類元素の酸化物は、鉄族金
属対希土類元素の原子比が2:1ないし10:1と
なる量で、白金族金属は鉄族金属対白金族金属の
原子比が10:1ないし30:1となる量でそれぞれ
存在することが好ましい。 本発明の触媒は、ミクロ−マクロ二元細孔構造
を有する成形担体に、鉄族金属、希土類元素及び
白金族金属の硝酸塩もしくは塩化物を水溶液の形
で含浸させ、乾燥したのち、アンモニア処理、熱
分解、水素還元及び熱処理を順次行うことにより
製造することができる。含浸は一般に噴霧、振掛
け又は浸漬により、担体外表面から任意の深さま
で行われる。含浸、乾燥、アンモニア処理、熱分
解、水素還元及び熱処理の一連の操作を、鉄族金
属、希土類元素及び白金族金属について別個に任
意の順序で、あるいはその2種以上を組み合わせ
て行うことができる。 本発明の触媒を製造するには、好ましくは次の
ように操作することができる。まず担体に白金族
金属の塩化物又は硝酸塩の水溶液を丁度細孔が充
満する量だけ含浸させ、常温でゆるやかに担体を
転動させながな風乾する。そのときの水溶液の濃
度は含浸液量中に所定の担持量が含まれるように
しておく。次いでアンモニアガス80mmHg及び水
蒸気15mmHgを含有する雰囲気(例えば20℃に保
つた10%アンモニア水の飽和蒸気)中に60〜150
秒間晒したのち、空気中で350℃まで加熱して塩
を分解して酸化物とする。これを水素気流中で常
温から400℃まで昇温して還元金属状態にまで還
元したのち、更に400℃に0.5〜1時間保つことに
より安定化のための熱処理を行う。こうして得ら
れた生成物を常温で転動させながら、細孔容積の
1/3〜1/5を占める量だけ、鉄族元素及び希土類元
素の各硝酸塩の所定濃度の混合水溶液を噴霧して
含浸させ、以下前記と同様に操作すると、本発明
の三元組成系担持触媒が得られる。希土類元素の
酸化物は安定なため、前記の水素還元条件下では
酸化物のままである。 本発明の触媒は特に、二酸化炭素、一酸化炭素
又はこれらの混合物をメタン化するために用いら
れる。本触媒を用いてメタン化するには、本触媒
に二酸化炭素及び/又は一酸化炭素と水素とを導
通して反応させる。この際二酸化炭素及び/又は
一酸化炭素は一般にメタン生成量論以上の水素と
共に用いられ、また反応成分を不活性ガスで希釈
して反応させることもできる。本発明の触媒を用
いると、高い速度で反応を行つても転化率の低下
は比較的少ないので、好ましくは触媒1につき
毎時10000以上のガス空間速度で反応を行うこ
とができる。 本発明による二酸化炭素及び/又は一酸化炭素
のメタン化方法は、例えば次のように実施するこ
とができる。触媒を、充填空隙がほぼ均等に好ま
しくは約55〜60%程度に大きくなるように反応器
に充填する。少量の触媒を用いる場合には、触媒
粒子の直径よりも若干大きい内径を有する反応管
を用い、これに触媒を1列に充填することによ
り、また触媒量の多い場合には例えばスプリング
状のラシヒリングを混合することにより、空隙率
を調節することができる。触媒をこのように充填
することにより、高流速とした際にも、通気抵抗
による圧損失が少なく、未反応ガスが触媒層後方
へすみやかに分布されるため、反応器内の反応分
布をより平担とすることが可能である。反応ガス
は、220〜400℃好ましくは260〜360℃の温度で、
空間速度10000〜100000/・時で触媒上に導
通する。 本発明の触媒の性能の一般的な優れた特色は次
のとおりである。 二酸化炭素のメタン化活性が著しく大きいた
め、二酸化炭素単独のメタン化だけでなく、一酸
化炭素と二酸化炭素とが混合していても、化学量
論以上の水素が共存すれば両者とも完全にメタン
へ転化できる。これはCOが共存するとCOのメタ
ンへの転化がほぼ完了するまではCO2のメタン化
が抑制を受けており、COの転化が完了するとそ
れ以上の温度で急激にCO2のメタン化が行なわれ
るためである。触媒成分の複合的な相乗効果によ
り、メタン生成の選択性がほぼ100%に近く、炭
素析出などによる劣化を伴わない。またルテニウ
ム触媒と同様に硫黄化合物による被毒に対する抵
抗が大きい。ルテニウム成分はランタンの酸化物
との組み合わせ効果により、酸化性の雰囲気で高
温に触媒を晒しても揮発は抑止され、触媒活性は
安定している。多表面体でありながら有効拡散係
数の大きい二元細孔担体を採用しているため、触
媒の活性が高く、しかも高流速においても転化率
の低下が比較的少なく、高い能率でメタン化が達
成できる。高流速において高い反応速度で操作す
る場合にも、上記の充填構造により反応分布が平
坦となるため、触媒層温度が局部的に上昇するこ
となく、反応の暴走、触媒の半融、副反応などが
避けられる。 実施例 1 ミクロ細孔平均径50Å及びマクロ細孔平均径
6000Åを有する二元細孔構造のシリカ成形担体
(直径3.0mm、BET表面積360m2/g)に、8.7%Ni
−4.9%La2O3−0.55%Ruを担持する触媒を用
い、第1表に示す各原料ガスを空間速度10000
/・時及び浴温度300℃で一回通過させた結
果、いずれの場合にも二酸化炭素及び一酸化炭素
の転化率は100%、生成メタンの選択率は99%以
上であり、表中に示す空時収量が得られた。微量
の副生物は二酸化炭素のメタン化の場合にはエタ
ン及び一酸化炭素、一酸化炭素のメタン化の場合
にはエタン及びプロパンであつた。
The present invention provides a novel catalyst in which an iron group metal-rare earth oxide-platinum group metal active component is supported as a substrate on a carrier having a binary pore structure, a method for producing the same, and a method for producing carbon dioxide and/or carbon dioxide using the catalyst. Or it relates to a method of methanating carbon monoxide. Currently, a methanation method using a nickel catalyst is used to increase the calorific value of gas fuel by methanating carbon monoxide in water gas with hydrogen, or to increase the purity of hydrogen for ammonia synthesis. However, the activity of the nickel catalyst is relatively low, and the reaction operation must be carried out at a relatively high temperature.Therefore, there is a high possibility that nickel catalysts will be half-melted, resulting in a shortened lifespan. Further, there are other drawbacks, such as the fact that carbonaceous deposits are generally noticeable on the surface of the catalyst during the reaction, which tends to cause catalyst deterioration, and the catalyst is susceptible to strong poisoning by trace amounts of sulfur compounds. Research has been conducted on ways to prevent carbon precipitation by adding carbonates of alkali metals, but no fundamental solution has yet been found. On the other hand, it has been known for a long time that the ruthenium catalyst exhibits the highest activity for the methanation reaction of carbon monoxide, but in this case, the by-product of hydrocarbons with 2 or more carbon atoms is large.
Methane production selectivity is generally poor. Furthermore, ruthenium catalysts are said to have the advantage of being considerably more resistant to poisoning by sulfur compounds than nickel catalysts, but ruthenium is extremely expensive, and its oxides are volatile, resulting in short catalyst life. Due to its short length and other shortcomings, it has not been used as an industrial catalyst for methanation. The purpose of the present invention is to fundamentally overcome the above-mentioned drawbacks of conventional carbon monoxide methanation catalysts, and also to reverse the performance of conventional methanation catalysts in converting carbon monoxide methanation into carbon monoxide. It is an object of the present invention to provide a catalyst capable of carrying out reaction at a much higher reaction efficiency than in the case of conventional methods, and a methanation method using the catalyst. The present inventors have developed a novel iron group metal for