JPS60132649A - Catalyst for preparing high calorie gas, its preparation and preparation of high calorie gas - Google Patents

Catalyst for preparing high calorie gas, its preparation and preparation of high calorie gas

Info

Publication number
JPS60132649A
JPS60132649A JP58242774A JP24277483A JPS60132649A JP S60132649 A JPS60132649 A JP S60132649A JP 58242774 A JP58242774 A JP 58242774A JP 24277483 A JP24277483 A JP 24277483A JP S60132649 A JPS60132649 A JP S60132649A
Authority
JP
Japan
Prior art keywords
group metal
catalyst
producing
copper
calorie gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58242774A
Other languages
Japanese (ja)
Other versions
JPH0212144B2 (en
Inventor
Satoyuki Inui
智行 乾
Yoshinobu Takegami
武上 善信
Seiji Nishida
清二 西田
Yoshiaki Ishigaki
石垣 喜章
Masanobu Uba
姥 政信
Junichi Yasumaru
純一 安丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Coke and Chemicals Co Ltd
Original Assignee
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Coke and Chemicals Co Ltd filed Critical Kansai Coke and Chemicals Co Ltd
Priority to JP58242774A priority Critical patent/JPS60132649A/en
Publication of JPS60132649A publication Critical patent/JPS60132649A/en
Publication of JPH0212144B2 publication Critical patent/JPH0212144B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To obtain a catalyst for converting low calorie gas to high calorie one, by combining manganese oxide, a platinum group metal and metal copper and/ or a copper compound with a ferrous metal being a substrate to support the resulting combination by a carrier. CONSTITUTION:As a catalyst for converting low calorie gas to high calorie one, manganese oxide, a platinum group metal and metal copper and/or a copper compound are combined with a ferrous metal such as cobalt or iron as catalyst substrates to be supported by a carrier while the resulting combination is supported by silica and/or alumina used as the carrier. When this catalyst is used, the content of 2-4C hydrocarbon in formed gas is enhanced and high calorie gas is obtained.

Description

【発明の詳細な説明】 本発明は、低カロリーガスから高カロリーガスを得るた
めの触媒、およびその触媒を用いて水素と一酸化炭素を
含むガスあるいは水素と一酸化炭素と二酸化炭素を含む
ガスから炭素数1〜4の炭化水素を含む高カロリー燃料
用ガスを製造する方法に関するものである。
Detailed Description of the Invention The present invention provides a catalyst for obtaining high-calorie gas from low-calorie gas, and a gas containing hydrogen and carbon monoxide or a gas containing hydrogen, carbon monoxide, and carbon dioxide using the catalyst. The present invention relates to a method for producing a high-calorie fuel gas containing a hydrocarbon having 1 to 4 carbon atoms.

都市ガスとしては、従来、コークス炉ガスが主流を占め
てきたが、近年生活環境の保護、供給方式の合理化、無
毒安全性等の観点から見直しが行なわれ、高カロリー天
然ガスへの転換が急ピッチで進められている。その為コ
ークス炉ガスは都市ガスとしての用途をせばめられつつ
あるが、ス(幹産業たる製鉄用コークスの生産に伴って
膨大な量が副生ずるので、この有効な用途を開発するこ
とが重要な課題になっている。ところでこのコークス炉
ガスを今後とも燃料用として活用していくためには現在
の低カロリー性を改善し、天然ガスに匹敵し得る様な高
カロリーガスに変換することができればこの問題の1つ
の解決法になる。
Traditionally, coke oven gas has been the mainstream source of city gas, but in recent years it has been reviewed from the viewpoints of protecting the living environment, rationalizing supply methods, non-toxic safety, etc., and there is a sudden shift to high-calorie natural gas. Things are progressing on the pitch. For this reason, the use of coke oven gas as city gas is being limited, but it is important to develop effective uses for coke, as a huge amount of coke is produced as a by-product in the production of coke for steelmaking, which is the core industry. However, in order to continue to utilize this coke oven gas as a fuel, it would be necessary to improve its current low-calorie properties and convert it into a high-calorie gas comparable to natural gas. This is one solution to this problem.

コークス炉ガスや石炭又は重質油などのガス化ガスの低
カロリー性は、水素、−酸化炭素および二酸化炭素など
を多量に含有することによるので、それらを高カロリー
化するためには、」−記の物質を、メタン、エタン、エ
チレン、プロパン。
The low calorie nature of gasification gases such as coke oven gas, coal, and heavy oil is due to the large amount of hydrogen, carbon oxide, and carbon dioxide they contain, so in order to make them high calorie, The following substances are methane, ethane, ethylene, and propane.

プロピレン、ブタンなどの炭化水素に変換する必要があ
る。本発明者等は上述の事情に鑑み、より高いカロリー
量を有する燃料用ガスを得るべく種々研究の結果本発明
を完成した。
It needs to be converted to hydrocarbons such as propylene and butane. In view of the above-mentioned circumstances, the present inventors completed the present invention as a result of various studies to obtain a fuel gas having a higher calorie content.

即ち本発明の目的をより具体的に述べると、水素と一酸
化炭素を含むガス、あるいは水素と一酸化炭素と二酸化
炭素を含むガス(以下、単に低カロリーガスと称す)例
えばコークス炉ガスを、従来知られている方法よりもは
るかに高カロリーのガスに変換することのできる4元組
成系触媒、およびその触媒を使用して高カロリーガスを
製造する方法を提供しようとするにある。即ち本発明は
、上述の触媒に低カロリーガスを接触させることにより
、メタンのほか、炭素数が2〜4の炭化水素をも含む高
カロリーガスに変換することをlJ的とするものである
。なお、低カロリーガスを炭化水素含有高カロリーガス
に変換する場合、一般に二酸化炭素が副生ずるので、従
来はこれを分離除去していたといういきさつがある。そ
こで本発明においては、上記4元組成系および後記の3
元組成系の2系統の触媒を組み合わせることにより、こ
の副生二耐化jR素を同時に炭化水素化する方法を提供
することも目的として掲げており、これにより二酸化炭
素の分離操作を必要としないという利点が発揮される。
That is, to describe the purpose of the present invention more specifically, a gas containing hydrogen and carbon monoxide, or a gas containing hydrogen, carbon monoxide, and carbon dioxide (hereinafter simply referred to as low-calorie gas), for example, coke oven gas, The object of the present invention is to provide a four-component composition catalyst that can convert gas into a gas with a much higher calorie than conventionally known methods, and a method for producing a high calorie gas using the catalyst. That is, the present invention aims at converting a low-calorie gas into a high-calorie gas containing not only methane but also hydrocarbons having 2 to 4 carbon atoms by contacting the above-mentioned catalyst with the low-calorie gas. Note that when low-calorie gas is converted into high-calorie gas containing hydrocarbons, carbon dioxide is generally produced as a by-product, and conventionally this has been separated and removed. Therefore, in the present invention, the above four-component composition system and the three-component composition system described below are used.
By combining two types of catalysts based on the original composition, the aim is to provide a method for simultaneously converting this by-product diuretic hydrogen into hydrocarbons, thereby eliminating the need for carbon dioxide separation operations. This advantage is demonstrated.

本発明をさらに詳細に説明する。まず本発明の触媒にお
ける1目体はシリカおよび/またはアルミナであるが、
一般に市販されているもの、例えは比表面積が200I
12/g以下の範囲のものを使用することができる。こ
のような担体に担持させる触媒の基質としては鉄族金属
が用いられるが、該鉄族金属としてはコバルト、鉄が4
.′rに好ましい。そして、本発明の触媒は、この基質
金属に、酸化マンガンおよび白金族金属ならびに、金属
銅および/または銅化合物(以下単に銅化合物というこ
とがある)を組み合わせ前記担体に担持させた4元組成
系触媒である。ここで白金族金属としては例えばルテニ
ウム、ロジウム、パラジウム、白金またはイリジウムの
いずれかの金属、が挙げられる。
The present invention will be explained in further detail. First, the primary substance in the catalyst of the present invention is silica and/or alumina,
Generally commercially available products, for example, those with a specific surface area of 200I
12/g or less can be used. Iron group metals are used as substrates for catalysts supported on such carriers, and these iron group metals include cobalt and iron.
.. 'r preferred. The catalyst of the present invention is a quaternary composition system in which the substrate metal is combined with manganese oxide, platinum group metal, copper metal and/or copper compound (hereinafter simply referred to as copper compound) and supported on the carrier. It is a catalyst. Examples of platinum group metals include ruthenium, rhodium, palladium, platinum, and iridium.

