JPH08239201A - Production of hydrogen by reforming of methane - Google Patents

Production of hydrogen by reforming of methane

Info

Publication number
JPH08239201A
JPH08239201A JP6177457A JP17745794A JPH08239201A JP H08239201 A JPH08239201 A JP H08239201A JP 6177457 A JP6177457 A JP 6177457A JP 17745794 A JP17745794 A JP 17745794A JP H08239201 A JPH08239201 A JP H08239201A
Authority
JP
Japan
Prior art keywords
reaction
catalyst
ceo
combustion
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6177457A
Other languages
Japanese (ja)
Other versions
JP3589309B2 (en
Inventor
Satoyuki Inui
智行 乾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Coke and Chemicals Co Ltd
Original Assignee
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Coke and Chemicals Co Ltd filed Critical Kansai Coke and Chemicals Co Ltd
Priority to JP17745794A priority Critical patent/JP3589309B2/en
Publication of JPH08239201A publication Critical patent/JPH08239201A/en
Application granted granted Critical
Publication of JP3589309B2 publication Critical patent/JP3589309B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE: To supply reaction heat by combustion of CH4 and utilize all of CO2 and H2 O of combustion reaction product so as to produce H2 and CO by carrying out catalytic reaction of CH4 with O2 in the presence of a specific catalyst. CONSTITUTION: Al2 O3 is applied to the surface of a nonwoven fabric-like carrier made of ceramics and having proper porosity and Rh is supported thereon and then Pt is supported and further, Ni and CeO2 are simultaneously supported to afford a Rh-modified (Ni-CeO2 )-Pt catalyst having compositions whose weight ratio of Rh:Ni:CeO2 :Pt is (0.05-0.5):(3.0-10.0):(2.0-8.0):(0.3-5.0). The catalyst is vertically packed into a quartz pipe in a heatable reacting furnace. A raw material gas mixture of CH4 and O2 is as necessary diluted with N2 and the gas is fed to the catalyst in the quartz pipe under high flow rate condition from the heated pipe and catalytic reaction of CH4 with O2 is carried out while keeping catalyst temperature to 350-800 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、Rhで修飾された(Ni-Ce
O2)-Pt触媒を用いて、CH4 を相手方ガスと接触反応させ
ることにより、H2とCOとに変換する方法に関するもので
ある。
The present invention relates to Rh-modified (Ni-Ce
The present invention relates to a method of converting CH 4 into H 2 and CO by catalytically reacting CH 4 with a counter gas using an O 2 ) -Pt catalyst.

【0002】[0002]

【従来の技術】近年、地球温暖化の原因の一つとなって
いるCO2 の削減が重要な課題となっている。またCO2
メタノールへの変換などに必要なH2をどのようにして得
るかという問題もある。
2. Description of the Related Art In recent years, reduction of CO 2 , which is one of the causes of global warming, has become an important issue. There is also the problem of how to obtain H 2 necessary for conversion of CO 2 to methanol.

【0003】これらの問題解決の有力な手段の一つとし
て、本発明者らはかねてよりCH4 をCO2 やH2O で改質し
てH2およびCOに変換させる一連の研究を行っている。
As one of the powerful means for solving these problems, the present inventors have conducted a series of researches for reforming CH 4 with CO 2 or H 2 O to convert it into H 2 and CO. There is.

【0004】すなわち、本発明者らの発表にかかる「日
本化学会65春季年会予稿集I、409頁(199
3)」の「Rh修飾(Ni-CeO2)-Pt触媒によるメタンの低温
CO2-H2O改質反応」と題する発表には、Ni-CeO2-Pt触媒
をRhで修飾したRh修飾(Ni-CeO2)-Pt触媒が、CH4 のCO2
やH2O による改質反応において、高流速条件下で著しく
活性が増大することが示されている。
That is, regarding the presentation by the present inventors, "Proceedings of the 65th Annual Meeting of the Chemical Society of Japan I, p. 409 (199)
3) ”,“ Rh-modified (Ni-CeO 2 ) -Pt catalyst for low temperature methane ”
CO The 2 -H 2 O reforming reaction entitled "announcement, Rh modification was modified Ni-CeO 2 -Pt catalyst Rh (Ni-CeO 2) -Pt catalyst, CO 2 of CH 4
It has been shown that the reforming reaction with H 2 O and H 2 O significantly increases the activity under high flow rate conditions.

【0005】[0005]

【発明が解決しようとする課題】しかしながら高活性の
Rh修飾(Ni-CeO2)-Pt触媒を用いても、CH4 とCO2-H2O と
の反応によるH2およびCOへの改質反応は吸熱反応である
ため、反応中の熱の供給が問題となる。この問題は、特
に高流速条件下での反応の場合に顕著なものとなる。
[Problems to be Solved by the Invention]
Even with the Rh-modified (Ni-CeO 2 ) -Pt catalyst, the reforming reaction to H 2 and CO by the reaction of CH 4 and CO 2 -H 2 O is an endothermic reaction, so Supply is a problem. This problem becomes remarkable especially in the case of reaction under high flow rate conditions.

【0006】本発明は、このような背景下において、Rh
修飾(Ni-CeO2)-Pt触媒を用いてCH4の改質を行うにあた
り、CH4 の燃焼を経由させて反応熱の一部を触媒層上で
補うようにし、しかもその燃焼反応物であるCO2 および
H2O を全てH2およびCOの生成に利用することを目的とす
るものである。
Under the circumstances as described above, the present invention is directed to Rh.
When reforming CH 4 using a modified (Ni-CeO 2 ) -Pt catalyst, a portion of the heat of reaction is supplemented on the catalyst layer through the combustion of CH 4 , and the combustion reaction product Some CO 2 and
The purpose is to utilize all H 2 O for the production of H 2 and CO.

【0007】[0007]

【課題を解決するための手段】本発明のメタンの改質に
よる水素の製造法は、Rh修飾(Ni-CeO2)-Pt触媒を用いて
CH4 をO2と接触反応させることにより、CH4 をH2とCOと
に変換させることを特徴とするものである。
[Means for Solving the Problems] The method for producing hydrogen by reforming methane of the present invention uses a Rh-modified (Ni-CeO 2 ) -Pt catalyst.
It is characterized in that CH 4 is converted into H 2 and CO by catalytically reacting CH 4 with O 2 .

