JPS59179154A - Catalyst for producing high calory gas and its production and production of high calory gas - Google Patents

Catalyst for producing high calory gas and its production and production of high calory gas

Info

Publication number
JPS59179154A
JPS59179154A JP58054888A JP5488883A JPS59179154A JP S59179154 A JPS59179154 A JP S59179154A JP 58054888 A JP58054888 A JP 58054888A JP 5488883 A JP5488883 A JP 5488883A JP S59179154 A JPS59179154 A JP S59179154A
Authority
JP
Japan
Prior art keywords
oxide
catalyst
group metal
metal
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58054888A
Other languages
Japanese (ja)
Other versions
JPH0211306B2 (en
Inventor
Yoshinobu Takegami
武上 善信
Satoyuki Inui
智行 乾
Seiji Nishida
清二 西田
Yoshiaki Ishigaki
石垣 喜章
Masanobu Uba
姥 政信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Coke and Chemicals Co Ltd
Original Assignee
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Coke and Chemicals Co Ltd filed Critical Kansai Coke and Chemicals Co Ltd
Priority to JP58054888A priority Critical patent/JPS59179154A/en
Publication of JPS59179154A publication Critical patent/JPS59179154A/en
Publication of JPH0211306B2 publication Critical patent/JPH0211306B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To obtain a catalyst having high activity by combining manganese oxide and platinum group metal as well as >=1 kind among an alkali metal oxide, alkaline earth metal oxide and an oxide of rare earth elements with a ferrous metal and depositing the mixture on a carrier. CONSTITUTION:Manganese oxide and platinum group metal as well as oxide of >=1 kind among the oxide of alkali metals, the oxide of alkaline earth metals and the oxide of rare earth elements are combined with a substrate metal which is a ferrous metal such as cobalt, iron or the like, and the mixture is deposited on a carrier of silica and/or alumina having, for example, <=200m<2>/g specific surface area, thereby obtaining a quaternary compsn. catalyst. The amt. of the ferrous metal to be deposited as a catalyst. The amt. of the ferrous metal to be deposited as a catalyst substrate is 3-15%, more particularly preferably 5-12% with respect to the entire catalyst. The amt. of the manganese oxide to be deposited is 5:1-5:4 in the atom ratio between the ferrous group metal and the manganese element.

Description

【発明の詳細な説明】 本発明は、低カロリーガスから高カロリーガスを得るた
めの触媒、その製法および、水素と一酸化炭素を含むガ
スあるいは水素と一酸化炭素と二酸化炭素を含むガスか
ら炭素数1〜4の炭化水素を含む高カロリーガス燃料用
ガスを製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a catalyst for obtaining high calorie gas from low calorie gas, a method for producing the same, and a method for producing high calorie gas from low calorie gas. The present invention relates to a method for producing a high-calorie fuel gas containing hydrocarbons of numbers 1 to 4.

都市ガスとしては、従来、コークス炉ガスが主流を占め
てきたが、近年生活環境の保護、供給方式の合理化、無
毒安全性等の観点から見直しが行なわれ、高カロリー天
然ガスへの転換が急ピッチで進められている。その為コ
ークス炉ガスは都市ガスとしての用途をせばめられつつ
あるが、基幹産業たる製鉄用コークスの生産に伴って1
膨大な量か副生ずるので、この有効な用途を開発するこ
とが重要な課題になっている。ところでこのコークス炉
ガスを今後とも燃料用として活用していくためには現在
の低カロリー性を改善し、天然ガスに匹敵し得る様な高
カロリーガスに変換することが一必要である。
Traditionally, coke oven gas has been the mainstream source of city gas, but in recent years it has been reviewed from the viewpoints of protecting the living environment, rationalizing supply methods, non-toxic safety, etc., and there is a sudden shift to high-calorie natural gas. Things are progressing on the pitch. For this reason, the use of coke oven gas as city gas is being limited, but with the production of coke for the core industry of steelmaking,
Because of the enormous amount of by-products produced, developing effective uses for this has become an important issue. However, in order to continue to utilize this coke oven gas as a fuel, it is necessary to improve its current low calorie property and convert it into a high calorie gas comparable to natural gas.