本発明の触媒は、以上のような触媒成分を組み合わせた
ことにより、これに低カロリーガスを接触させたとき0
2〜C4の炭化水素を多く含む高カロリーガスを得るこ
とができる。しかしてそのような効果が奏せられる理由
は、詳細は不明であるが、上記銅化合物を組み合わせる
ことにより。
The catalyst of the present invention combines the above-mentioned catalyst components, so that when it is brought into contact with a low-calorie gas,
A high-calorie gas containing a large amount of 2 to C4 hydrocarbons can be obtained. However, the reason why such an effect can be achieved is not clear in detail, but by combining the above-mentioned copper compounds.

触媒ノ^質である鉄族金属と白金族金属とに対する複合
効果が促進され、CO吸着性が増大して適度に炭素重合
活性が増加し、且つ水素吸着性が減少して02〜C4の
炭化水素生成が向上することによるものではないかと推
定される。上記組み合わせにおいて、触媒基質となる鉄
族金属の担持量は全触媒に対し、3〜15%特に好まし
くは5〜12%である。また酸化マンガンの担持量は鉄
族金属元素対マンガン元素の原子比が(5:1)〜(5
: 4)の範囲を満足するように設定され、白金族金属
の114持量は鉄族金属元素対白金族金属元素の原子比
が(30: l)〜(5: 2)の範囲を満足するよう
に設定される。さらに銅化合物の担持用は金属銅として
全触媒に対して0.1〜3.0%の範囲を満足するよう
に設定される。
The combined effect on iron group metals and platinum group metals, which are catalytic substances, is promoted, CO adsorption increases and carbon polymerization activity moderately increases, and hydrogen adsorption decreases and carbonization of 02 to C4 is promoted. It is presumed that this is due to improved hydrogen production. In the above combination, the supported amount of the iron group metal serving as the catalyst substrate is 3 to 15%, particularly preferably 5 to 12%, based on the total catalyst. The amount of manganese oxide supported is determined by the atomic ratio of iron group metal element to manganese element (5:1) to (5:1).
: The 114 content of the platinum group metal is set so as to satisfy the range of 4), and the atomic ratio of the iron group metal element to the platinum group metal element satisfies the range of (30: l) to (5: 2). It is set as follows. Further, the supporting amount of the copper compound is set so as to satisfy the range of 0.1 to 3.0% of the total catalyst as metallic copper.

本発明の触媒を調製するに当ってはシリカおよび/また
はアルミナよりなる担体に、白金族金属を担持させ、つ
いで鉄族金属、酸化マンガンおよび銅化合物を同時に1
u持させるかまたは、まず白金族金属および銅化合物を
同時にあるいは個々に担持させ、ついで鉄族金属と酸化
マンガンとを同時にあるいは個々に担持させる。
In preparing the catalyst of the present invention, a platinum group metal is supported on a carrier made of silica and/or alumina, and then an iron group metal, manganese oxide, and a copper compound are simultaneously added.
Alternatively, a platinum group metal and a copper compound may be supported simultaneously or individually, and then an iron group metal and a manganese oxide may be supported simultaneously or individually.

すなわち−I−記手順にしたがって各触媒成分を担持さ
せて111られる触媒は、低カロリーガスを01〜C4
の炭化水素を含有する高カロリーガスに変換する場合、
特に02〜C4成分の生成の選択能力が有効に発揮され
る。例えば鉄族金属と酸化マンガンと銅化合物を同時に
あるいは個々に担持させ、そのあとで白金族金属を担持
させるとか、銅化合物を担持させそのあとで酸化マンガ
ンと鉄族金属を同時についで白金族金属を担持させたも
のでは4元組成系触媒としての複合効果が充分発揮され
ず、02〜C4の炭化水素を含む高カロリーガスを得る
には不利であることが本発明者等によって確認された。
That is, the catalyst prepared by supporting each catalyst component according to the procedure described in -I-
When converting to high calorie gas containing hydrocarbons,
In particular, the ability to select the production of 02 to C4 components is effectively exhibited. For example, an iron group metal, a manganese oxide, and a copper compound may be supported simultaneously or individually, and then a platinum group metal is supported, or a copper compound is supported, and then manganese oxide and an iron group metal are simultaneously added, and then a platinum group metal is supported. The present inventors have confirmed that the supported catalyst does not exhibit a sufficient composite effect as a four-component composition catalyst, and is disadvantageous for obtaining a high-calorie gas containing 02 to C4 hydrocarbons.

本発明の触媒は、前記の基本的構成によって製造される
が、それをさらに具体的に述べると、シリカおよび/ま
たはアルミナよりなる担体に、白金族金属、鉄族金属、
マンガンおよび銅化合物を、硝酸塩水溶液または塩化物
水溶液などの形で噴N 、 nk、布、浸漬等の手段に
より含浸させたあと、乾燥、アンモニア処理、熱分解、
水素還元等の工程を順次施して、4元組成系触媒を調製
する。なおこの調製にあたりアンモニア処理工程は省略
できる場合もある。本発明触媒の製造例をさらに具体的
に説明する。
The catalyst of the present invention is produced by the above-mentioned basic structure, but to describe it more specifically, a platinum group metal, an iron group metal, a platinum group metal, an iron group metal,
After impregnating manganese and copper compounds in the form of nitrate aqueous solution or chloride aqueous solution by means such as spraying N, NK, cloth, and dipping, drying, ammonia treatment, thermal decomposition,
A four-component catalyst is prepared by sequentially performing steps such as hydrogen reduction. Note that in this preparation, the ammonia treatment step may be omitted in some cases. A manufacturing example of the catalyst of the present invention will be explained in more detail.

まずシリカおよび/またはアルミナよりなる担体、また
はこれを500〜1100℃で熱処理した成形担体に、
その細孔容積と等量の白金族金属 □の硝m 411ま
たは同塩化物の水溶液を含浸させ、常温でゆるやかに転
動させながら風乾する。
First, a carrier made of silica and/or alumina, or a molded carrier heat-treated at 500 to 1100°C,
It is impregnated with an aqueous solution of platinum group metal nitrate m411 or its chloride in an amount equal to the pore volume, and air-dried at room temperature while gently rolling.

なお乾燥を速めるために、150°Cの温度に調節され
た市販の乾燥器を使用してもよい。つぎに上記処理物を
、10〜20%アンモニアと1−10%水蒸気を含む雰
囲気中に2〜3分間曝露する。
Note that in order to speed up drying, a commercially available dryer adjusted to a temperature of 150°C may be used. Next, the treated product is exposed to an atmosphere containing 10 to 20% ammonia and 1 to 10% water vapor for 2 to 3 minutes.

その後、空気中で約350°Cまでに加熱し、含浸され
ている白金族金属硝酸塩または同塩化物を熱分解して酸
化物とする。これを不活性ガスで希釈した水素濃度10
〜20%の気流中で常温から400°Cまで昇温し、同
温度に30分間保持して還元し、ついで同気流中で常温
まで冷却する。このようにして得られた白金族金属1u
持体に、前記と同じ含浸法により鉄族金属の例えば硝酸
塩水溶液と、マンガンの例えば硝酸1n水溶液と銅の例
えば硝酸111水溶液との混合液を同時に含浸させる。
Thereafter, it is heated to about 350° C. in air to thermally decompose the impregnated platinum group metal nitrate or chloride into an oxide. Hydrogen concentration of 10 diluted with inert gas
The temperature is raised from room temperature to 400° C. in a ~20% air flow, maintained at the same temperature for 30 minutes for reduction, and then cooled to room temperature in the same air flow. Platinum group metal 1 u obtained in this way
The support is simultaneously impregnated with a mixed solution of an iron group metal such as a nitrate aqueous solution, a manganese such as a 1N aqueous solution of nitric acid, and a copper such as a 111 aqueous nitric acid solution by the same impregnation method as described above.