reduction in which a combination of an iron group metal as a catalyst substrate, an oxide of a rare earth element, and a platinum metal are supported on a shaped support having a micro-macro pore structure. It has been found that metal-rare earth oxide-platinum group metal based supported catalysts exhibit high methanation activity, high methane production selectivity, excellent stability and lifetime. The catalyst of the present invention not only improves the efficiency of the conventional method described above, but also produces large amounts of methane, a typical clean gas fuel, using water and carbon or carbon dioxide, which are inexhaustible on earth, as basic raw materials. Industrial establishment of the method for synthesis is expected. In addition, the catalyst of the present invention can eliminate large amounts of carbon monoxide contained in blast furnace gas generated in the steel manufacturing process, large amounts of carbon dioxide by-produced during hydrogen production through the conversion reaction of water and carbon monoxide, and hydrocarbon fuels. It becomes possible to open the way to effective chemical use or recycling of carbon dioxide as a combustion product. As the carrier for the catalyst of the present invention, one having a micro-macro binary pore structure is used. Its micropore size is 40~200Å, macropore size is 3000~
8000 Å is preferred, and shaped bodies of alumina or preferably silica with a dual pore structure of this type are used. The shape of the molded object is, for example, 3 to 4 in diameter.
mm spheres are preferred, but other shapes are also possible. Generally, commercially available products can be used as carriers for the catalyst of the present invention as long as they contain both micro and macro pores. Alternatively, a layer of fine particles forming micropores can be formed on the pore walls by using 6-7 nm spherical silica (manufactured by Du Pont) dispersed in the form of a sol in a macro-uniform pore carrier. It is also possible to create a binary pore system by making each. A particularly preferred carrier can be produced, for example, as follows. Homogeneous alkali-free silica gel powder is molded, fired at a high temperature such as 800℃, treated with aqua regia, and then washed with water.
Drying at 200° C. gives a shaped silica support with a micro-macro binary pore structure. The substrate of the catalyst component applied on the carrier is an iron group metal,
For example, nickel, cobalt or iron. This substrate metal contains rare earth element oxides, such as lanthanum,
Combining oxides of cerium, praseodymium or samarium and platinum group metals such as ruthenium, rhodium, platinum, palladium or iridium. The amount of iron group metal supported is preferably 3 to 12% by weight based on the total catalyst. The rare earth element oxide is used in an amount such that the atomic ratio of iron group metal to rare earth element is 2:1 to 10:1, and the platinum group metal is used in an amount such that the atomic ratio of iron group metal to platinum group metal is 10:1 to 30:1. Preferably, each is present in an amount of 1. The catalyst of the present invention is prepared by impregnating a molded support having a micro-macro binary pore structure with nitrates or chlorides of iron group metals, rare earth elements, and platinum group metals in the form of an aqueous solution, drying, and then ammonia treatment. It can be produced by sequentially performing thermal decomposition, hydrogen reduction, and heat treatment. Impregnation is generally carried out by spraying, sprinkling or dipping to any desired depth from the outer surface of the carrier. A series of operations of impregnation, drying, ammonia treatment, pyrolysis, hydrogen reduction, and heat treatment can be performed separately in any order for iron group metals, rare earth elements, and platinum group metals, or in combination of two or more thereof. . In order to produce the catalyst of the present invention, the following operation can be preferably carried out. First, the carrier is impregnated with an aqueous solution of platinum group metal chloride or nitrate in an amount just enough to fill the pores, and the carrier is air-dried at room temperature while being gently rolled. The concentration of the aqueous solution at that time is set such that a predetermined amount of support is included in the amount of impregnating liquid. Then, 60 to 150 g of ammonia gas was added to the atmosphere containing 80 mmHg of ammonia gas and 15 mmHg of water vapor (e.g., saturated steam of 10% ammonia water kept at 20°C).
After being exposed for a few seconds, the salt is heated to 350°C in air to decompose the salt into oxides. This is heated from room temperature to 400°C in a hydrogen stream to be reduced to a reduced metal state, and then heat treated for stabilization by keeping it at 400°C for 0.5 to 1 hour. While rolling the product thus obtained at room temperature, the pore volume