従来、代替天然カス(SNG)の製造方法としては、石
炭系資源からのガス、例えば石炭ガス化ガスからメタン
を合成するか、またはコークス炉ガスに高価なナフサや
LPGを添加し接触改質してメタン化する方法等が提案
されている。ここで得られる。メタン主体のSNGはせ
いぜい8,500kca l/m3ないしそれ以下のカ
ロリーを有するに過ぎず、天然ガスなみの都市ガスとし
て供給するためにはLPG等を添加して増熱摩る必要が
ある。
Traditionally, methods for producing alternative natural gas (SNG) include synthesizing methane from gas from coal-based resources, such as coal gasification gas, or adding expensive naphtha or LPG to coke oven gas and catalytically reforming it. Methods have been proposed for converting methane into methane. You can get it here. SNG, which is mainly composed of methane, has a calorie of at most 8,500 kcal/m3 or less, and in order to supply it as city gas comparable to natural gas, it is necessary to add LPG or the like to heat it and grind it.

本発明者等は」−述の事情に鑑み、より高いカロリー盤
を有する燃料用ガスを得るべく種々研究の結果本発明を
完成した。
In view of the above-mentioned circumstances, the present inventors have completed the present invention as a result of various studies in order to obtain a fuel gas having a higher calorie value.

即ち本発明の目的をより具体的に述べると、水素と一酸
化炭素を含むガス、あるいは水素と一酸化炭素と一酸化
炭素を含むガス(以下、学に低カロリーガスと称す)例
えばコークス炉ガスを、従来知られている方法よりもは
るかに高カロリーのガスに変換することのできる4元組
成系触媒、その製造方法およびその触媒を使用して高カ
ロリーガスを製造する方法を提供しようとするにある。
That is, to describe the purpose of the present invention more specifically, gas containing hydrogen and carbon monoxide, or gas containing hydrogen, carbon monoxide, and carbon monoxide (hereinafter academically referred to as low-calorie gas), for example, coke oven gas. An object of the present invention is to provide a four-component catalyst capable of converting into a gas with a much higher calorie content than conventionally known methods, a method for producing the same, and a method for producing a high-calorie gas using the catalyst. It is in.

即ち本発明は、上述の触媒に低カロリーガスを接触させ
ることにより、メタンのほか、炭素数が2〜4の炭化水
素をも含む高カロリーカスに変換することを目的とする
ものである。なお、低カロリーガスを炭化水素含有高カ
ロリーカスに変換する場合、一般に二酸化炭素が副生ず
るので、従来はこれを分離除去していたといういきさつ
がある。そこで本発明においては、上記4元組成系およ
び3元組成系の2系統の触媒を組み合わせることにより
、この副生二酸化炭素を同時に炭化水素化する方法を提
供することも目的として掲げており、これにより二酸化
炭素の分g11操作を必要としないという利点か発揮さ
れる。
That is, the present invention aims at converting a low-calorie gas into a high-calorie gas containing not only methane but also hydrocarbons having 2 to 4 carbon atoms by contacting the above-mentioned catalyst with a low-calorie gas. Note that when low-calorie gas is converted into high-calorie gas containing hydrocarbons, carbon dioxide is generally produced as a by-product, and conventionally this has been separated and removed. Therefore, an object of the present invention is to provide a method for simultaneously converting this by-product carbon dioxide into hydrocarbons by combining two systems of catalysts, the quaternary composition system and the ternary composition system. This provides the advantage that no carbon dioxide operation is required.