ついで前記白金族金属を担持させる場合と同様に風乾ま
たは加熱乾燥、アンモニア処理、熱分解。
Then, air drying or heating drying, ammonia treatment, and thermal decomposition are performed in the same manner as in the case of supporting the platinum group metal.

水素還元等の処理を施すことにより、4元組成系触媒を
得る。
A four-component composition catalyst is obtained by performing a treatment such as hydrogen reduction.

本発明の触媒の調製において、以」二のようにして触媒
成分を担持させたあと、還元性雰囲気上熱処理を施して
もよい。
In preparing the catalyst of the present invention, the catalyst components may be supported in the following manner and then heat treated in a reducing atmosphere.

本発明の触媒によって、コークス炉ガス、ナフサや重質
油の水蒸気改質ガス、さらには水性ガスや石炭ガス化ガ
スのような低カロリーガスを炭素数1〜4の炭化水素を
含む高カロリーガスに変換するには、例えばつぎのよう
にして行なうことができる。すなわち1以上のようにし
て得られた触媒を反応塔に充填し、触媒層の温度を15
0〜400°C9好ましくは250〜350℃に制御し
なから5−30kg/cm G 、好ましくは10〜2
0 kg/cm2Gの加圧下に触媒容量141当り、1
〜10m”/hr 、好ましくは2〜5 m”/hr 
c7)低カロリーカスを導入することにより触媒層内で
は、炭素数が1〜4の炭化水素を含有する高カロリーガ
スか生成するがその際、副生じた水が次の0式で示すよ
うに、原料低カロリーガス中の−・酸化炭素とシフト反
応を起こして二酸化炭素を副生ずる。
By using the catalyst of the present invention, low-calorie gases such as coke oven gas, steam reformed gas of naphtha and heavy oil, as well as water gas and coal gasification gas can be converted into high-calorie gas containing hydrocarbons having 1 to 4 carbon atoms. For example, the conversion can be done as follows. That is, the catalyst obtained as described above is packed into a reaction tower, and the temperature of the catalyst layer is set to 15
0 to 400°C, preferably controlled at 250 to 350°C, 5 to 30 kg/cm G, preferably 10 to 2
1 per catalyst capacity of 141 under a pressure of 0 kg/cm2G
~10 m”/hr, preferably 2-5 m”/hr
c7) By introducing low-calorie scum, a high-calorie gas containing hydrocarbons having 1 to 4 carbon atoms is generated in the catalyst layer, but at that time, the water produced as a by-product is as shown in the following equation 0. , a shift reaction occurs with -carbon oxide in the low-calorie raw material gas to produce carbon dioxide as a by-product.

また、場合によっては、■式により原ネ゛1低カロリー
ガス中の一酸化炭素それ自体が不均化反応を起こし、二
酸化炭素を副生ずることもある。
Further, in some cases, carbon monoxide itself in the low-calorie raw gas may undergo a disproportionation reaction according to formula (2), producing carbon dioxide as a by-product.

CO+H20=CO2+H2(1) 2CO=CO2+C■ 本発明では、上記炭化水素化反応による副生二酸化炭素
ガスが混入しているCZ〜C4カスを、シリカおよび/
またはアルミナよりなる担体にニッケル、希土類元素酸
化物及び白金族金属を担持させた3元組成系触媒に引続
き接触させることにより、該副生二酸化炭素をもメタン
に変換させることができ1本発明はこの様な゛作用効果
をも含むものである。
CO+H20=CO2+H2(1) 2CO=CO2+C ■ In the present invention, the CZ to C4 scum mixed with by-product carbon dioxide gas from the above hydrocarbonization reaction is treated with silica and/or
Alternatively, the by-product carbon dioxide can also be converted into methane by subsequent contact with a ternary composition catalyst in which nickel, a rare earth element oxide, and a platinum group metal are supported on a carrier made of alumina. It also includes such effects.

上記の副生二酸化炭素をメタンに変換させる3元組成系
触媒について説明すると、その調整に当っては、粒径が
例えば2〜4fflI11の粒状シリカまたはアルミナ
(市販品を必要に応じて乾燥し、水分を除去したもので
よい)が担体として使用される。上記担体に相持させる
触媒は基質がニッケルであり、この基質金属に希土類元
素酸化物、例えばランタン、セリウム、プラセオジウム
、トリウムまたはサマリウムの酸化物の1種と白金族金
属、例えばルテニウム、白金、パラジウム、ロジウムま
たはイリジウムのl iJを組み合わせたものであるが
、触媒効果および経済性を考慮した場合は、前記希土類
元素の酸化物としては酸化ランタンや酸化セリウムが、
また白金族金属としてはルテニウムやパラジウムが最も
好ましいものとして挙げることができる。上記組み合わ
せにおいて、触媒ノ、(¥1となるニッケルの担持量は
全触媒に対して3〜12%、特に好ましくは4〜8%の
範囲である。また希土類元素の酸化物はニッケル元素対
希土類元素の原子比が(2:1)〜(10:1)を満足
する様に設定し、更に白金族金属はニッケル元素対白金
族金属元素の原子比が(10:1)〜(30:1)を満
足する様に設定して各々担持させることが好ましい。な
お、各触媒成分を、」ニ記範囲を越えて担持させても触
媒効果はそれ以」ニ向上せず、むしろ担体細孔の閉塞等
を起こして触媒性能が却って低下する傾向があるので好
ましくない。この3元組成系触媒の製造に当っては、シ
リカおよび/またはアルミナ群よりなる担体に、ニッケ
ル、希土類元素および白金族金属を、例えば硝酸塩水溶
液の形で噴露、散布、浸漬等の手段により含浸させ、自
然乾燥または60〜150℃の加温乾燥に刊した後アン
モニア処理。
To explain the ternary composition catalyst for converting the above-mentioned by-product carbon dioxide into methane, its preparation involves drying granular silica or alumina (commercially available products as necessary) with a particle size of 2 to 4 fflI11, for example. The carrier is used as a carrier. The substrate of the catalyst supported on the carrier is nickel, and the substrate metal includes a rare earth element oxide such as lanthanum, cerium, praseodymium, thorium or samarium oxide and a platinum group metal such as ruthenium, platinum, palladium, etc. It is a combination of l iJ of rhodium or iridium, but when considering the catalytic effect and economic efficiency, lanthanum oxide and cerium oxide are used as the rare earth element oxides.
Furthermore, as the platinum group metal, ruthenium and palladium can be mentioned as the most preferable metals. In the above combination, the amount of nickel supported on the catalyst (1) is in the range of 3 to 12%, particularly preferably 4 to 8%, based on the total catalyst. The atomic ratio of the elements is set to satisfy (2:1) to (10:1), and the platinum group metal is set so that the atomic ratio of nickel element to platinum group metal element is (10:1) to (30:1). ) It is preferable to support each catalyst component in such a way that it satisfies the above range. Note that even if each catalyst component is supported beyond the specified range, the catalytic effect will not be further improved, but rather the pores of the carrier will be This is undesirable because it tends to cause clogging and cause catalyst performance to deteriorate.In producing this ternary composition catalyst, nickel, rare earth elements, and platinum group metals are added to a support made of silica and/or alumina group. For example, in the form of an aqueous nitrate solution, the material is impregnated by means such as spraying, scattering, or immersion, and then air-dried or heated at 60 to 150° C. and then treated with ammonia.

熱分解および水素還元を行なう。またこの触媒を調整す
るに当っては、ニッケル、希土類元素酸化物および白金
族金属についてそれぞれ別個に任意の順序で、あるいは
その2種以上を組み合わせてシリカおよび/またはアル
ミナよりなる担体に111持させるが、該担体にまず、
白金族金属を担持させ、ついでニッケルと希土類元素酸
化物を同時に担持させるような手順で行なって得られる
触媒は、二酸化炭素から炭化水素への変換性が特に優れ
ている。
Performs thermal decomposition and hydrogen reduction. In preparing this catalyst, nickel, rare earth element oxides, and platinum group metals may be supported individually in any order or in combination of two or more thereof on a carrier made of silica and/or alumina. is first applied to the carrier,
Catalysts obtained by supporting a platinum group metal and then simultaneously supporting nickel and a rare earth element oxide have particularly excellent conversion properties from carbon dioxide to hydrocarbons.