By spraying and impregnating a mixed aqueous solution of each nitrate of an iron group element and a rare earth element at a predetermined concentration in an amount that accounts for 1/3 to 1/5, and performing the same operation as described above, the ternary composition system of the present invention is supported. A catalyst is obtained. Since rare earth element oxides are stable, they remain as oxides under the hydrogen reduction conditions described above. The catalyst of the invention is used in particular for the methanation of carbon dioxide, carbon monoxide or mixtures thereof. To perform methanation using this catalyst, carbon dioxide and/or carbon monoxide and hydrogen are passed through the catalyst to cause a reaction. In this case, carbon dioxide and/or carbon monoxide are generally used together with hydrogen in an amount greater than the stoichiometric amount for methane formation, and the reaction can also be carried out by diluting the reaction components with an inert gas. When the catalyst of the present invention is used, the reduction in conversion is relatively small even when the reaction is carried out at a high rate, so that the reaction can preferably be carried out at a gas hourly space velocity of 10,000 gas hourly or more per catalyst. The method for methanating carbon dioxide and/or carbon monoxide according to the present invention can be carried out, for example, as follows. The catalyst is packed into the reactor so that the filling voids are approximately evenly spaced, preferably on the order of about 55-60% larger. When a small amount of catalyst is used, a reaction tube with an inner diameter slightly larger than the diameter of the catalyst particles is used, and the catalyst is packed in a single row, and when a large amount of catalyst is used, a spring-like Raschig ring, for example, is used. By mixing these, the porosity can be adjusted. By packing the catalyst in this way, there is less pressure loss due to ventilation resistance even when the flow rate is high, and unreacted gas is quickly distributed to the rear of the catalyst layer, making the reaction distribution inside the reactor more even. It is possible to carry it as a burden. The reaction gas is at a temperature of 220-400°C, preferably 260-360°C,
Conducts over the catalyst at a space velocity of 10,000 to 100,000/hour. The general characteristics of the performance of the catalyst of the present invention are as follows. Since the methanation activity of carbon dioxide is extremely high, not only can carbon monoxide be methanated alone, but even if carbon monoxide and carbon dioxide are mixed, if more than the stoichiometric amount of hydrogen coexists, both will be completely methanated. It can be converted to This is because when CO coexists, the methanation of CO 2 is suppressed until the conversion of CO to methane is almost completed, and once the conversion of CO is completed, the methanation of CO 2 occurs rapidly at higher temperatures. This is for the purpose of Due to the combined synergistic effect of the catalyst components, the selectivity for methane production is close to 100%, and there is no deterioration due to carbon deposition. Also, like the ruthenium catalyst, it has high resistance to poisoning by sulfur compounds. Due to the combined effect of the ruthenium component and lanthanum oxide, volatilization is suppressed and the catalyst activity is stable even when the catalyst is exposed to high temperatures in an oxidizing atmosphere. Because it uses a dual-pore carrier with a large effective diffusion coefficient despite being a multi-surface material, the catalyst has high activity, and there is relatively little reduction in conversion rate even at high flow rates, achieving highly efficient methanation. can. Even when operating at a high reaction rate at a high flow rate, the above-mentioned packing structure flattens the reaction distribution, so the catalyst bed temperature does not locally rise, preventing runaway reactions, half-melting of the catalyst, and side reactions. can be avoided. Example 1 Micropore average diameter 50 Å and macropore average diameter
A silica molded support with a binary pore structure of 6000 Å (diameter 3.0 mm, BET surface area 360 m 2 /g) was coated with 8.7% Ni.
Using a catalyst supporting −4.9% La 2 O 3 −0.55% Ru, each raw material gas shown in Table 1 was heated at a space velocity of 10,000.
As a result of one pass at 300°C and 300°C, the conversion of carbon dioxide and carbon monoxide was 100% and the selectivity of methane produced was over 99%, as shown in the table. Space-time yields were obtained. The minor by-products were ethane and carbon monoxide in the case of carbon dioxide methanation, and ethane and propane in the case of carbon monoxide methanation.