【0008】なお、上記のCH4 とO2との接触反応に際し
ては、さらに系にCO2 または/およびH2O を供給するこ
ともできる。
During the above catalytic reaction between CH 4 and O 2 , CO 2 and / or H 2 O can be further supplied to the system.

【0009】以下本発明を詳細に説明する。The present invention will be described in detail below.

【0010】本発明においては、触媒としてRh修飾(Ni-
CeO2)-Pt触媒を用いる。この触媒は、たとえば、適当な
空隙率を有するセラミックス製の不織布状の担体の表面
にAl2O3 を被覆し、そこにRhを担持させ、ついでPtを担
持させ、さらにNiとCeO2とを同時担持させることにより
得られる。ただし、担体の材質や形状の選択、被覆物形
成の有無またはその材質の選択は、種々のバリエーショ
ンが可能である。
In the present invention, Rh modification (Ni-
A CeO 2 ) -Pt catalyst is used. This catalyst is, for example, Al 2 O 3 is coated on the surface of a non-woven ceramic carrier having an appropriate porosity, Rh is supported thereon, then Pt is supported thereon, and Ni and CeO 2 are further supported. It is obtained by carrying them simultaneously. However, various variations are possible in the selection of the material and shape of the carrier, the presence / absence of coating formation, and the selection of the material.

【0011】上記の例の場合、セラミックス製の不織布
状の担体に対するAl2O3 被覆は、Alの水溶性塩を水溶液
または水−有機溶剤混合溶媒による溶液の形で含浸処理
した後、NH3 蒸気で処理してゲル化させ、ついで乾燥、
焼成することにより行われる。
In the case of the above-mentioned example, the non-woven ceramic carrier is coated with Al 2 O 3 by impregnating a water-soluble salt of Al in the form of an aqueous solution or a solution of a water-organic solvent mixed solvent, and then applying NH 3 Treat with steam to gel, then dry,
It is performed by firing.

【0012】Rhの担持は、Rhの水溶性塩の水溶液を含浸
後、乾燥、焼成、水素還元することにより行われる。
The Rh is supported by impregnating it with an aqueous solution of a water-soluble salt of Rh, followed by drying, firing and hydrogen reduction.

【0013】Ptの担持は、Ptの水溶性塩の水溶液を含浸
後、乾燥、焼成、水素還元することにより行われる。
The loading of Pt is carried out by impregnating with an aqueous solution of a water-soluble salt of Pt, followed by drying, firing and hydrogen reduction.

【0014】NiおよびCeO2の同時担持は、Niの水溶性塩
およびCeの水溶性塩の混合水溶液を含浸後、乾燥、焼
成、水素還元することにより行われる。
Simultaneous loading of Ni and CeO 2 is carried out by impregnation with a mixed aqueous solution of a water-soluble salt of Ni and a water-soluble salt of Ce, followed by drying, firing and hydrogen reduction.

【0015】上に例示した手順により、目的とするRh修
飾(Ni-CeO2)-Pt触媒が得られる。各成分の組成は重量比
で、Rh : Ni : CeO2 : Pt = (0.05-0.5) : (3.0-10.0)
: (2.0-8.0) : (0.3-5.0) 、望ましくは、Rh : Ni : C
eO2 : Pt = (0.1-0.4) : (4.0-9.0) : (2.0-5.0) : (0.
3-3.0) に設定することが好ましい。
The procedure illustrated above yields the desired Rh-modified (Ni-CeO 2 ) -Pt catalyst. The composition of each component is a weight ratio, Rh: Ni: CeO 2 : Pt = (0.05-0.5): (3.0-10.0)
: (2.0-8.0): (0.3-5.0), preferably Rh: Ni: C
eO 2 : Pt = (0.1-0.4): (4.0-9.0): (2.0-5.0): (0.
3-3.0) is preferable.

【0016】なお上記における各段階での水素還元処理
を省略し、実際の使用に際して触媒を高温で水素還元し
て用いることもできる。各段階で水素還元処理を行った
ときも、さらに使用に際して触媒を高温で水素還元して
用いることができる。
It is also possible to omit the hydrogen reduction treatment at each stage in the above and omit the hydrogen at high temperature before use in actual use. Even when hydrogen reduction treatment is performed in each stage, the catalyst can be further hydrogen-reduced at high temperature before use.

【0017】このようにして調製したRh修飾(Ni-CeO2)-
Pt触媒を用いてCH4 の改質を行うが、本発明においては
CH4 をO2とを触媒層に供給する方法を採用する。すなわ
ち、CH4 はO2により燃焼してCO2 とH2O を生じ、そのCO
2 とH2O とがCH4 と反応して最終的にH2とCOに変換され
る。
Rh-modified (Ni-CeO 2 )-prepared in this way
CH 4 is reformed using a Pt catalyst, but in the present invention,
A method of supplying CH 4 and O 2 to the catalyst layer is adopted. That is, CH 4 burns with O 2 to produce CO 2 and H 2 O, and the CO
2 and H 2 O react with CH 4 and are finally converted into H 2 and CO.

【0018】この反応は全体として下記の式(1) のよう
に表わされるが、実際は(2) 〜(4)式のように、燃焼反
応で生成したCO2 とH2O がさらにCH4 と改質反応を起こ
してCOとH2に変換するという逐次反応となっている。 4 CH4 + 2 O2 → 4 CO + 8 H2 (1) CH4 + 2 O2 → CO2 + 2 H2O (2) CH4 + CO2 → 2 CO + 2 H2 (3) 2 CH4 + 2 H2O → 2 CO + 6 H2 (4)
This reaction is generally expressed by the following equation (1), but in reality, as shown in equations (2) to (4), CO 2 and H 2 O produced by the combustion reaction are further converted to CH 4 It is a sequential reaction that causes a reforming reaction to convert into CO and H 2 . 4 CH 4 + 2 O 2 → 4 CO + 8 H 2 (1) CH 4 + 2 O 2 → CO 2 + 2 H 2 O (2) CH 4 + CO 2 → 2 CO + 2 H 2 (3) 2 CH 4 + 2 H 2 O → 2 CO + 6 H 2 (4)

【0019】この反応は上記の式(1) のように化学量論
的に決められるので、CH4 とO2との反応割合は基本的に
は体積比で2:1に設定されるが、いずれか一方を過少
または過多に用いても差し支えない。
Since this reaction is stoichiometrically determined as in the above formula (1), the reaction ratio of CH 4 and O 2 is basically set to 2: 1 by volume ratio. Either one may be used too little or too much.