なお」ニ記3元組成系触媒の具体的な調整例を示すと次
の通りである。すなわち、シリカおよび/またはアルミ
ナよりなる担体に、白金族金属塩類例えば硝酸塩や塩化
物の水溶液を、担体の細孔容積と副部だけ含浸させ、風
乾又は60〜150℃で加温乾燥する。このときの白金
族金属の硝酸塩や同塩化物の濃度は含浸液中に所定の担
持量が含有されるようにし乾燥及びアンモニア処理後大
気中で前記含浸物を350℃に加熱することによって前
記硝酸塩や塩化物を分解する。このようにして得られた
白金族金属相持体に、ニッケル無機酸111例えば硝酸
塩の水溶液と希土類元素の無機酸塩例えば硝酸塩の水溶
液との混合溶液を含浸させ、前記白金族金属を担持させ
た場合と同様に乾燥。
A specific example of the preparation of the ternary composition catalyst described in section 2 is as follows. That is, a carrier made of silica and/or alumina is impregnated with an aqueous solution of a platinum group metal salt, such as a nitrate or a chloride, only in the pore volume and a sub-portion of the carrier, and then air-dried or dried by heating at 60 to 150°C. At this time, the concentration of platinum group metal nitrates and chlorides is determined so that a predetermined amount of platinum group metal nitrates and chlorides are contained in the impregnating solution, and after drying and ammonia treatment, the impregnated product is heated to 350°C in the atmosphere. and decomposes chlorides. When the platinum group metal support thus obtained is impregnated with a mixed solution of an aqueous solution of nickel inorganic acid 111, such as nitrate, and an aqueous solution of an inorganic acid salt of a rare earth element, such as nitrate, to support the platinum group metal. Dry as well.

アンモニア処理、熱分解を行ない、更にこれを不活性ガ
スで希釈した水素濃度10〜20%の気流中で常温から
400°Cまで昇温し、同温度で30分間保持して還元
し、ついで同気流中で常温まで冷却することによって触
媒の製造を完結する。
Ammonia treatment and thermal decomposition are performed, and then the temperature is raised from room temperature to 400°C in an air stream with a hydrogen concentration of 10 to 20% diluted with an inert gas, and the temperature is maintained at the same temperature for 30 minutes for reduction. The production of the catalyst is completed by cooling it to room temperature in an air stream.

本発明により高カロリーガスを生成させるに当っては、
前記鉄族金属−酸化マンガン−白金族金属−銅化合物よ
りなる4元組成系触媒を充填した反応塔に、前記の条件
で原料の低カロリーガスを導入する。ここで生成したカ
ス中に副生二酸化炭素が含有されている場合には引きつ
づいて該カスを、ニッケルーt□土類元素酸化物−白金
族金属からなる第2の3元組成系触奴の充填された別の
反応塔に導入するか、あるいは、」―記2種の触媒を1
つの反応塔に直列に充填しておき、低カロリーガスをま
ず本発明の前記第1の4元組成系触媒層に接触させ、つ
ぎに第2の3元組成系触媒層に接触させるようにしても
よい。この場合における第1の触媒容積は一酸化炭素の
転化率が100%に達するのに必要な最少h1−1第2
の触媒容積は含有される二酸化炭素の転化率が100%
に達するのに必要な量であればよい。なお、実際の操作
では、第1の触媒槽の温度よりも、第2の触媒槽の温度
を約30°C程度低く保持する方がC2〜(、Li&化
水素の分解が少ない。
In producing high calorie gas according to the present invention,
A low-calorie gas as a raw material is introduced under the above-mentioned conditions into the reaction tower filled with the quaternary composition catalyst made of the iron group metal-manganese oxide-platinum group metal-copper compound. If the generated sludge contains by-product carbon dioxide, the sludge is subsequently transferred to a second ternary composition compound consisting of nickel-t□earth element oxide-platinum group metal. Alternatively, the two types of catalysts may be introduced into a separate reaction column packed with
Two reaction towers are filled in series, and the low calorie gas is first brought into contact with the first four-component composition catalyst layer of the present invention, and then brought into contact with the second three-component composition catalyst layer. Good too. In this case, the first catalyst volume is the minimum h1-1 second catalyst volume necessary for the conversion rate of carbon monoxide to reach 100%.
The catalyst volume is such that the conversion rate of the carbon dioxide contained is 100%.
The amount required to reach the target is sufficient. Note that, in actual operation, the decomposition of C2~(, Li & hydrogen hydride is reduced by keeping the temperature of the second catalyst tank approximately 30°C lower than the temperature of the first catalyst tank.

本発明の触媒に低カロリーガスを接触させた場合は、従
来の触媒では達成されなかった「原ネ:Iガス中の全炭
素酪化物の完全利用」が果され、しかも、従来の触媒に
比べて炭素数2〜4の炭化水素をより多く含む高カロリ
ーガスを収得することができる。さらに、本発明の触媒
を使用しメタンのほか炭素数2〜4の炭化水素を含む高
カロリーガスを得るに当って、ニッケル、希」二類元素
酸化物、白金族金属よりなる第2の3元組成系触媒を組
み合わせて接触させることにより、副生二酸化炭素を完
全にメタン化することができるから、二酸化炭素の分離
回収装置が不要であり、プロセス上極めて有効である。
When the catalyst of the present invention is brought into contact with a low-calorie gas, "complete utilization of all carbon butyride in the raw I gas", which was not achieved with conventional catalysts, is achieved, and moreover, compared to the conventional catalysts, A high-calorie gas containing more hydrocarbons having 2 to 4 carbon atoms can be obtained. Furthermore, in order to obtain a high-calorie gas containing hydrocarbons having 2 to 4 carbon atoms in addition to methane using the catalyst of the present invention, a second tertiary gas consisting of nickel, a rare 2nd class element oxide, and a platinum group metal is used. By bringing the original composition catalysts together and bringing them into contact, by-product carbon dioxide can be completely methanized, so a carbon dioxide separation and recovery device is not required, which is extremely effective in terms of the process.

次に、本発明を実施例によって説明するが、本発明はそ
の要旨を逸脱しない限り、以下の実施例をしんし心〈シ
て種々変更実施することができる。尚説明中「部」とあ
るのは重量部を表わす。
Next, the present invention will be explained with reference to examples, but the present invention can be modified in various ways based on the following examples without departing from the gist thereof. In the description, "parts" represent parts by weight.