本発明をさらに詳細に説明する。まず本発明の真中り某
にお(する40体はシリカおよび/またはアルミナであ
るか、−殻に市販されているもの、例えば比表面積か2
00m2/g以下の範囲のものを使用することができる
。このような相体に担持させる触媒の)、(質としては
鉄族金属が用いられるが、該鉄族金属としてはコバルト
、鉄が特に好ましい。そして、本発明の触媒は、この基
質金属に、酸化マンガンおよび白金族金属ならひに、ア
ルカリ金属の酸化物、アルカリ土類金属の酸化物または
希土類元素の醇化物のうちいずれか1種の酸化物を組み
合わせ前記担体にJL1持させた4元組成系触媒である
。ここで白金族金属としては例えばルテニウム、ロジウ
11.ハラジウム、白金またはイリジウムのいずれかの
金属、アルカリ金属の酸化物としては例えはカリウム、
すトリウム、リチウム、セシウムまたはルビジウムのい
ずれかの醇化物、アルカリ土類金属の酸化物としては例
えばマグネシウム、カルシウム、ストロンチウムまたは
バリウムのいずれかの酸化物、希土類元素の酸化物とし
ては例えはランタン、セリウム、プラセオジウムまたは
サマリウムのいずれかの酸化物が夫々挙げられる。
The present invention will be explained in further detail. First of all, in the middle of the present invention (the 40 shells are made of silica and/or alumina, or the shells are commercially available, for example, specific surface area or 2
00 m2/g or less can be used. For the catalyst supported on such a phase, an iron group metal is used, and cobalt and iron are particularly preferred as the iron group metal. A quaternary composition in which manganese oxide, a platinum group metal, an oxide of an alkali metal, an oxide of an alkaline earth metal, or an oxide of a rare earth element are combined and the support has JL1. Examples of platinum group metals include ruthenium, rhodium, haladium, platinum, and iridium; examples of alkali metal oxides include potassium,
Examples of oxides of alkaline earth metals include oxides of magnesium, calcium, strontium, and barium; examples of oxides of rare earth elements include lanthanum; Examples include oxides of cerium, praseodymium, or samarium, respectively.

本発明の触媒は、上記のように、アルカリ金属、アルカ
リ土類金属および希土類元素のいずれかの酸化物をも触
媒成分として担持してなることを特徴とし、このような
触媒成分を組み合わせたことにより、これに低カロリー
ガスを接触させたとき02〜C4の炭化水素をより多く
含む高カロリーのガスを得ることができる。しかしその
ような効果か奏せられる理由は、詳細は不明であるが、
」−記金属酸化物を組み合わせることにより、触媒基質
である鉄族金属に対する適度なシンタリング作用が促進
され、鉄族金属粒子か適当な大きさに成長すると共に、
CO吸着性は増大して炭素重合活性が増加し、且つ水素
吸着性が減少する。
As described above, the catalyst of the present invention is characterized in that it also supports an oxide of any one of an alkali metal, an alkaline earth metal, and a rare earth element as a catalyst component, and a combination of such catalyst components Therefore, when a low calorie gas is brought into contact with this, a high calorie gas containing more 02 to C4 hydrocarbons can be obtained. However, the details of the reason for such an effect are unknown, but
By combining these metal oxides, an appropriate sintering effect on the iron group metal, which is the catalyst substrate, is promoted, and the iron group metal particles grow to an appropriate size.
CO adsorption increases, carbon polymerization activity increases, and hydrogen adsorption decreases.

したかって−酸化炭素のメタン化活性は低Fするが、C
Oシフト反応も抑制ネれるような効果を発生し、02〜
C4の炭化水素生成が向上することによるものではない
かと推足される。上記組み合わせにおいて、触媒基質と
なる鉄族金属の担持量は全触媒に対し、3〜15%特に
好ましくは5〜12%である。また酸化マンガンの相持
量は鉄族金属元素対マンガン元素の原子比が(5:1)
〜(5:4)の範囲を満足するように設定され、白金族
金属の担持量は鉄族金属元素対白金族金属元素の原子比
が(30:1)〜(5: 2)の範囲を満足するように
設定される。さらにアルカリ金属酸化物、アルカリ土類
金属の酸化物、希土類元素の醇化物の担持量はそれらの
金属原子比が全触媒に対して0.01〜1.0%の範囲
を満足するように設定される。
Therefore, the methanation activity of carbon oxide is low F, but C
The O shift reaction is also suppressed, producing a nerving effect, and 02~
This is thought to be due to improved C4 hydrocarbon production. In the above combination, the supported amount of the iron group metal serving as the catalyst substrate is 3 to 15%, particularly preferably 5 to 12%, based on the total catalyst. In addition, the amount of manganese oxide supported is that the atomic ratio of iron group metal element to manganese element is (5:1).
The amount of platinum group metal supported is set so that the atomic ratio of iron group metal element to platinum group metal element is in the range of (30:1) to (5:2). set to your satisfaction. Furthermore, the supported amounts of alkali metal oxides, alkaline earth metal oxides, and rare earth element infusions are set so that the atomic ratio of these metals satisfies the range of 0.01 to 1.0% with respect to the total catalyst. be done.