【0020】上記のCH4 とO2との接触反応に際しては、
さらに系にCO2 または/およびH2Oを供給することもで
きる。この場合は、CO2 やH2O の供給量に見合ってO2
供給量を減ずることができる。なおCO2 を用いるとき
は、該CO2 としては発電所や製鉄所から排出される燃焼
ガス、天然ガス、石油精製ガス、アンモニア合成副生ガ
ス、コークス炉ガスなどから膜分離法、圧力スイング分
離法、吸収分離法等の手段により分離取得したものを用
いることができるので、廃ガスの有効利用が図られる。
In the above catalytic reaction between CH 4 and O 2 ,
It is also possible to feed the system with CO 2 and / or H 2 O. In this case, the supply amount of O 2 can be reduced according to the supply amounts of CO 2 and H 2 O. When CO 2 is used, the CO 2 may be a membrane separation method, pressure swing separation from combustion gas, natural gas, refined petroleum gas, ammonia synthesis byproduct gas, coke oven gas, etc. emitted from a power plant or a steel plant. The waste gas can be effectively used because it is possible to use the gas separated and obtained by means such as the absorption method and the absorption separation method.

【0021】反応器は加熱可能に構成される。反応器に
は、上記のRh修飾(Ni-CeO2)-Pt触媒を通常は固定床とし
て充填するが、場合によっては流動床として充填するこ
ともできる。
The reactor is heatable. The reactor is usually packed with the Rh-modified (Ni-CeO 2 ) -Pt catalyst described above as a fixed bed, but in some cases it can also be packed as a fluidized bed.

【0022】反応温度は350〜800℃、殊に400
〜750℃程度が適当である。反応温度はCH4 とO2との
反応によって一部補われるが、不足分は外部加熱するこ
とになる。反応温度が余りに低いときはCH4 の改質反応
自体が円滑に進行せず、一方反応温度が余りに高いとき
は、熱エネルギー的に不利となる上、CH4 の熱分解によ
るカーボンの析出が起こる傾向がある。反応圧力は通常
は常圧とするが、ある程度の加圧条件を採用してもよ
い。
The reaction temperature is 350 to 800 ° C., especially 400
About 750 ° C is suitable. The reaction temperature is partially compensated by the reaction between CH 4 and O 2 , but the deficiency is externally heated. When the reaction temperature is too low, the CH 4 reforming reaction itself does not proceed smoothly, while when the reaction temperature is too high, it is disadvantageous in terms of thermal energy and carbon deposition occurs due to thermal decomposition of CH 4. Tend. The reaction pressure is usually atmospheric pressure, but some pressurization conditions may be adopted.

【0023】反応器からの導出物は、その一部を再び反
応器の前にリサイクル供給することもできる。
A part of the discharged product from the reactor can be recycled to the reactor before it is recycled.

【0024】[0024]

【作用】本発明においては、CH4 の改質反応に対して極
めて高い活性を有するRh修飾(Ni-CeO2)-Pt触媒を用いて
いる。この触媒にあっては、Rhを取り込み口として触媒
表面上の酸化還元雰囲気を適度の状態に保つ水素スピル
オーバー効果により、反応活性が向上するものと考えら
れる。
In the present invention, a Rh-modified (Ni-CeO 2 ) -Pt catalyst having an extremely high activity for CH 4 reforming reaction is used. In this catalyst, it is considered that the reaction activity is improved by the hydrogen spillover effect that keeps the redox atmosphere on the catalyst surface in an appropriate state by using Rh as an intake port.

【0025】この触媒は高流速条件下においてRhで修飾
していない(Ni-CeO2)-Pt触媒に比し活性が高いが、その
ような高流速条件下の反応では吸熱反応による熱の供給
が問題となる。しかるに本発明においては、CH4 の燃焼
を経由しているため、反応の維持に必要な熱の補充が可
能となる。
This catalyst has a higher activity than the (Ni-CeO 2 ) -Pt catalyst which is not modified with Rh under a high flow rate condition, but in the reaction under such a high flow rate condition, heat is supplied by an endothermic reaction. Is a problem. However, in the present invention, since the combustion of CH 4 is used, it is possible to supplement the heat necessary for maintaining the reaction.

【0026】[0026]

【実施例】次に実施例をあげて本発明をさらに説明す
る。
EXAMPLES The present invention will be further described with reference to examples.

【0027】触媒の調製 厚さ1mmのセラミックス繊維製の不織布(東芝モノフラ
ックス株式会社製のファイバーフラックスFF、流路空
隙率88%、耐熱性1200℃)を担体として用い、この担体
に含浸法によりAl(NO3)3の水−メタノール混合溶媒溶液
を含浸させた後、NH3 で処理してゲル化させた。これを
1日風乾後、5分間焼成することにより、17重量%のAl
2O3 を担体表面に被覆させた。
Preparation of catalyst A non-woven fabric made of ceramic fiber having a thickness of 1 mm (Fiber flux FF manufactured by Toshiba Monoflux Co., Ltd., porosity of flow passage 88%, heat resistance 1200 ° C.) was used as a carrier, and the carrier was impregnated by an impregnation method. al (NO 3) 3 in water - after impregnation with methanol mixed solvent solution and allowed to gel by treatment with NH 3. After air-drying this for 1 day, baking it for 5 minutes
The surface of the carrier was coated with 2 O 3 .

【0028】次に、このAl2O3 被覆担体にRh(NO3)3水溶
液を含浸させ、先ほどと同様に風乾し、焼成した後、水
素還元を行うことによりRhを担持させた。以下同様にし
て、Pt(NH3)4(OH)2 水溶液よりPtを担持させ、さらにNi
(NO3)2とCe(NO3)3の混合水溶液よりNiとCeO2を同時担持
させた。以上の3段階にわたる担持操作により、Rh装飾
Ni-CeO2-Pt触媒を調製した。
Next, the Al 2 O 3 -coated carrier was impregnated with an aqueous solution of Rh (NO 3 ) 3 and air-dried in the same manner as above, followed by firing, and then hydrogen reduction was carried to carry Rh. Similarly, Pt was loaded from the Pt (NH 3 ) 4 (OH) 2 aqueous solution, and
Ni and CeO 2 were simultaneously loaded from a mixed aqueous solution of (NO 3 ) 2 and Ce (NO 3 ) 3 . By carrying out the above three-step loading operation, Rh decoration
The Ni-CeO 2 -Pt catalyst was prepared.