実施例1 比表面積が200〜220♂/gの市販のアルミナ担体
を電気炉にて常温から1060°Cまで4〜6時間で只
温し、同温度に30分間保持して熱処理した。常温まで
ん却した上記熱処理担体20部に、RuCl3・3H2
01,1部を水5部に溶解させた水溶液を噴霧法により
含浸させ、ついでゆるやかに転動させながら一夜風乾し
含浸物を得た。この含浸物をあらかじめlO〜11容量
%の容量上ニアと6容量%の水蒸気になるように調整し
た雰囲気に2分間曝露してアンモニア処理し、ついで空
気中で約350 ’Oまで加熱して、含浸させたRu金
属n1を熱分解して酸化物とした。これを電気炉に入れ
、水素を20容琶%の1fk度で含む窒素気流を導通し
ながら常温から400℃まで1時間で昇温し、その温度
を30分間保持して還元した後、同気流中で常温まで冷
却してRuJIj持体20.5部を得た。次にRu担持
体21,0部に、Co (NO3) 2 ・6H201
2,8部、Mn(NO3)2 ・6H205,5部およ
びCu(NO3)2 ・3H201,9部を水5部に溶
解した溶液の1/2 t3.を前記と同様の噴霧法によ
り含浸させたあと、乾燥、アンモニア処理、熱分解を行
ない、冷却後、さらに残りの上記溶液を上記と同じ操作
法で含浸させ、乾燥、アンモニア処理、熱分解を行ない
、前記と同様の方法で還元処理して、io%C0−6%
Mn203−2%Ru−2%Cuの4元組成系触媒25
部を得た。
Example 1 A commercially available alumina carrier having a specific surface area of 200 to 220♂/g was heated in an electric furnace from room temperature to 1060°C over 4 to 6 hours, and then heat-treated by holding the same temperature for 30 minutes. RuCl3.3H2 was added to 20 parts of the heat-treated carrier that had been cooled to room temperature.
The sample was impregnated by spraying with an aqueous solution prepared by dissolving 1.1 part of 0.01. This impregnation was ammonia-treated by exposure for 2 minutes to an atmosphere previously adjusted to a volume concentration of 10 to 11% by volume and 6% by volume of water vapor, and then heated in air to about 350'O. The impregnated Ru metal n1 was thermally decomposed into an oxide. This was placed in an electric furnace, and the temperature was raised from room temperature to 400°C in 1 hour while passing through a nitrogen stream containing 20 volume % hydrogen at 1 fk degree, and after reducing by holding that temperature for 30 minutes, the same air stream was heated. The mixture was cooled to room temperature to obtain 20.5 parts of RuJIj carrier. Next, Co (NO3) 2 .6H201 was added to 21.0 parts of the Ru carrier.
1/2 of a solution of 2.8 parts of Mn(NO3)2.6H205.5 parts and Cu(NO3)2.201.9 parts of Cu(NO3)2.3H in 5 parts of water t3. After impregnating with the same spraying method as above, drying, ammonia treatment, and thermal decomposition are performed, and after cooling, the remaining above solution is further impregnated with the same operation method as above, and drying, ammonia treatment, and thermal decomposition are performed. , reduced by the same method as above to obtain io%C0-6%
Mn203-2%Ru-2%Cu four-component catalyst 25
I got the department.

実施例2 実施例1の方法によって得られた触媒」:へ第1表に示
す組成よりなる低カロリーの供試ガスを圧力10 kg
/cm2G 、 S V5500h r−’ 、温度3
20℃で1回通過させたところ、C0転化率10O%で
第2表に示す組成よりなるガスを得た。なお比較のため
に10%C0−6%M n203−2%Ruからなる3
元組成系担持体を得、そのあとで更に2%Cu化合物を
担持させた4元組成系触媒について本実施例ど同一条件
で、同一の低カロリー供試ガスを通過させた場合の結果
を第2表に併記する。
Example 2 Catalyst obtained by the method of Example 1: A low-calorie test gas having the composition shown in Table 1 was heated at a pressure of 10 kg.
/cm2G, SV5500hr-', temperature 3
When the mixture was passed once at 20° C., a gas having the composition shown in Table 2 was obtained with a CO conversion rate of 100%. For comparison, 3 consisting of 10%C0-6%M n203-2%Ru
The results are shown below when the same low calorie test gas was passed under the same conditions as in this example for a quaternary composition catalyst obtained by obtaining an original composition support and then further supporting 2% Cu compound. Listed in Table 2.

第1表 第2表 以」二の結果から明らかなように、本発明の触媒を用い
た場合は、生成ガス中の02〜C4の炭化水素含有率が
高く高カロリーのガスが得られることが分かる。
As is clear from the results in Table 1 and Table 2 onwards, when the catalyst of the present invention is used, a high-calorie gas with a high content of 02 to C4 hydrocarbons in the produced gas can be obtained. I understand.

実施例3 比表面積が200〜220m2/gの市販のアルミナJ
+v体を電気炉にて常温から1060’Oまで4〜6時
間で昇温し、同温度に30分間保持して熱処理した。常
温まで冷却した上記熱処理担体20部に、Cu(NOa
 ) 2 ・3H201,9部を水5部に溶解させた水
溶液を噴霧法により含浸させ、ついでゆるやかに転動さ
せながら一一夜風乾し含浸物を1’Jた。この含浸物を
あらかじめ10〜11容量%のアンモニアと6容量%の
水蒸気になるように調整した雰囲気に2分間曝露してア
ンモニア処理し、ついで空気中で約350℃まで加熱し
て、含浸させたCu金属塩を熱分解して酸化物とした。
Example 3 Commercially available alumina J with a specific surface area of 200 to 220 m2/g
The +v body was heated in an electric furnace from room temperature to 1060'O over a period of 4 to 6 hours, and maintained at the same temperature for 30 minutes for heat treatment. Cu(NOa) was added to 20 parts of the heat treated carrier cooled to room temperature.
) The impregnated product was impregnated by spraying with an aqueous solution in which 1.9 parts of 2.3H20 was dissolved in 5 parts of water, and then air-dried overnight while gently rolling to leave the impregnated product 1'J. This impregnated material was exposed to an atmosphere preliminarily adjusted to contain 10 to 11% by volume of ammonia and 6% by volume of water vapor for ammonia treatment, and then heated in air to approximately 350°C to impregnate it. Cu metal salt was thermally decomposed to form an oxide.

次にCu担持体21.1部にRuC13・3H20+、
1部を水に溶解させた水溶液を前記同様の噴霧法により
含浸させたあと、乾燥・アンモニア処理後熱分解して酸
化物とした。これを電気炉に入れ、水素を20容量%の
濃度で含む窒素気流を導通しながら常温から400℃ま
で1時間でA温し、その温度を30分間保持して還元し
た後、同気流中で常温まで冷却してCu−Ru担持体2
2.1部を得た。次にCu−Ru担持体2O00部に0
0(NO3) 2 ・6H2012,8部、Mn(NO
3)2 ・6H205,5部を水5部に溶解した溶液の
1/2量を前記と同様の噴霧法により含浸させたあと、
乾燥、アンモニア処理、熱分解を行ない、冷却後、さら
に残りの上記溶液を」−記と同じ操作法で含浸させ、乾
燥、アンモニア処理、熱分解を行ない、前記と同様の方
法で還元処理して、10%C0−6%Mn203−2%
Ru−2%Cuの4元組成系触媒23部を得た。
Next, RuC13.3H20+ was added to 21.1 parts of the Cu carrier.
After impregnation with an aqueous solution in which 1 part was dissolved in water by the same spraying method as described above, it was dried, treated with ammonia, and then thermally decomposed to obtain an oxide. This was placed in an electric furnace, heated from room temperature to 400℃ in 1 hour while passing a nitrogen stream containing hydrogen at a concentration of 20% by volume, and after being reduced by holding that temperature for 30 minutes, in the same air stream. Cool to room temperature and Cu-Ru support 2
2.1 parts were obtained. Next, add 0 to 2000 parts of Cu-Ru support.
0(NO3) 2 ・6H2012, 8 parts, Mn(NO3)
3) After impregnating 1/2 amount of a solution of 5 parts of 2.6H20 dissolved in 5 parts of water by the same spraying method as above,
After drying, ammonia treatment, and thermal decomposition, and cooling, the remaining solution was further impregnated with the same procedure as described above, and drying, ammonia treatment, and thermal decomposition were performed, and reduction treatment was performed in the same manner as above. , 10%C0-6%Mn203-2%
23 parts of a Ru-2% Cu quaternary composition catalyst were obtained.

実施例4 実施例3の方法によって得られた触媒上へff5I表に
示す組成よりなる低カロリーの供試カスを圧力10 k
g/cm2G 、 S V5500h r−’ 、温度
320°Cで1回通過させたところ、Co転化率100
%で第2表に示す組成よりなるガスを得た。なお比較に
ために10%Co−6%Mn20B −2%Cuからな
る3元組成系担持体を得、そのあとで更に2%Ru化合
物を担持させた4元組成系触媒について本実施例と同一
条件で、同一の低カロリー供試カスを通過させた場合の
結果を第3表に(+1記する。尚、比較例の場合のCO
転化率は、わずかに20%であり、本発明に比べてかな
り活性が劣る。
Example 4 A low-calorie test residue having the composition shown in the ff5I table was placed on the catalyst obtained by the method of Example 3 at a pressure of 10 k.
g/cm2G, SV5500hr-', and a temperature of 320°C, the Co conversion rate was 100.
A gas having the composition shown in Table 2 in % was obtained. For comparison, a ternary composition support consisting of 10%Co-6%Mn20B-2%Cu was obtained, and then a quaternary composition catalyst was further supported with 2% Ru compound, which was the same as in this example. Table 3 shows the results when the same low-calorie test particles were passed under the same conditions (+1 is added).
The conversion rate is only 20%, which is considerably less active than the present invention.