【表】 実施例 2 実施例1と同じ担体を用い第2表に示す三元組
成の触媒に、二酸化炭素6.0%、水素18%及び窒
素76%からなるガスを空間速度10000/・時
及び227℃で一回通過させた結果、表中に示す成
績が得られた。単元及び二元組成の場合を比較の
ため掲げた。本発明による三元組成系の場合に触
媒成分の複合効果による顕著な活性の増大が認め
られる。
[Table] Example 2 Using the same carrier as in Example 1, a gas consisting of 6.0% carbon dioxide, 18% hydrogen and 76% nitrogen was applied to a catalyst having the ternary composition shown in Table 2 at a space velocity of 10,000/hour and 227 As a result of one pass at ℃, the results shown in the table were obtained. Cases of unitary and binary compositions are listed for comparison. In the case of the ternary composition system according to the invention, a significant increase in activity due to the combined effect of the catalyst components is observed.

【表】 実施例 3 実施例1と同じ担体を用いた第3表に示す三元
組成の触媒に、一酸化炭素6.0%、水素18%及び
窒素76%からなるガスを空間速度10000/・
時及び265℃で一回通過させた結果、表中に示す
成績が得られた。この場合にも一元及び二元組成
触媒に対し、三元触媒の活性が著しく高い。
[Table] Example 3 A gas consisting of 6.0% carbon monoxide, 18% hydrogen and 76% nitrogen was added to a catalyst with the ternary composition shown in Table 3 using the same carrier as in Example 1 at a space velocity of 10000/.
The results shown in the table were obtained after one pass at 265°C and 265°C. In this case as well, the activity of the three-way catalyst is significantly higher than that of the one-way and two-way composition catalysts.