本発明の触媒を調製するに当っては触媒相持量が小さい
場合、例えば触媒全相持量が10%以下のときはシリカ
および/またはアルミナよりなる担体に、まず白金族金
属を担持させ、つぎにこれに鉄族金属と酸化マンガンと
を同時に担持させ、ついでさらにアルカリ金属またはア
ルカリ土類金属または希土類元素の酸化物のうちいずれ
かの酸化物を担持させる。
In preparing the catalyst of the present invention, when the amount of catalyst supported is small, for example, when the total amount of catalyst supported is 10% or less, the platinum group metal is first supported on a carrier made of silica and/or alumina, and then the platinum group metal is supported on a carrier made of silica and/or alumina. An iron group metal and manganese oxide are simultaneously supported on this, and then an oxide of an alkali metal, an alkaline earth metal, or a rare earth element is further supported.

すなわち上記手順にしたがって各触媒成分を担持させて
得られる触媒は、低カロリーカスをC1〜C4の炭化水
素を含有する高カロリーガスに変換する場合、特に02
〜C4成分の生成の選択能力が有効に発揮される。上記
以外の方法、例えば鉄族金属と酸化マンガンを先に担持
させ、そのあとで白金族金属を担持させるとか、白金族
金属と酸化マンガンと鉄族金属を同時に担持させるとか
、白金族金属とアルカリ金属醇化物またはアルカリ土類
金属酸化物または希土類元素の酸化物を同時に担持させ
たものでは4元組成系触媒としての複合効果が充分発揮
されず、02〜C4の炭化水素を含む高カロリーガスを
得ることは極めて困難であることが本発明者等によって
確認された。
That is, the catalyst obtained by supporting each catalyst component according to the above procedure is particularly suitable for converting low-calorie scum into high-calorie gas containing C1 to C4 hydrocarbons.
- The ability to select the production of C4 components is effectively demonstrated. Methods other than the above, such as supporting iron group metal and manganese oxide first and then supporting platinum group metal, supporting platinum group metal, manganese oxide, and iron group metal simultaneously, platinum group metal and alkali If a metal moltenide, an alkaline earth metal oxide, or a rare earth element oxide is supported at the same time, the combined effect as a four-component catalyst cannot be sufficiently exhibited, and high-calorie gas containing 02 to C4 hydrocarbons cannot be produced. The present inventors have confirmed that it is extremely difficult to obtain.

尚触媒成分の担持量が多い場合には、例えばまず鉄族金
属と酸化マンガンおよびアルカリ金属酸化物、アルカリ
土類金属酸化物またはる土類元素酸化物のいずれか1種
を同時に相持させ、そのあと白金族金属を1[]持させ
るとか、あるいは白金敷金hE、醇化マンガン、鉄敷金
属およびアルカリ金属酸化物、アルカリ土類金属酸化物
または希土類元素の醇化物のいずれか1種を同時に担持
させた4元組成系触媒でもその複合効果が発揮され、C
2〜C4の炭化水素を含む高カロリーガスを得ることか
できる。
In addition, when the amount of supported catalyst components is large, for example, first, an iron group metal, manganese oxide, and any one of an alkali metal oxide, an alkaline earth metal oxide, or an earth element oxide are simultaneously supported, and then In addition, one platinum group metal may be supported, or one of platinum deposit hE, manganese liquefied, anvil metal, and an alkali metal oxide, an alkaline earth metal oxide, or a rare earth element infusate may be supported at the same time. The combined effect is also exhibited by the quaternary composition catalyst, and C
A high calorie gas containing 2 to C4 hydrocarbons can be obtained.