第 3 表 実施例5 比表面積が200〜220m27gの市販のアルミナ担
体を電気炉にて常温から1060℃まで4〜6時間でA
温し、同温度に30分間保持して熱処理した。常温まで
冷却した」−記熱処理担体20部に、Cu (NO3)
 2 ・3H201,9部とRuC13・3H201,
1部を水5部に溶解させた水溶液を噴霧法により含浸さ
せ、ついでゆるやかに転動させながら一夜風乾し含浸物
を得た。この含浸物をあらかじめ10〜11容量%のア
ンモニアと6容量%の水蒸気になるように調整した雰囲
気に2分間曝露してアンモニア処理し、ついで空気中で
約350’Cまで加熱して、含浸させたCu及びRu金
属塩を熱分解して酸化物とした。
Table 3 Example 5 A commercially available alumina carrier with a specific surface area of 200 to 220 m27g was heated from room temperature to 1060°C in an electric furnace for 4 to 6 hours.
The sample was heated and maintained at the same temperature for 30 minutes for heat treatment. Cu (NO3) was added to 20 parts of the thermally treated carrier cooled to room temperature.
2.3H201, 9 parts and RuC13.3H201,
An aqueous solution prepared by dissolving 1 part in 5 parts of water was impregnated by a spraying method, and then air-dried overnight while gently rolling to obtain an impregnated product. The impregnated material was ammonia-treated by exposing it to an atmosphere previously adjusted to 10-11% ammonia and 6% water vapor by volume for 2 minutes, and then heated in air to about 350'C to impregnate it. The Cu and Ru metal salts were thermally decomposed to form oxides.

これを電気炉に入れ、水素を20容量%の濃度で含む窒
素気流を導通しながら常温から400℃まで1時間で昇
温し、その温度を30分間保持してρ元した後゛、同気
流中で常温まで冷却してCu−Ru担持体22.2部を
得た。次にCu−Ru担持体21.0部にCo (NO
3)2 争6H2012,6部、Mn (NO3) 2
 ・6H205,5部を水5部に溶解した溶液の1/2
量を前記と同様の噴霧法により含浸させたあと、乾燥、
アンモニア処理、熱分解を行ない、冷却後、さらに残り
の上記溶液を」上記と回し操作法で含浸させ、乾燥、ア
ンモニア処J’l! 、 !8分解を行ない、前記と同
様の方法で還元処理して、10%Co−6%Mn203
−2%Ru−2%Cuの4元組成系触媒24部を得た。
This was placed in an electric furnace, and the temperature was raised from room temperature to 400°C in 1 hour while passing a nitrogen stream containing hydrogen at a concentration of 20% by volume, and the temperature was maintained for 30 minutes to reduce the temperature. The mixture was cooled to room temperature to obtain 22.2 parts of a Cu-Ru carrier. Next, 21.0 parts of Cu-Ru support was coated with Co (NO
3)2 War 6H2012, Part 6, Mn (NO3) 2
・1/2 of a solution of 5 parts of 6H205 dissolved in 5 parts of water
After impregnating the amount by the same spraying method as above, drying,
Ammonia treatment and thermal decomposition are performed, and after cooling, the remaining above solution is further impregnated with the above-mentioned rotation method, dried, and ammonia treated J'l! , ! 8 decomposition and reduction treatment in the same manner as above to obtain 10%Co-6%Mn203
-24 parts of a quaternary composition catalyst of -2% Ru-2% Cu were obtained.

実施例6 実施例5の方法によって得られた触媒上へ第1表に示す
組成よりなる低カロリーの供試ガスを圧力10 kg/
cm2G 、 S V5500h r−’ 、温度32
0°Cで1回通過させたところ、00転化率100%で
第2表に示す組成よりなるガスを得た。なお比較にため
にまず銅化合物を2%ついで10′%C0と6%Mn2
0aとを同時に担持させ、そのあとで更に2%Ru化合
物を担持させた4元組成系触媒について本実施例と同一
条件で、同一の低カロリー供試ガスを通過させた場合の
結果を第4表に併記する。尚比較例における一酸化炭素
の転化率はわずかに22%であり、本発明例に比し、か
なり活性が劣る。
Example 6 A low-calorie test gas having the composition shown in Table 1 was poured onto the catalyst obtained by the method of Example 5 at a pressure of 10 kg/
cm2G, SV5500hr-', temperature 32
When the mixture was passed once at 0°C, a gas having the composition shown in Table 2 was obtained with a conversion rate of 100%. For comparison, we first added 2% copper compound, then 10'%C0 and 6%Mn2.
The results are shown in the fourth example when the same low-calorie test gas was passed under the same conditions as in this example for a four-component composition catalyst in which 0a was simultaneously supported and then 2% Ru compound was further supported. Also listed in the table. The conversion rate of carbon monoxide in the comparative example was only 22%, and the activity was considerably inferior to that of the inventive example.

第4表 実施例7 比表面積が50〜80m2/Hの市販のシリカ担体20
部に、Cu (NO3) 2 ll3H201,8部と
RuCl3・3H201,1部を水5部に溶解させた水
溶液を噴霧法により含浸させ、ついでゆるやかに転動さ
せながら一夜風乾し含浸物を得た。この含浸物をあらか
じめ1o−it容量%のアンモニアと6容量%の水蒸気
になるように調整した雰囲気に2分間曝露してアンモニ
ア処理し、ついで空気中で約350℃まで加熱して、含
浸させたCu及びRu金属塩を熱分解して酸化物とした
Table 4 Example 7 Commercially available silica carrier 20 with a specific surface area of 50 to 80 m2/H
The sample was impregnated with an aqueous solution prepared by dissolving 1.8 parts of Cu(NO3) 2 13H20 and 1 part of RuCl3.3H20 in 5 parts of water by a spraying method, and then air-dried overnight while gently rolling to obtain an impregnated product. . This impregnated material was ammonia-treated by exposing it for 2 minutes to an atmosphere previously adjusted to have 1o-it volume % ammonia and 6 volume % water vapor, and then heated in air to about 350°C to impregnate it. Cu and Ru metal salts were thermally decomposed into oxides.

これを電気炉に入れ、水素を20容量%の濃度で含む窒
素気流を導通しながら常温から400℃まで1時間で昇
温し、その温度を30分間保持して還元した後、同気流
中で常温まで冷却してCu−Ru担持体22.2部を得
た。次にCu−Ru担持体20.0部にCO(NO3)
2 ・6H2012,8部、Mn (NO3) 2 争
6H205,5部を水5部に溶解した溶液の1/2量を
前記と同様の噴霧法により含浸させたあと、乾燥、アン
モニア処理、熱分解実施例9 実施例1の方法によってアルミナ担体1体(直径0.5
〜2 +i+i)に、10%C0−6%Mn2O3−2
%Ru−2%Cuを担持させた本発明の触媒(第1の触
媒)と、同じアルミナ担体に7.5%Nf−3.6%L
a203−(1,5%Ruを相持させた第2の触媒とを
組み合わせ、実施例1の場合と同一組成の水素および一
酸化炭素を含む供試ガスを第1の触媒上に、ついでff
52の触媒上に1回通過させた。なお、この時の条件は
、第1の触媒上を通過させるときはS V5500h 
r−’ 、温度310℃、圧力10 kg/crs2G
で、第2の触媒上を通過させるときは、5V1000h
 r−’ 、温度290°Cであり、その他の条件は第
1の触媒上を通過させる場合と同様に行った。この結果
CO転化率は100%で第6表に示す組成よりなる高カ
ロリーガスを得た。
This was placed in an electric furnace, and the temperature was raised from room temperature to 400°C in 1 hour while passing a nitrogen stream containing hydrogen at a concentration of 20% by volume. After reducing by holding that temperature for 30 minutes, it was heated in the same air stream. It was cooled to room temperature to obtain 22.2 parts of a Cu-Ru carrier. Next, CO (NO3) was added to 20.0 parts of the Cu-Ru support.
2 ・8 parts of 6H2012, Mn (NO3) 2 After impregnating 1/2 amount of a solution of 5 parts of 6H20 dissolved in 5 parts of water by the same spraying method as above, drying, ammonia treatment, and thermal decomposition. Example 9 One alumina carrier (diameter 0.5
~2 +i+i), 10%C0-6%Mn2O3-2
%Ru-2%Cu (first catalyst) and 7.5%Nf-3.6%L on the same alumina carrier.
a203-(combined with a second catalyst containing 1.5% Ru, a test gas containing hydrogen and carbon monoxide having the same composition as in Example 1 was placed on the first catalyst, and then ff
52 catalyst was passed once. Note that the conditions at this time are SV5500h when passing over the first catalyst.
r-', temperature 310℃, pressure 10kg/crs2G
So, when passing over the second catalyst, 5V1000h
r-' and the temperature was 290°C, and the other conditions were the same as in the case of passing over the first catalyst. As a result, a high-calorie gas having a composition shown in Table 6 with a CO conversion rate of 100% was obtained.