【表】 実施例 4 実施例2のNi−La2O3−Ru触媒を用い、実施例
2と同じガス組成及び温度で、空間速度74200
/・時で通過した結果、二酸化炭素転化率
7.8%、メタン空時収量15.5モル/・時及びメ
タン選択率98.6%の成績が得られた。 実施例 5 実施例2のNi−La2O3−Ru触媒を用い、一酸化
炭素12%及び水素88%からなるガスを290℃及び
空間速度42500/・時で通過した結果、一酸
化炭素転化率100%、メタン空時収量228モル/
・時及びメタン選択率98%の成績が得られた。 実施例 6 実施例2のNi−La2O3−Ru触媒を用い、二酸化
炭素12%、水素88%からなるガスを340℃及び空
間速度43300/・時で通過した結果、二酸化
炭素転化率100%、メタン空時収量232モル/・
時及びメタン選択率99%の成績が得られた。 実施例 7 ミクロ細孔平均径200Å及びマクロ細孔平均径
5000Åを有する二元細孔構造のアルミナ成形担体
(直径4.0mm、BET表面積210m2/g)に、4.3%Ni
−2.5%La2O3−0.7%Ruを担持する触媒を用い、
二酸化炭素6.0%、水素18%及び窒素76%からな
るガスを空間速度13300/・時で通じた結
果、第4表に示す結果が得られた。
[Table] Example 4 Using the Ni-La 2 O 3 -Ru catalyst of Example 2, with the same gas composition and temperature as Example 2, the space velocity was 74200.
/・As a result of passing in hours, the carbon dioxide conversion rate
7.8%, methane space-time yield of 15.5 mol/h, and methane selectivity of 98.6%. Example 5 Using the Ni-La 2 O 3 -Ru catalyst of Example 2, a gas consisting of 12% carbon monoxide and 88% hydrogen was passed through at 290°C and a space velocity of 42500/hr, resulting in carbon monoxide conversion. rate 100%, methane space-time yield 228 mol/
・Results of 98% in time and methane selectivity were obtained. Example 6 Using the Ni-La 2 O 3 -Ru catalyst of Example 2, a gas consisting of 12% carbon dioxide and 88% hydrogen was passed through at 340°C and a space velocity of 43300/hour, resulting in a carbon dioxide conversion rate of 100. %, methane space-time yield 232 mol/・
A methane selectivity of 99% was obtained. Example 7 Micropore average diameter 200 Å and macropore average diameter
4.3% Ni was applied to an alumina molded support with a binary pore structure of 5000 Å (diameter 4.0 mm, BET surface area 210 m 2 /g).
Using a catalyst supporting −2.5% La 2 O 3 −0.7% Ru,
As a result of passing a gas consisting of 6.0% carbon dioxide, 18% hydrogen and 76% nitrogen at a space velocity of 13300/hour, the results shown in Table 4 were obtained.