本発明の触媒は、前記の基本的構成によって製造される
か、それをさらに具体的に述べられると、シリカおよび
/またはアルミナよりなる神体に、白金族金属、鉄族金
属、マンカンを、硝酸塩水溶液または塩化物水溶液の形
で噴i、i布、浸漬等の手段により含浸させたあと、乾
燥、アンモニア処理、熱分解、水素還元等の工程を順次
施して、まず3元紹成系担持体を調製する。ついでこれ
に、アルカリ金属、アルカリ土類金属または希土類元素
のいずれかをその炭酸塩水溶液、水酸化物水溶液、硝酸
塩水溶液または塩化物水溶液等の形で噴霧、舷布、浸漬
等の手順により含浸Sせたあと、乾燥、アンモニア処理
、熱分解、水素還元等の処理の全部または一部を順次施
して4元組成系触媒を調製し、これに最終に程としての
熱処理を施すことにより達成される。なおこの調製にあ
たりアンモニア処理工程は省略できる場合もある。本発
明触媒の製造例をさらに具体的に説明する。
The catalyst of the present invention is produced by the above-mentioned basic structure, or more specifically, a platinum group metal, an iron group metal, or mankan is added to a substance made of silica and/or alumina in an aqueous nitrate solution. Alternatively, after impregnating it in the form of an aqueous chloride solution by spraying, cloth, dipping, etc., processes such as drying, ammonia treatment, thermal decomposition, and hydrogen reduction are performed sequentially to form a ternary introduction system support. Prepare. This is then impregnated with an alkali metal, an alkaline earth metal, or a rare earth element in the form of an aqueous carbonate solution, an aqueous hydroxide solution, an aqueous nitrate solution, an aqueous chloride solution, etc., by a procedure such as spraying, sheathing, or dipping. This is achieved by sequentially performing all or part of treatments such as drying, ammonia treatment, thermal decomposition, and hydrogen reduction to prepare a quaternary composition catalyst, which is then subjected to a final heat treatment. . Note that in this preparation, the ammonia treatment step may be omitted in some cases. A manufacturing example of the catalyst of the present invention will be explained in more detail.

まずシリカおよび/またはアルミナよりなる成形担体、
またはこれを500−1100°Cで熱処理した成形相
体に、その細孔容積と等量の白金族金属の硝酸塩または
同塩化物の水溶液を含浸させ、常温でゆるやかに転動さ
せながら風乾する。
First, a shaped carrier made of silica and/or alumina,
Alternatively, a molded phase heat-treated at 500-1100°C is impregnated with an aqueous solution of a platinum group metal nitrate or chloride in an amount equal to the pore volume, and air-dried at room temperature while gently rolling.

なお乾燥を速めるために、150’C!の温度に調節さ
れた市販の乾燥器を使用してもよい。つぎに−1−記処
理物を、10〜20%アンモニアと1〜10%水蒸気を
含む雰囲気中に2〜3分間曝露する。
In addition, to speed up drying, heat at 150'C! A commercially available dryer adjusted to a temperature of Next, the treated product in -1- is exposed to an atmosphere containing 10 to 20% ammonia and 1 to 10% water vapor for 2 to 3 minutes.

その後、空気中で約350 ’Cまでに加熱し、含浸さ
れている白金族金属硝酸塩または同塩化物を熱分解して
酸化物とする。これを不活性ガスで粍釈した水素濃度1
0〜20%の気流中で常温から400°Cまで昇温し、
同温度に30分間保持して還元し、ついで同気流中で常
温まで冷却する。このようにして得られた白金族金属担
持体に、前記と同じ含浸法により鉄族金属の例えば硝酸
塩水溶液と、マンカンの例えば硝酸塩水溶液との混合液
を含浸させる。ついで前記白金族金属を担持させる場合
と同様に風乾または加熱乾燥、アンモニア処理、熱分解
、水素還元等の処理を施すことにより、3元組成系稍持
体を得る。
Thereafter, it is heated to about 350'C in air to thermally decompose the impregnated platinum group metal nitrate or chloride into an oxide. Hydrogen concentration 1 when this is diluted with inert gas
Raise the temperature from room temperature to 400°C in an air flow of 0 to 20%,
The mixture is maintained at the same temperature for 30 minutes for reduction, and then cooled to room temperature in the same air flow. The platinum group metal support thus obtained is impregnated with a mixed solution of an aqueous nitrate solution of an iron group metal, for example, and an aqueous nitrate solution of mankan, by the same impregnation method as described above. Then, as in the case of supporting the platinum group metal, a ternary composition support is obtained by performing treatments such as air drying or heat drying, ammonia treatment, thermal decomposition, and hydrogen reduction.