第 6 表 以上の結果からゆ」らかなように、本発明の第1の触媒
と、第2の触媒とを組み合わせ、これに第1表に示すよ
うな組成分の供試ガスを接触させることにより、11.
?00kcal/Nm”の高カロリーガスを得ることが
でき、この原理を低カロリーガス燃料の高カロリー化に
応用すれば、相当高カロリーなカス燃料を得ることがで
きることがわかる。
It is clear from the results in Table 6 that the first catalyst of the present invention and the second catalyst are combined and brought into contact with a test gas having the composition shown in Table 1. According to 11.
? 00 kcal/Nm'' can be obtained, and if this principle is applied to increase the calorie of a low-calorie gas fuel, it is understood that a considerably high-calorie dregs fuel can be obtained.

出願人 乾 智 行 同 武上善信 同 関西熱化学株式会社Applicant Tomoyuki Inui Same Yoshinobu Takegami Kansai Thermochemical Co., Ltd.

Claims (1)

【特許請求の範囲】 (1)触媒基質としての鉄族金属に 酸化マンガン、 白金族金属、 金属銅および/または銅化合物 を組み合わせ、シリカおよび/またはアルミナよりなる
担体に担持させてなることを特徴とする高カロリーガス
製造用触媒。 (2)触媒基質としての鉄族金属がコバルトまたは鉄の
いずれかである特許請求の範囲第1Jl″i記載の高カ
ロリーガス製造用触媒。 (3)白金族金属がルテニウム、ロジウム、パラジウム
、白金またはイリジウムのいずれかである特許請求の範
囲第1項または第2項記載の高カロリーガス製造用触媒
。 (4)銅化合物が酸化銅よりなる特許請求の範囲ff1
1〜3項のいずれかに記載の高カロリーガス製造用触媒
。 (5)鉄族金属:3〜15%、(重量%の意味、以下同
じ) 酸化マンガン:鉄族金属元素対ヤンガン元素の原子比が
(5:1)〜 (5: 4)を満足する量、 白金族金属二鉄族金属元素対白金族金属元素の原子比が
(30:1)〜(5:2)を満足する量、 金属銅及び/または銅化合物:0,1〜3.0%(金属
銅として) である特許請求の範囲第1〜4項のいずれかに記載の高
カロリーガス製造用触媒。 (6)シリカおよび/またはアルミナよりなる担体に、
まず白金族金属を相持させ、ついで鉄族金属、酸化マン
ガンならびに金属銅および/または銅化合物を同時吟担
持させるか、または、まず白金族金属、金属銅および/
または銅化合物を同時にあるいは個々に相持させ、つい
で鉄族金属と酩化マンガンとを同時にあるいは個々に1
1持させることを特徴とする高カロリーガス製造用触媒
の製造方法。 (7)触媒基質として鉄族金属がコノくルトまたCよ鉄
のいずれかである特許請求の範囲第6項記載の高カロリ
ーガス製造用触媒の製造方法。 (8)白金族金属がルテニウム、ロジウム、ノぐラジウ
ム、白金またはイリジウムのいずれかである特許請求の
範囲第6項又は第7項記載の高カロリーガス製造用触媒
の製造方法。 (8)銅化合物が酸化銅よりなる特許請求の範囲第6〜
8項のいずれかに記載の高カロリーガス製造用触媒の製
造方法。 (10)鉄族金属=3〜15%、 酸化マンガン:鉄族金属元素対マンガン元素の原子比が
(5:1)〜 (5:4)を満足する量、 白金族金属:鉄族金属元素対白金族金属元素の原子比が
(30: t)〜(5:2)を満足する員、 金属銅および/または銅化合物:0.1〜3.0%(金
属銅として) である特許請求の範囲第6〜9項のいずれかに記載の高
カロリーガス製造用触媒の製造方法。 (11)触媒基質としての鉄族金属に酸化マンガンおよ
び白金族金属ならびに金属銅および/または銅化合物を
組み合わせ、シリカおよび/またはアルミナよりなる担
体に担持させてなる触媒上に。 水素と一酸化炭素を含むガスあるいは水素と一酸化炭素
と二酸化炭素を含むガスを導通することを特徴とする高
カロリーガスの製造方法。 (12)触媒基質として鉄族金属がコバルトまたは鉄の
いずれかである特許請求の範囲第11項記載の高カロリ
ーガスの製造方法。 (13)白金族金属がルテニウム、ロジウム、パラジウ
ム、白金またはイリジウムのいずれかである特許請求の
範囲第11項又は第12項記載の高カロリーガスの製造
方法。 (14)銅化合物が酸化銅よりなる特許請求の範囲第1
1〜13項のいずれかに記載の高カロリーガス製造方法
。 (15)鉄族金属:3〜15%、 酸化マンガン:鉄族、金属元素対マンガン元素の原子比
が(5:1)〜 (5:4)を満足する量、 白金族金属:鉄族金属元素対白金族金属元素の原子比が
(30:l)〜(5:2)を満足する量、 金属銅および/または銅化合物二0.1〜3.0%(金
属銅として) である特許請求の範囲第11−14項のいずれかに記載
の高カロリーガスの製造方法。 (16)触媒基質としてのコバルトまたは鉄のいずれか
よりなる鉄族金属に酸化マンガンおよび白金族金属なら
びに金属銅および/または銅化合物を組み合わせ、シリ
カおよび/またはアルミナよりなる担体に担持させた第
1の触媒上に、水素と一酸化炭素を含むガスあるいは水
素と一酸化炭素と二酸化炭素を含むガスを導通し、つい
で触媒基質としてのニッケルに希土類元素の耐化物と白
金族金属とを組み合わせ、シリカおよび/またはアルミ
ナよりなる111体にJl」持させた第2の触媒上に導
通することを特徴とする高カロリーガスの製造方法。 (17)第1の触媒における銅化合物が酸化銅よりなる
特許請求の範囲第16項記載の高カロリーガスの製造方
法。 (1日)鉄族金属:3〜15%、 酸化マンガン:鉄族金属元素対マンガン元素の原子比が
(5:l)〜 (5:4)を満足する量、 白金族金属:鉄族金属元素対白金族金属元素の原子比が
(30:l)〜(5: 2)を満足する量、 金属銅および/または銅化合物=0.1〜3.0%(金
属銅として) である特許請求の範囲第16項又は17項の記載の高カ
ロリーガスの製造方法。
[Claims] (1) A catalyst substrate comprising an iron group metal combined with manganese oxide, a platinum group metal, metallic copper and/or a copper compound, and supported on a carrier made of silica and/or alumina. Catalyst for producing high calorie gas. (2) The catalyst for producing a high-calorie gas according to claim 1Jl''i, wherein the iron group metal as a catalyst substrate is either cobalt or iron. (3) The platinum group metal is ruthenium, rhodium, palladium, or platinum. or iridium. The catalyst for producing high-calorie gas according to claim 1 or 2. (4) Claim ff1 in which the copper compound is copper oxide.
The catalyst for producing high-calorie gas according to any one of items 1 to 3. (5) Iron group metal: 3 to 15%, (the meaning of weight %, the same applies hereinafter) Manganese oxide: An amount where the atomic ratio of iron group metal element to Yangan element satisfies (5:1) to (5:4) , an amount in which the atomic ratio of platinum group metal diiron group metal element to platinum group metal element satisfies (30:1) to (5:2), metallic copper and/or copper compound: 0.1 to 3.0% (as metallic copper) The catalyst for producing high-calorie gas according to any one of claims 1 to 4. (6) A carrier made of silica and/or alumina,
Either the platinum group metal is first supported, and then the iron group metal, manganese oxide, and metallic copper and/or copper compound are simultaneously supported, or the platinum group metal, metallic copper and/or
Alternatively, a copper compound may be present at the same time or individually, and then an iron group metal and manganese manganese may be present at the same time or individually.
1. A method for producing a catalyst for producing a high-calorie gas, characterized in that the catalyst has a retention time of 1. (7) The method for producing a catalyst for producing a high-calorie gas according to claim 6, wherein the iron group metal as the catalyst substrate is either conorte or carbon iron. (8) The method for producing a catalyst for producing a high-calorie gas according to claim 6 or 7, wherein the platinum group metal is ruthenium, rhodium, noradium, platinum, or iridium. (8) Claims 6 to 6 in which the copper compound is copper oxide
A method for producing a catalyst for producing high-calorie gas according to any one of Item 8. (10) Iron group metal = 3 to 15%, manganese oxide: an amount that satisfies the atomic ratio of iron group metal element to manganese element (5:1) to (5:4), platinum group metal: iron group metal element A patent claim in which the atomic ratio of the platinum group metal element to the platinum group metal element satisfies (30:t) to (5:2), Metallic copper and/or copper compound: 0.1 to 3.0% (as metal copper) A method for producing a catalyst for producing high-calorie gas according to any one of items 6 to 9. (11) On a catalyst formed by combining an iron group metal as a catalyst substrate with manganese oxide, a platinum group metal, and a metal copper and/or a copper compound and supporting the combination on a carrier made of silica and/or alumina. A method for producing a high-calorie gas, which comprises conducting a gas containing hydrogen and carbon monoxide or a gas containing hydrogen, carbon monoxide, and carbon dioxide. (12) The method for producing a high-calorie gas according to claim 11, wherein the iron group metal as the catalyst substrate is either cobalt or iron. (13) The method for producing a high-calorie gas according to claim 11 or 12, wherein the platinum group metal is ruthenium, rhodium, palladium, platinum, or iridium. (14) Claim 1 in which the copper compound is copper oxide
The high calorie gas production method according to any one of items 1 to 13. (15) Iron group metal: 3 to 15%, manganese oxide: iron group, an amount that satisfies the atomic ratio of metal element to manganese element (5:1) to (5:4), platinum group metal: iron group metal A patent in which the atomic ratio of the element to the platinum group metal element satisfies (30:l) to (5:2), and the amount of metallic copper and/or copper compound 20.1 to 3.0% (as metallic copper) A method for producing high-calorie gas according to any one of claims 11 to 14. (16) A first composition in which an iron group metal consisting of either cobalt or iron as a catalyst substrate is combined with manganese oxide, a platinum group metal, and metallic copper and/or a copper compound and supported on a carrier consisting of silica and/or alumina. A gas containing hydrogen and carbon monoxide or a gas containing hydrogen, carbon monoxide and carbon dioxide is passed over the catalyst, and then nickel as a catalyst substrate is combined with a rare earth element resistor and a platinum group metal, and silica A method for producing a high-calorie gas, characterized in that the gas is conducted over a second catalyst made of alumina and/or alumina. (17) The method for producing a high-calorie gas according to claim 16, wherein the copper compound in the first catalyst is copper oxide. (1 day) Iron group metal: 3 to 15%, Manganese oxide: An amount that satisfies the atomic ratio of iron group metal element to manganese element (5:l) to (5:4), Platinum group metal: Iron group metal A patent in which the atomic ratio of element to platinum group metal element satisfies (30:l) to (5:2), metallic copper and/or copper compound = 0.1 to 3.0% (as metallic copper) A method for producing high-calorie gas according to claim 16 or 17.
JP58242774A 1983-12-21 1983-12-21 Catalyst for preparing high calorie gas, its preparation and preparation of high calorie gas Granted JPS60132649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58242774A JPS60132649A (en) 1983-12-21 1983-12-21 Catalyst for preparing high calorie gas, its preparation and preparation of high calorie gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58242774A JPS60132649A (en) 1983-12-21 1983-12-21 Catalyst for preparing high calorie gas, its preparation and preparation of high calorie gas