【0029】以上の触媒調製工程のフローチャートは次
のようになる。 担体(ファイバーフラックス) Al(NO3)3 aq.-MeOH soln. 含浸 NH3 vapor 処理、乾燥、焼成 Rh(NO3)3 aq.含浸、乾燥、焼成、水素還元 Pt(NH3)4(OH)2 aq. 含浸、乾燥、焼成、水素還元 {Ni(NO3)2 + Ce(NO3)3} aq. 含浸、乾燥、焼成、水
素還元
The flow chart of the above catalyst preparation process is as follows. Carrier (fiber flux) Al (NO 3 ) 3 aq.-MeOH soln. Impregnated NH 3 vapor treatment, drying, firing Rh (NO 3 ) 3 aq. Impregnation, drying, firing, hydrogen reduction Pt (NH 3 ) 4 (OH ) 2 aq. Impregnation, drying, calcination, hydrogen reduction {Ni (NO 3 ) 2 + Ce (NO 3 ) 3 } aq. Impregnation, drying, calcination, hydrogen reduction

【0030】得られたRh装飾Ni-CeO2-Pt触媒の各成分の
割合は次の通りであった。 Rh: 0.2 wt% Ni: 6.6 wt% CeO2: 3.9 wt% Pt: 2.2 wt%
The ratio of each component of the obtained Rh-decorated Ni-CeO 2 -Pt catalyst was as follows. Rh: 0.2 wt% Ni: 6.6 wt% CeO 2 : 3.9 wt% Pt: 2.2 wt%

【0031】反応 図1に示した常圧固定床流通反応装置を用いた。石英管
に触媒を流軸に対して垂直に充填し、これに原料ガスを
流通させた。
Reaction The atmospheric pressure fixed bed flow reactor shown in FIG. 1 was used. A quartz tube was filled with a catalyst perpendicularly to the flow axis, and a raw material gas was passed through this.

【0032】原料ガスは全て反応式の量論比に従い、燃
焼反応を経由する反応の場合はN2で稀釈した10% CH4 -
5% O2 を、燃焼反応を経由しない反応の場合はN2で稀釈
した10% CH4 - 5% CO2 - 5% H2O をそれぞれ流通させ
た。H2O は図1に示すようなH2O 飽和器により加えた。
触媒は全て反応前にN2で稀釈した40%-H2気流中において
400℃で30分間熱処理してから反応に用いた。
All raw material gases follow the stoichiometric ratio of the reaction formula, and in the case of a reaction via a combustion reaction, 10% CH 4- diluted with N 2
The 5% O 2, in the case of a reaction which does not pass through the combustion reaction 10% CH was diluted with N 2 4 - was passed through 5% H 2 O, respectively - 5% CO 2. H 2 O was added by a H 2 O saturator as shown in FIG.
All catalysts were diluted with N 2 before reaction in a 40% -H 2 stream.
It was heat-treated at 400 ° C. for 30 minutes and used for the reaction.

【0033】温度は、室温から 400℃までは 6.3℃/min
で、 400℃から 700℃までは 2.5℃/minで上昇させた。
温度の測定は、熱電対を触媒に接触させて行った。途
中、生成ガスを数回サンプリングし、MS-5A, Porapak-Q
を充填したガスクロマトグラフおよび赤外線式CO2 連続
分析装置で分析した。
The temperature is 6.3 ° C / min from room temperature to 400 ° C.
Then, the temperature was increased from 400 ℃ to 700 ℃ at 2.5 ℃ / min.
The temperature was measured by bringing a thermocouple into contact with the catalyst. During the process, the generated gas was sampled several times, and MS-5A, Porapak-Q
Was analyzed by a gas chromatograph filled with and an infrared CO 2 continuous analyzer.

【0034】Ni系触媒等におけるRh修飾の効果 燃焼を経由するメタン改質反応についてNi系触媒へのRh
転化効果を調べるために、Ni単元触媒、CeO2単元触媒、
Ni+CeO2 触媒、Pt単元触媒、Rh単元触媒、(Ni+CeO2)-Pt
触媒、およびRh装飾(Ni+CeO2)-Pt触媒の7種類について
活性を比較した。各触媒の調製および組成は、上述のRh
装飾(Ni+CeO2)-Pt触媒の場合に準じて行った。SVは全て
73,000h-1 で行った。各触媒について、CH4 のH2, CO2
への転化率の温度依存性を図2に示す。
Effect of Rh modification on Ni-based catalyst, etc. About methane reforming reaction via combustion Rh on Ni-based catalyst
In order to investigate the conversion effect, Ni unit catalyst, CeO 2 unit catalyst,
Ni + CeO 2 catalyst, Pt unit catalyst, Rh unit catalyst, (Ni + CeO 2 ) -Pt
The activity was compared for seven types of catalysts and Rh-decorated (Ni + CeO 2 ) -Pt catalysts. The preparation and composition of each catalyst is described in Rh above.
The procedure was the same as for the decorated (Ni + CeO 2 ) -Pt catalyst. SV is all
It was done at 73,000h -1 . For each catalyst, H 2 of CH 4, CO 2
FIG. 2 shows the temperature dependence of the conversion rate to slag.

【0035】Ni+CeO2 触媒では燃焼反応が起こっただけ
であったが、Pt単元触媒、Rh単元触媒、(Ni+CeO2)-Pt触
媒、およびRh装飾(Ni+CeO2)-Pt触媒では、 300℃付近か
ら燃焼反応が起こり、さらにその反応生成物(CO2, H
2O)による改質反応が 400℃付近から起こった。H2への
転化率は 700℃において(Ni+CeO2)-Pt触媒がPt単元触媒
よりも約10% 、Rh単元触媒よりも約20% ほど高かった。
さらにRhで修飾すると、特に中温部(400〜 600℃) での
活性の上昇が見られた。これはメタン改質反応における
Rh修飾効果ほど顕著ではなかったものの、その場合と同
様に、Rhを取り込み口として触媒表面上の酸化還元雰囲
気を適度な状態に保ついわゆる水素スピルオーバー効果
により、反応活性が上昇したものと考えられる。
Although only the combustion reaction occurred in the Ni + CeO 2 catalyst, the Pt unit catalyst, the Rh unit catalyst, the (Ni + CeO 2 ) -Pt catalyst, and the Rh decorated (Ni + CeO 2 ) -Pt catalyst were used. , A combustion reaction occurs at around 300 ° C, and the reaction products (CO 2 , H
The reforming reaction by 2 O) occurred at around 400 ℃. The conversion rate to H 2 was about 10% higher than that of the Pt unit catalyst and about 20% higher than that of the Rh unit catalyst at 700 ℃ (Ni + CeO 2 ) -Pt catalyst.
Further modification with Rh showed an increase in activity, especially in the mesophilic region (400-600 ° C). This is in the methane reforming reaction
Although it was not so remarkable as the Rh modification effect, it is considered that the reaction activity was increased by the so-called hydrogen spillover effect which keeps the redox atmosphere on the catalyst surface in an appropriate state by using Rh as an intake port, although it was not so remarkable.