【表】 実施例 8 マクロ細孔平均径7600Åを有するマクロ一元細
孔構造のシリカ・アルミナ球状成形担体(直径
3.5mm、BET表面積1.0m2/g)に、その細孔容積
の9容積%に当る量だけ6〜7nmの球状シリカ
を含浸させ、これを乾燥して400℃で焼成したの
ち、2.0%Ni−1.2%La2O3を担持した触媒を製造
する。 この触媒に二酸化炭素6%、水素18%及び窒素
76%からなるガスを290℃及び空間速度16000/
・時で通じた結果、16.2モル/・時のメタン
空時収量(6〜7nmの球状シリカによる細孔調
整をしない場合の3.1倍)が得られた。 実施例 9 ミクロ細孔平均径60Åを有するミクロ一元細孔
構造のアルミナ球状成形担体(直径3.5mm、BET
表面積210m2/g)を、空気中で1100℃に30分間焼
成し、この担体に2.0%Ni−1.2%La2O3を担持し
た触媒を製造する。 この触媒に二酸化炭素6%、水素18%及び窒素
76%からなるガスを283℃及び空間速度90000/
・時で通じた結果、23.6モル/・時のメタン
空時収量(末焼成の場合の715倍)が得られた。 実施例 10 実施例9と同じ担体(1100℃で焼成処理したも
の)に、これを転動しながら噴霧法によつて、実
施例9と同じ量の触媒物質をその担持層が担体外
表面から均一に0.5mmの厚さになるように担持し
た触媒を製造する。 この触媒を用い、二酸化炭素12%及び水素88%
からなるガスを350℃にて空間速度51000/・
時で通じた結果、317モル/・時のメタン空時
収量(触媒質を担体の全体に担持した触媒を用い
たときの2.2倍)が得られた。
[Table] Example 8 Silica/alumina spherical molded support with a macro-uniform pore structure having an average macropore diameter of 7600 Å (diameter
3.5 mm, BET surface area 1.0 m 2 /g) was impregnated with 6 to 7 nm spherical silica in an amount corresponding to 9 volume% of the pore volume, dried and fired at 400°C, and then impregnated with 2.0% Ni. -Produce a catalyst supporting 1.2% La 2 O 3 . This catalyst contains 6% carbon dioxide, 18% hydrogen and nitrogen.
Gas consisting of 76% at 290℃ and space velocity 16000/
- As a result of the methane space-time yield of 16.2 mol/hour (3.1 times that of the case without pore adjustment using 6-7 nm spherical silica). Example 9 Alumina spherical molded support with a microuniform pore structure having an average micropore diameter of 60 Å (diameter 3.5 mm, BET
A catalyst having a surface area of 210 m 2 /g) is calcined at 1100° C. for 30 minutes in air to produce a catalyst in which 2.0% Ni-1.2% La 2 O 3 is supported on the carrier. This catalyst contains 6% carbon dioxide, 18% hydrogen and nitrogen.
Gas consisting of 76% at 283℃ and space velocity 90000/
・As a result of increasing the time, a space-time methane yield of 23.6 mol/hour (715 times that in the case of final calcination) was obtained. Example 10 The same amount of catalytic material as in Example 9 was applied to the same carrier as in Example 9 (calcined at 1100°C) by a spraying method while rolling the carrier, so that the support layer was formed from the outer surface of the carrier. A catalyst is produced that is uniformly supported to a thickness of 0.5 mm. Using this catalyst, carbon dioxide 12% and hydrogen 88%
At 350℃, a gas consisting of a space velocity of 51000/・
As a result, a space-time yield of methane of 317 mol/hour was obtained (2.2 times that when using a catalyst in which the catalytic material was supported on the entire support).