Publications (2)

Publication Number Publication Date
JPS60132649A true JPS60132649A (en) 1985-07-15
JPH0212144B2 JPH0212144B2 (en) 1990-03-19

Family

ID=17094076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58242774A Granted JPS60132649A (en) 1983-12-21 1983-12-21 Catalyst for preparing high calorie gas, its preparation and preparation of high calorie gas

Country Status (1)

Country Link
JP (1) JPS60132649A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029862A1 (en) * 2005-09-08 2007-03-15 Jgc Corporation Catalyst for catalytic partial oxidation of hydrocarbon and process for producing synthesis gas
US9975099B2 (en) 2016-03-16 2018-05-22 Kabushiki Kaisha Toshiba Fuel synthesis catalyst and fuel synthesis system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029862A1 (en) * 2005-09-08 2007-03-15 Jgc Corporation Catalyst for catalytic partial oxidation of hydrocarbon and process for producing synthesis gas
US9975099B2 (en) 2016-03-16 2018-05-22 Kabushiki Kaisha Toshiba Fuel synthesis catalyst and fuel synthesis system

Also Published As

Publication number Publication date
JPH0212144B2 (en) 1990-03-19

Similar Documents

Publication Publication Date Title
JPH09502414A (en) Process for producing hydrogen / carbon monoxide mixture or hydrogen from methane
JPS6094142A (en) Catalyst constitution and its production
Younas et al. CO2 methanation over Ni and Rh based catalysts: Process optimization at moderate temperature
Ishihara et al. Effect of alloying on CO hydrogenation activity over SiO2-supported Co Ni alloy catalysts
JP6203375B2 (en) Methanation catalyst
Koyano et al. States of Pd in Pd/H–ZSM-5 and Pd/Na–ZSM-5 catalysts and catalytic activity for the reduction of NO by CH4 in the presence of O2
US4003850A (en) Novel iron oxide catalysts
JPS60132649A (en) Catalyst for preparing high calorie gas, its preparation and preparation of high calorie gas
JPS6129778B2 (en)
JPS58120501A (en) Manufacture of synthetic gas
JPS62294442A (en) Reducing catalyst
US4139551A (en) Catalyst for methane and ethane synthesis
JPH0211306B2 (en)
JPS5946133A (en) Catalyst for preparing high calorie gas, preparation thereof and preparation of high calorie gas
EP0133778B1 (en) Methanol conversion process
CN109590001B (en) Anti-carbon deposition catalyst for preparing synthesis gas by methane reforming and preparation method thereof
JPS6064631A (en) Method for preparing high calorie gas and catalyst therefor
JPH0558776B2 (en)
JPH0975721A (en) Absorbent for removing minor component in hydrocarbonic gas
JPH0211305B2 (en)
JPS6332722B2 (en)
KR101828281B1 (en) A cobalt catalyst supported on mesoporous calcium oxide-alumina xerogel support, preparation method thereof and production method of hydrogen gas by steam reforming of ethanol using said catalyst
JPH0463140A (en) Zeolite catalyst
WO1986001499A1 (en) Fischer-tropsch catalyst
KR20180099060A (en) Catalyst for reforming of methane, and CO2 reforming of methane