【0036】高流速条件下におけるRh修飾(Ni+CeO2)-Pt
触媒の特性 低流速条件下(SV: 73,000h-1) ではRh装飾(Ni+CeO2)-Pt
触媒とRh修飾Pt触媒との間に活性の差がほとんど見られ
なかったので、高流速条件下(SV: 358,000h-1)で活性の
比較を行った。図3にSVが358,000h-1でのCH4 のH2, CO
2 への転化率の温度依存性を示した。この図に示したよ
うに、高流速条件下では活性に明らかに差が見られ、Rh
装飾(Ni+CeO2)-Pt触媒の方がRh修飾Pt触媒よりも 400〜
700℃の温度域でH2への転化率が約10% ほど高かった。
このように、Rh装飾(Ni+CeO2)-Pt触媒は高流速下になる
ほど他の触媒に対する優位性がより大きく現われること
が認められた。
Rh modified (Ni + CeO 2 ) -Pt under high flow rate conditions
Catalyst characteristics Under low flow rate conditions (SV: 73,000h -1 ), Rh decoration (Ni + CeO 2 ) -Pt
Since there was almost no difference in activity between the catalyst and the Rh-modified Pt catalyst, a comparison of the activities was performed under high flow rate conditions (SV: 358,000h -1 ). Fig. 3 shows that H 2 and CO of CH 4 at SV of 358,000h -1
The temperature dependence of the conversion rate to 2 was shown. As shown in this figure, there is a clear difference in activity under high flow rate conditions.
Decorative (Ni + CeO 2 ) -Pt catalyst is 400 ~ more than Rh modified Pt catalyst
The conversion to H 2 was about 10% higher in the temperature range of 700 ℃.
As described above, it was confirmed that the Rh-decorated (Ni + CeO 2 ) -Pt catalyst showed a greater advantage over other catalysts at higher flow rates.

【0037】燃焼を経由しないメタン改質反応の反応機
燃焼を経由しないメタン改質反応の反応機構について検
討した。先に述べたように最も活性の高いことが認めら
れたRh装飾(Ni+CeO2)-Pt触媒を用い、SVを73,000h-1
低流速の条件で行った。図4においては、CH4, CO2, H2
O の転化率とCO, H2への反応進行度の温度依存性を示し
た。
Reactor for methane reforming reaction that does not go through combustion
It was investigated reaction mechanism of methane reforming reaction which does not pass through the structure combustion. As mentioned above, SV was carried out at a low flow rate of 73,000 h -1 using the Rh-decorated (Ni + CeO 2 ) -Pt catalyst, which was found to have the highest activity. In FIG. 4, CH 4 , CO 2 , H 2
The temperature dependence of the conversion rate of O 2 and the progress of the reaction to CO and H 2 was shown.

【0038】この反応では、次式(b), (c)に示すように
CH4 を直接CO2 とH2O とで改質しており、全体として
(a) 式で表わされるような大きな吸熱反応(ΔH=+48
0.64kJ/mol at 500℃)となっている。 2 CH4 + H2O + CO2 → 3 CO + 5 H2 (a) CH4 + CO2 → 2 CO + 2 H2 (b) CH4 + H2O → CO + 3 H2 (c)
In this reaction, as shown in the following equations (b) and (c),
CH 4 is directly modified with CO 2 and H 2 O,
Large endothermic reaction (ΔH = + 48)
0.64kJ / mol at 500 ℃). 2 CH 4 + H 2 O + CO 2 → 3 CO + 5 H 2 (a) CH 4 + CO 2 → 2 CO + 2 H 2 (b) CH 4 + H 2 O → CO + 3 H 2 (c)

【0039】図4において、 400℃付近でのCO2 の転化
率がマイナスになっていること、すなわちCO2 の量が反
応前よりも多いことや、H2O の転化率が他の転化率に比
べて高いのは、次の式(d) のような熱力学的に有利なCO
シフト反応(ΔH=-37.09kJ/mol at 500 ℃)が優先的
に起こっているためと考えられる。 CO + H2O → CO2 + H2 (d)
In FIG. 4, the CO 2 conversion rate near 400 ° C. is negative, that is, the amount of CO 2 is larger than that before the reaction, and the conversion rate of H 2 O is other conversion rates. Is higher than that of thermodynamically advantageous CO as shown in the following equation (d).
It is considered that the shift reaction (ΔH = −37.09 kJ / mol at 500 ° C.) occurs preferentially. CO + H 2 O → CO 2 + H 2 (d)

【0040】燃焼を経由するメタン改質反応の反応機構 燃焼を経由するメタン改質反応について検討した。燃焼
を経由しない場合と同様にRh装飾(Ni+CeO2)-Pt触媒を用
い、SVを73,000h-1 の低流速の条件で行った。図5にお
いては、CH4 の転化率と、CH4 からH2, CO, CO2, H2Oへ
の転化率の温度依存性を示した。
Reaction Mechanism of Methane Reforming Reaction via Combustion A methane reforming reaction via combustion was examined. SV was performed under the condition of low flow rate of 73,000h -1 using Rh-decorated (Ni + CeO 2 ) -Pt catalyst as in the case without combustion. FIG. 5 shows the temperature dependence of the conversion rate of CH 4 and the conversion rate of CH 4 to H 2 , CO, CO 2 , and H 2 O.