Claims (1)

【特許請求の範囲】 1 ミクロ−マクロ二元細孔構造を有する成形担
体上に、触媒基質としての鉄族金属と希土類元素
の酸化物及び白金族金属とが組み合わせて担持さ
れた、還元用触媒。 2 ミクロ−マクロ二元細孔構造を有する成形担
体に、鉄族金属、希土類元素及び白金族金属の硝
酸塩もしくは塩化物を水溶液の形で含浸させ、乾
燥したのち、アンモニア処理、熱分解、水素還元
及び熱処理を順次行うことを特徴とする、ミクロ
ーマクロ二元細孔構造を有する成形担体上に、触
媒基質としての鉄族金属と希土類元素の酸化物及
び白金族金属とが組み合わせて担持された、還元
用触媒の製法。 3 含浸、乾燥、アンモニア処理、熱分解、水素
還元及び熱処理の一連の操作を、鉄族金属、希土
類元素及び白金族金属について別個に任意の順序
で、あるいはその2種以上を組み合わせて行うこ
とを特徴とする、特許請求の範囲第2項に記載の
方法。 4 ミクロ−マクロ二元細孔構造を有する成形担
体上に、触媒基質としての鉄族金属と希土類元素
の酸化物及び白金族金属とが組み合わせて担持さ
れた、還元用触媒上に、二酸化炭素及び/又は一
酸化炭素と水素を導通して反応させることを特徴
とする、触媒による二酸化炭素及び一酸化炭素の
メタン化方法。 5 反応成分を不活性ガスで希釈することを特徴
とする、特許請求の範囲第4項に記載の方法。 6 触媒1につき毎時10000以上のガス空間
速度で反応を行うことを特徴とする、特許請求の
範囲第4項又は第5項に記載の方法。
[Scope of Claims] 1. A reduction catalyst in which a combination of an iron group metal as a catalyst substrate, an oxide of a rare earth element, and a platinum group metal is supported on a molded carrier having a micro-macro binary pore structure. . 2 A molded support having a micro-macro binary pore structure is impregnated with nitrates or chlorides of iron group metals, rare earth elements, and platinum group metals in the form of an aqueous solution, dried, and then subjected to ammonia treatment, thermal decomposition, and hydrogen reduction. A reduction method in which a combination of an iron group metal as a catalyst substrate, an oxide of a rare earth element, and a platinum group metal are supported on a molded support having a micro-macro binary pore structure, which is characterized by sequentially performing a heat treatment and a heat treatment. Production method of catalyst for use. 3. A series of operations of impregnation, drying, ammonia treatment, pyrolysis, hydrogen reduction, and heat treatment can be carried out separately in any order for iron group metals, rare earth elements, and platinum group metals, or in combination of two or more of them. A method according to claim 2, characterized in that: 4 Carbon dioxide and 1. A method for methanating carbon dioxide and carbon monoxide using a catalyst, which method comprises conducting a reaction between carbon monoxide and hydrogen. 5. Process according to claim 4, characterized in that the reaction components are diluted with an inert gas. 6. The method according to claim 4 or 5, characterized in that the reaction is carried out at a gas hourly space velocity of 10,000 gas hourly or more per catalyst.
JP2662778A 1978-03-10 1978-03-10 Novel carried catalyst and method of methanizing carbon dioxide or monoxide using it Granted JPS54119385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2662778A JPS54119385A (en) 1978-03-10 1978-03-10 Novel carried catalyst and method of methanizing carbon dioxide or monoxide using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2662778A JPS54119385A (en) 1978-03-10 1978-03-10 Novel carried catalyst and method of methanizing carbon dioxide or monoxide using it

Publications (2)

Publication Number Publication Date
JPS54119385A JPS54119385A (en) 1979-09-17
JPS6129778B2 true JPS6129778B2 (en) 1986-07-09