以上のようにして得られた白金族金属と鉄族金属と酸化
マンガンを担持させた3元組成系担持体に、さらに前記
と同様の噴霧、散布、浸漬等の含浸法により例えばアル
カリ金属の炭酸塩水溶液。
The ternary composition support supporting the platinum group metal, iron group metal, and manganese oxide obtained as described above is further impregnated with the above-mentioned impregnating methods such as spraying, scattering, and dipping, such as carbonic acid of an alkali metal. Salt solution.

水酸化物水溶液、またはアルカリ土類金属の例えば硝酸
塩水溶液、または希土類元素の例えば硝酸塩水溶液を含
浸させて前記の白金族金属を担持させる場合と同様に風
乾または加熱乾燥、アンモニア処理、熱分解、水素還元
等の処理を施すことにより、4元組成系触媒を得る。な
お、アルカリ金属またはアルカリ土類金属の炭酸塩また
は水酸化物を用いる場合には風乾または加熱乾燥のみで
目的とする4元組成系触媒が得られるので、アンモニア
処理、熱分解還元等の手段は省略できる。本発明の触媒
の調製において、以」二のようにして触媒成分を担持さ
せたあと、還元性雰囲気下熱処理を施すと耐熱性にすぐ
れ、寿命のより長い触媒に改質できるとともに、低カロ
リーカスを接触させた場合、炭素数が2〜4の炭化水素
をより多く含有する高カロリーカスが得られるという効
果がある。この熱処理は還元性雰囲気例えば100%水
素気流中1〜3時間を要して常温がら500〜950°
Cに昇温すると共に同温度を保持し、そのあと同気流中
で常温まで冷却することによって行う。なお熱処理によ
り上記のような効果が得られる理由は、触媒基質である
民族金属がシンタリングによって、適当な大きさの粒子
に成長すると共に、水素吸着速度が減少し、したがって
−酸化炭素のメタン化活性は低下するが、吸着−酸化炭
素の活性表面での滞留時間は増大するので炭素重合が促
進され、炭素数2〜4の炭化水素の生成が向上すること
によるものと推定される。
Air-drying or heat-drying, ammonia treatment, thermal decomposition, hydrogen A quaternary composition catalyst is obtained by performing a treatment such as reduction. In addition, when carbonates or hydroxides of alkali metals or alkaline earth metals are used, the desired four-component composition catalyst can be obtained only by air drying or heat drying, so methods such as ammonia treatment and thermal decomposition reduction are not necessary. Can be omitted. In the preparation of the catalyst of the present invention, if the catalyst components are supported as described below and then heat treated in a reducing atmosphere, the catalyst can be modified into a catalyst with excellent heat resistance and a longer life. When these are brought into contact with each other, there is an effect that a high-calorie residue containing more hydrocarbons having 2 to 4 carbon atoms can be obtained. This heat treatment takes 1 to 3 hours in a reducing atmosphere, such as a 100% hydrogen stream, and is heated to a temperature of 500 to 950 degrees at room temperature.
This is carried out by raising the temperature to C and maintaining the same temperature, and then cooling it to room temperature in the same air flow. The reason why the above effects can be obtained by heat treatment is that the ethnic metal that is the catalyst substrate grows into particles of an appropriate size through sintering, and the hydrogen adsorption rate decreases, thereby reducing the methanation of carbon oxide. Although the activity decreases, the residence time of the adsorbed and oxidized carbon on the active surface increases, which promotes carbon polymerization and is presumed to improve the production of hydrocarbons having 2 to 4 carbon atoms.