【0041】この反応は全体として次式(1) のように表
わされるが、実際は(2) 〜(4) 式のように、燃焼反応で
生成したCO2 とH2O がさらにCH4 と改質反応を起こして
COとH2に変換するという逐次反応となっている。 4 CH4 + 2 O2 → 4 CO + 8 H2 (1) CH4 + 2 O2 → CO2 + 2 H2O (2) CH4 + CO2 → 2 CO + 2 H2 (3) 2 CH4 + 2 H2O → 2 CO + 6 H2 (4)
This reaction is generally represented by the following equation (1), but in reality, as shown in equations (2) to (4), CO 2 and H 2 O produced by the combustion reaction are further converted to CH 4. Cause a quality reaction
It is a sequential reaction of converting into CO and H 2 . 4 CH 4 + 2 O 2 → 4 CO + 8 H 2 (1) CH 4 + 2 O 2 → CO 2 + 2 H 2 O (2) CH 4 + CO 2 → 2 CO + 2 H 2 (3) 2 CH 4 + 2 H 2 O → 2 CO + 6 H 2 (4)

【0042】このことは、図5に示すように、 350〜 4
00℃付近からCO2 の生成が始まり、それに少し遅れてH2
とCOが生成し始め、その量が増えるに従ってCO2 への転
化率が減っていることから読み取ることができる。ここ
でCOよりもH2への転化率の方が高いのは、CO2 改質反応
(3) (ΔH=+258.86kJ/mol at 500℃)より吸熱の小さ
い水蒸気改質反応(4) (ΔH=+221.77kJ/mol at 500
℃)の寄与の方が大きいことと、さらには下記の(5) 式
に示すような発熱を伴なう副反応のCOシフト反応(ΔH
=-37.09kJ/mol at 500 ℃)の存在により、実際のH2/C
O 比が(1) 式から求めたH2/CO 比 2よりも大きくなるた
めと考えられる。 CO + H2O → CO2 + H2 (5)
This means that, as shown in FIG.
The generation of CO 2 begins at around 00 ° C, and after a short delay, H 2
It can be read from the fact that the conversion rate to CO 2 decreases as the amount of CO and CO starts to increase and increases. Here, the conversion rate to H 2 is higher than that to CO is due to the CO 2 reforming reaction.
(3) Steam reforming reaction with smaller endotherm than (ΔH = + 258.86kJ / mol at 500 ℃) (4) (ΔH = + 221.77kJ / mol at 500 ℃)
℃) is larger than the above, and the CO shift reaction (ΔH
= -37.09 kJ / mol at 500 ° C), the actual H 2 / C
It is considered that this is because the O ratio becomes larger than the H 2 / CO ratio 2 calculated from Eq. (1). CO + H 2 O → CO 2 + H 2 (5)

【0043】しかし、高温になるに従ってH2とCOへの転
化率は近い値となり、このことは図6に示すようなH2/C
O 体積比の温度依存性にも現れた。この図6に示すよう
に、高温になるに従って、燃焼を経由するメタン改質反
応では量論値 2に、燃焼を経由しない反応では量論値
1.7に近づいていった。
However, as the temperature rises, the conversion rates of H 2 and CO become closer, which means that H 2 / C as shown in FIG.
It also appeared in the temperature dependence of the O 2 volume ratio. As shown in FIG. 6, as the temperature increases, the methane reforming reaction that goes through combustion has a stoichiometric value of 2, and the reaction that does not go through combustion has a stoichiometric value of 2.
I was approaching 1.7.

【0044】燃焼を経由する場合としない場合とのメタ
ン改質反応の比較 燃焼を経由するメタン改質反応と、経由しない反応のそ
れぞれについてSVを73,000〜358,000h-1に変えたときの
転化率の変化を調べた。触媒は、共にRh装飾(Ni+CeO2)-
Pt触媒を用いた。図7には各反応、SVにおけるCH4 の転
化率の温度依存性を示した。
Meta with and without Combustion
Comparison of methane reforming reaction We investigated the change in conversion rate when the SV was changed from 73,000 to 358,000h -1 for the methane reforming reaction via combustion and the non-reforming reaction. Both catalysts are Rh-decorated (Ni + CeO 2 )-
A Pt catalyst was used. FIG. 7 shows the temperature dependence of the conversion rate of CH 4 in each reaction and SV.

【0045】この図7のように、燃焼を経由しないメタ
ン改質反応においては、SVの上昇により転化率が明らか
に低下したが、燃焼を経由する反応の場合においては、
SVが約5倍になったにももかかわらず、高活性を維持す
ることができた。
As shown in FIG. 7, in the methane reforming reaction that does not go through combustion, the conversion rate obviously decreases due to the increase of SV, but in the case of the reaction that goes through combustion,
Although the SV was increased by about 5 times, high activity could be maintained.

【0046】このように、燃焼を経由する反応が高流速
条件下でも高活性を維持するのは、メタン改質に必要な
反応熱の一部を燃焼熱でもって触媒層上で補い、高流速
条件下においても安定した熱供給が行われたためと考え
られる。
As described above, the reason why the reaction via combustion maintains high activity even under high flow velocity conditions is that a part of the reaction heat required for methane reforming is supplemented by combustion heat on the catalyst layer, It is considered that the stable heat supply was performed even under the conditions.

【0047】O2と共にCO2, H2Oを供給した場合 CH4 とO2との接触反応に際し、O2の供給量を減ずると共
に、それに見合った量のCO2 、H2O 、またはCO2 とH2O
の双方を供給する実験を行ったところ、燃焼経由の場合
と燃焼非経由の場合との中間程度の結果が得られた。
[0047] When supplying the CO 2, H 2 O with O 2 on contact reaction between CH 4 and O 2, with reducing the supply amount of O 2, the amount of CO 2, H 2 O commensurate therewith or CO, 2 and H 2 O
As a result of conducting an experiment to supply both of them, intermediate results were obtained between the case of passing the combustion and the case of not passing the combustion.