Family

ID=12198683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2662778A Granted JPS54119385A (en) 1978-03-10 1978-03-10 Novel carried catalyst and method of methanizing carbon dioxide or monoxide using it

Country Status (1)

Country Link
JP (1) JPS54119385A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08127544A (en) * 1994-10-31 1996-05-21 Agency Of Ind Science & Technol Production of methane from carbon dioxide and hydrogen
JP5094028B2 (en) * 2006-03-20 2012-12-12 日揮触媒化成株式会社 Carbon monoxide methanation catalyst and carbon monoxide methanation method using the catalyst
CN102782161A (en) * 2010-03-02 2012-11-14 杰富意钢铁株式会社 Blast furnace operation method, iron mill operation method, and method for utilizing a gas containing carbon oxides
JP5640803B2 (en) * 2010-03-29 2014-12-17 Jfeスチール株式会社 How to operate a blast furnace or steelworks
US9802872B2 (en) 2013-03-28 2017-10-31 Agency For Science, Technology And Research Methanation catalyst
SG2013050877A (en) 2013-06-28 2015-01-29 Agency Science Tech & Res Methanation catalyst
US10005078B2 (en) * 2016-03-16 2018-06-26 Kabushiki Kaisha Toshiba Fuel synthesis catalyst and fuel synthesis system
WO2017175638A1 (en) * 2016-04-04 2017-10-12 花王株式会社 Method for producing alcohol
JP6909405B2 (en) * 2017-10-26 2021-07-28 株式会社豊田中央研究所 Methaneization catalyst, its production method, and methane production method using it
JP2020037535A (en) * 2018-09-05 2020-03-12 日立化成株式会社 Methanation system for carbon dioxide

Also Published As

Publication number Publication date
JPS54119385A (en) 1979-09-17

Similar Documents

Publication Publication Date Title
CA1213877A (en) Catalysts and their use in ammonia production
US4285837A (en) Catalyst for steam reforming of hydrocarbons
JP4523947B2 (en) Method for producing dimethylnaphthalene using metal catalyst
US4039561A (en) Process for preparing ethylene oxide
JP2019177381A (en) Ammonia oxidation degradation-hydrogen generation catalyst, and hydrogen manufacturing device
KR100612956B1 (en) High Performance Water Gas Shift Catalysts and A Method of Preparing The Same
KR102241516B1 (en) Ruthenium based zeolite based catalysts for ammonia dehydrogenation, method of forming the same and method of producing hydrogen gas from ammonia using the same
JPS6129778B2 (en)
JP6566662B2 (en) Ammonia oxidative decomposition catalyst, hydrogen production method and hydrogen production apparatus using ammonia oxidative decomposition catalyst
US4003850A (en) Novel iron oxide catalysts
US20020042340A1 (en) Catalyst carrier carrying nickel ruthenium and lanthanum
CN1232720A (en) Catalyst for self-heating oxidation and reforming of natural gas to produce synthetic gas and its preparation process
US20180030357A1 (en) Thermally stable monolith catalyst for reforming reaction
US4510071A (en) Methanol conversion process
KR102296609B1 (en) Catalyst for manufacturing hydrocarbon and method for preparing thereof
KR101982773B1 (en) Thermally Stable Monolith Catalysts for Methane Reforming and Preparing Method of the Same
JPH06340557A (en) Production of methane from carbon dioxide
KR102610122B1 (en) Composite Catalyst Physically Mixed with Nickel Oxide and Method for Manufacturing the Same
KR20180099060A (en) Catalyst for reforming of methane, and CO2 reforming of methane
JPS60122038A (en) Catalyst for reforming methanol
US20050169835A1 (en) Process for the treatment of methane/carbon dioxide mixtures
KR20230072397A (en) Catalyst for reforming of methane and method for manufacturing thereof
JP2022181492A (en) Oxidative dehydrogenation catalyst
JP2024055069A (en) Ammonia decomposition catalyst using oxynitride as catalyst support
JPH0611402B2 (en) Methanol reforming catalyst