【0048】反応式および反応エンタルピーのまとめ なお、燃焼を経由するメタン改質反応、燃焼反応を経由
しないメタン改質反応、および副反応のCOシフト反応の
反応式、および 500℃における反応エンタルピーをまと
めると次のようになる。ΔHは、kJ/mol at 500 ℃であ
る。 ・燃焼反応を経由するメタン改質反応 2 CH4 + O2 → 2 CO + 4 H2 ΔH = -48.80 CH4 + 2 O2 → CO2 + 2 H2O ΔH = -800.00 CH4 + CO2 → 2 CO + 2 H2 ΔH = +258.86 CH4 + H2O → CO + 3 H2 ΔH = +221.77 ・燃焼反応を経由しないメタン改質反応 2 CH4 + H2O + CO2 → 3 CO + 5 H2 ΔH = +480.64 CH4 + CO2 → 2 CO + 2 H2 ΔH = +258.86 CH4 + H2O → CO + 3 H2 ΔH = +221.77 ・COシフト反応 CO + H2O → CO2 + H2 ΔH = -37.09
Summary of reaction formula and reaction enthalpy The reaction formulas of methane reforming reaction via combustion, methane reforming reaction not via combustion reaction, CO shift reaction of side reaction, and reaction enthalpy at 500 ° C. are summarized below. And becomes like this. ΔH is kJ / mol at 500 ° C.・ Methane reforming reaction via combustion reaction 2 CH 4 + O 2 → 2 CO + 4 H 2 ΔH = -48.80 CH 4 + 2 O 2 → CO 2 + 2 H 2 O ΔH = -800.00 CH 4 + CO 2 → 2 CO + 2 H 2 ΔH = +258.86 CH 4 + H 2 O → CO + 3 H 2 ΔH = +221.77 ・ Methane reforming reaction without passing through combustion reaction 2 CH 4 + H 2 O + CO 2 → 3 CO + 5 H 2 ΔH = +480.64 CH 4 + CO 2 → 2 CO + 2 H 2 ΔH = +258.86 CH 4 + H 2 O → CO + 3 H 2 ΔH = +221.77 ・ CO shift reaction CO + H 2 O → CO 2 + H 2 ΔH = -37.09

【0049】[0049]

【発明の効果】本発明においては、CH4 の改質反応に対
して極めて高い活性を有するRh修飾(Ni-CeO2)-Pt触媒を
用いているため、他の類似の触媒に比し反応活性が向上
し、かつ高流速条件下の反応においてはさらに反応活性
が向上する。
INDUSTRIAL APPLICABILITY In the present invention, since the Rh-modified (Ni-CeO 2 ) -Pt catalyst, which has extremely high activity for CH 4 reforming reaction, is used, the reaction is superior to other similar catalysts. The activity is improved, and the reaction activity is further improved in the reaction under the high flow rate condition.

【0050】そして高流速条件下の反応を行うにあたっ
ても、CH4 の燃焼を経由させて反応熱の一部を触媒層上
で補うようにしているので、反応の維持に必要な熱の補
充が可能となり、しかもその燃焼反応物であるCO2 およ
びH2O を全てH2およびCOの生成に利用することができ
る。
Even when the reaction is carried out under a high flow rate condition, since a part of the reaction heat is supplemented on the catalyst layer through the combustion of CH 4 , it is possible to replenish the heat necessary for maintaining the reaction. It is possible, and yet all of its combustion products, CO 2 and H 2 O, are available for the production of H 2 and CO.

【0051】よって本発明は、メタンの接触改質による
水素の製造法として工業的性に富むものである。
Therefore, the present invention is industrially rich as a method for producing hydrogen by catalytically reforming methane.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例において用いた常圧固定床流通反応装置
の説明図である。
FIG. 1 is an explanatory diagram of an atmospheric fixed bed flow reactor used in Examples.

【図2】各触媒上でのCO2, H2 への転化率の温度依存性
を示したグラフである。
FIG. 2 is a graph showing the temperature dependence of the conversion rates of CO 2 and H 2 on each catalyst.

【図3】高流速条件下でのCO2, H2 への転化率の温度依
存性を示したグラフである。
FIG. 3 is a graph showing the temperature dependence of the conversion rates of CO 2 and H 2 under high flow rate conditions.

【図4】燃焼非経由のメタン改質反応におけるCH4, CO2
転化率の温度依存性を示したグラフである。
FIG. 4 CH 4 and CO 2 in methane reforming reaction without combustion
It is a graph showing the temperature dependence of the conversion rate.

【図5】燃焼経由のメタン改質反応におけるH2, CO, CO
2, H2O転化率の温度依存性を示したグラフである。
[Fig. 5] H 2 , CO, CO in methane reforming reaction via combustion
2 is a graph showing the temperature dependence of 2 , H 2 O conversion rate.

【図6】H2/CO 体積比の温度依存性を示したグラフであ
る。
FIG. 6 is a graph showing the temperature dependence of the H 2 / CO volume ratio.

【図7】メタン転化率の温度依存性を示したグラフであ
る。
FIG. 7 is a graph showing temperature dependence of methane conversion rate.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】Rh修飾(Ni-CeO2)-Pt触媒を用いてCH4 をO2
と接触反応させることにより、CH4をH2とCOとに変換さ
せることを特徴とするメタンの改質による水素の製造
法。
1. CH 4 is converted into O 2 using a Rh-modified (Ni-CeO 2 ) -Pt catalyst.
A method for producing hydrogen by reforming methane, which comprises converting CH 4 into H 2 and CO by catalytically reacting with CH 2 .
【請求項2】CH4 とO2との接触反応に際し、さらに系に
CO2 または/およびH2O を供給することを特徴とする請
求項1記載の製造法。
2. When the catalytic reaction between CH 4 and O 2
The method according to claim 1, wherein CO 2 and / or H 2 O is supplied.
【請求項3】接触反応を温度350〜800℃で行うこ
とを特徴とする請求項1または2記載の製造法。
3. The method according to claim 1, wherein the catalytic reaction is carried out at a temperature of 350 to 800 ° C.
【請求項4】Rh修飾(Ni-CeO2)-Pt触媒の各成分の組成
が、重量比で、Rh : Ni : CeO2 : Pt= (0.05-0.5) :
(3.0-10.0) : (2.0-8.0) : (0.3-5.0) である請求項1
または2記載の製造法。
4. The composition of each component of the Rh-modified (Ni-CeO 2 ) -Pt catalyst is in a weight ratio of Rh: Ni: CeO 2 : Pt = (0.05-0.5):
(3.0-10.0): (2.0-8.0): (0.3-5.0)
Or the production method described in 2.
JP17745794A 1994-07-05 1994-07-05 Hydrogen production by methane reforming. Expired - Lifetime JP3589309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17745794A JP3589309B2 (en) 1994-07-05 1994-07-05 Hydrogen production by methane reforming.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17745794A JP3589309B2 (en) 1994-07-05 1994-07-05 Hydrogen production by methane reforming.

Publications (2)

Publication Number Publication Date
JPH08239201A true JPH08239201A (en) 1996-09-17
JP3589309B2 JP3589309B2 (en) 2004-11-17

Family

ID=16031283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17745794A Expired - Lifetime JP3589309B2 (en) 1994-07-05 1994-07-05 Hydrogen production by methane reforming.

Country Status (1)

Country Link
JP (1) JP3589309B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002038268A1 (en) * 2000-11-08 2002-05-16 Idemitsu Kosan Co., Ltd. Catalyst for hydrocarbon reforming and method of reforming hydrocarbon with the same
JP2002336702A (en) * 2001-05-11 2002-11-26 Nippon Oil Corp Autothermal reforming catalyst and method for manufacturing fuel gas for fuel cell
KR100700552B1 (en) * 2005-10-11 2007-03-28 엘지전자 주식회사 Catalyst charging method of reformer for fuel cell
EP1828085A1 (en) * 2004-12-23 2007-09-05 Saudi Arabian Oil Company Thermo-neutral reforming of petroleum-based liquid hydrocarbons
WO2009054830A1 (en) * 2007-10-25 2009-04-30 Utc Power Corporation Reduced generation of ammonia in nickel catalyst of reformer
US7700005B2 (en) 2006-12-26 2010-04-20 Saudi Arabian Oil Company Oil-based thermo-neutral reforming with a multi-component catalyst
JP2010514548A (en) * 2006-12-20 2010-05-06 ヴァイレント エナジー システムズ インク. Reactor system for gas product generation
JP2015093224A (en) * 2013-11-11 2015-05-18 群馬県 Active metal catalyst supported on fiber sheet substrate, and manufacturing method thereof

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008207186A (en) * 2000-11-08 2008-09-11 Idemitsu Kosan Co Ltd Catalyst for hydrocarbon reforming and method of reforming hydrocarbon with the same
WO2002038268A1 (en) * 2000-11-08 2002-05-16 Idemitsu Kosan Co., Ltd. Catalyst for hydrocarbon reforming and method of reforming hydrocarbon with the same
JP2002336702A (en) * 2001-05-11 2002-11-26 Nippon Oil Corp Autothermal reforming catalyst and method for manufacturing fuel gas for fuel cell
JP4648567B2 (en) * 2001-05-11 2011-03-09 Jx日鉱日石エネルギー株式会社 Autothermal reforming catalyst and method for producing fuel gas for fuel cell
AU2005321933B2 (en) * 2004-12-23 2011-09-08 King Fahd University Of Petroleum And Minerals Thermo-neutral reforming of petroleum-based liquid hydrocarbons
JP2008525303A (en) * 2004-12-23 2008-07-17 サウジ アラビアン オイル カンパニー Thermal neutral process for improving petroleum-based liquid hydrocarbons
EP1828085A4 (en) * 2004-12-23 2010-09-15 Saudi Arabian Oil Co Thermo-neutral reforming of petroleum-based liquid hydrocarbons
US7820140B2 (en) 2004-12-23 2010-10-26 Saudi Arabian Oil Company Thermo-neutral reforming of petroleum-based liquid hydrocarbons
EP1828085A1 (en) * 2004-12-23 2007-09-05 Saudi Arabian Oil Company Thermo-neutral reforming of petroleum-based liquid hydrocarbons
JP4864902B2 (en) * 2004-12-23 2012-02-01 サウジ アラビアン オイル カンパニー Thermal neutral process for improving petroleum-based liquid hydrocarbons
KR101301710B1 (en) * 2004-12-23 2013-08-30 킹 에프에이에이치디 유니벌시티 오브 패트로레움 앤 미네랄스 Thermo-neutral reforming of petroleum-based liquid hydrocarbons
KR100700552B1 (en) * 2005-10-11 2007-03-28 엘지전자 주식회사 Catalyst charging method of reformer for fuel cell
JP2010514548A (en) * 2006-12-20 2010-05-06 ヴァイレント エナジー システムズ インク. Reactor system for gas product generation
US7700005B2 (en) 2006-12-26 2010-04-20 Saudi Arabian Oil Company Oil-based thermo-neutral reforming with a multi-component catalyst
WO2009054830A1 (en) * 2007-10-25 2009-04-30 Utc Power Corporation Reduced generation of ammonia in nickel catalyst of reformer
JP2015093224A (en) * 2013-11-11 2015-05-18 群馬県 Active metal catalyst supported on fiber sheet substrate, and manufacturing method thereof

Also Published As

Publication number Publication date
JP3589309B2 (en) 2004-11-17

Similar Documents

Publication Publication Date Title
US4897253A (en) Catalytic generation of hydrogen from hydrocarbons
JP2761609B2 (en) An improved method for the conversion of methane to synthesis gas.
US6458334B1 (en) Catalytic partial oxidation of hydrocarbons
CA2676186C (en) Method and system for producing a hydrogen enriched fuel using microwave assisted methane plasma decomposition on catalyst
KR100732784B1 (en) Process for the production of dimethylether from hydrocarbon
Otsuka et al. The production of synthesis gas by the redox of cerium oxide
CA2283023A1 (en) Hydrocarbon partial oxidation process
KR20000064296A (en) How to Alleviate Nitrogen Oxide in Exhaust from Gas Turbine Power Generation
JP2004203737A (en) Method for producing hydrogen and carbon monoxide by partial oxidation of hydrocarbons
Inui et al. Catalytic combustion of natural gas as the role of on-site heat supply in rapid catalytic CO2 H2O reforming of methane
JPS5827202B2 (en) Kangengas no Seihou
JPH08239201A (en) Production of hydrogen by reforming of methane
CN1131322C (en) Apparatus for producing heat treatment atmospheres
JPH0565441B2 (en)
KR0132012B1 (en) Preparation of hydrocarbon reforming catalyst
JPS6324979B2 (en)
JP3975271B2 (en) Biomass gasification method and catalyst used therefor
JP2004523459A (en) How to use molybdenum carbide catalyst
BG109348A (en) Method for the processing of natural gas into fuels
JPH01148343A (en) Catalyst for production of synthesis gas
KR102579471B1 (en) System and process for producing syngas and carbon monoxide using dioxide dry sorbents
JP2659836B2 (en) Methanol reforming method
JPH05270802A (en) Production of synthetic gas from methane and carbon dioxide as source material
JP2688013B2 (en) Catalyst for syngas production and method for syngas production
JPH07187605A (en) Method for reforming lower hydrocarbon fuel

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040811

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040811

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 9

EXPY Cancellation because of completion of term