本発明の触媒によって、コークス炉カス、ナフサや爪賀
油の水ノヘ気改質ガス、さらには水性ガスや石炭カス化
ガスのような低カロリーガスを炭素数1〜4の炭化水素
を含む高カロリーガスに変換するには、例えばつぎのよ
うにして行なうことができる。すなわち、以上のように
して得られた触媒を反応塔に充填し、触媒層の温度を1
50〜400 ’O、好ましくは180〜350℃に制
御しなから5−30 kg/cm2G 、好ましくは1
0〜20kg/Cm2Gの加圧下に触媒容量1文当り、
1〜10m”/hr  、好ましくは2〜5 m”/h
rの低カロリーカスを導入することにより触媒層内では
、炭素数が1〜4の炭化水素を含有する高カロリーガス
が生成するがその際、副生じた水が次の0式で示すよう
に、原料低カロリーガス中の一酸化炭素とシフト反応を
起こして二酸化炭素を副生ずる。また、場合によっては
、79式により原料低カロリーガス中の一酸化炭素それ
自体が不均化反応を起こし、二酸化炭素を副生ずること
もある。
By using the catalyst of the present invention, low-calorie gases such as coke oven dregs, naphtha, and water sludge reformed gas of Tsumega oil, as well as water gas and coal cassification gas can be converted into high-calorie gases containing hydrocarbons having 1 to 4 carbon atoms. The conversion into caloric gas can be carried out, for example, as follows. That is, the catalyst obtained as described above is packed into a reaction tower, and the temperature of the catalyst layer is set to 1.
5-30 kg/cm2G, preferably 1
per liter of catalyst capacity under pressure of 0 to 20 kg/Cm2G,
1-10 m"/hr, preferably 2-5 m"/hr
By introducing the low-calorie scum of r, a high-calorie gas containing hydrocarbons having 1 to 4 carbon atoms is generated in the catalyst layer, but at that time, the water produced as a by-product is , a shift reaction occurs with carbon monoxide in the low-calorie raw material gas, producing carbon dioxide as a by-product. Further, in some cases, carbon monoxide itself in the raw material low-calorie gas may cause a disproportionation reaction by Equation 79, and carbon dioxide may be produced as a by-product.

CO+H20=CO2+H2■ 2CO=CO2+Cを才) 本発明では、上記炭化水素化反応による副生二酸化炭素
ガスが混入している01〜C4ガスを・シリカおよび/
またはアルミナよりなる担体にニッケル、希土類元素醇
化物及び白金族金属を10持させた3元組成系触媒に引
続き接触させることにより、該副生二酸化炭素をもメタ
ンに変換させることができ、本発明はこの様な作用効果
をも含むものである。
CO+H20=CO2+H2■ 2CO=CO2+C) In the present invention, 01 to C4 gases mixed with by-product carbon dioxide gas from the above hydrocarbonization reaction are combined with silica and/or
Alternatively, the by-product carbon dioxide can also be converted into methane by subsequently contacting a ternary composition catalyst in which a support made of alumina has 10 nickel, a rare earth element diluted compound, and a platinum group metal. also includes such effects.

上記の副生二酸化炭素をメタンに変換させる3元組成系
触媒について説明すると、その調整に当っては、粒径が
例えば2〜4mmの粒状シリカまたはアルミナ(市販品
を必要に応じて乾燥し、水分を除去したものでよい)が
相体として使用される。上記相体に担持させる触媒は基
質がニッケルであり、この基質金属に希土類元素酸化物
、例えばランタン、セリウム、プラセオジウム、トリウ
ムまたはサマリウムの酸化物の1種と白金族金属、例え
ばルテニウム、白金、パラジウム、ロジウムまたはイリ
ジウムの1種を紹み合わせたものであるか、触媒効果お
よび経済性を考慮した場合は、前記希土類元素の酸化物
としては酸化ランタンや酸化セリウムが、また白金族金
属としてはルテニウムやパラジウムが最も好ましいもの
として挙げることができる。上記組み合わせにおいて、
触媒基質となるニッケルの担持路は全触媒に対して3〜
12%、特に好ましくは4〜8%の範囲である。また希
」;類元素の酸化物はニッケル元素対霜土類元素の原子
比が(2:1)〜(10:1)を満足する様に設定し、
更に白金族金属はニッケル元素対白金族金属元素の原子
比が(lO:1)〜(30:1)を満足する様に設定し
て各々担持させることが好ましい。なお、各触媒成分を
、1−記範囲を越えて担持させても触媒効果はそれ以」
−向」ニせず、むしろ担体細孔の閉塞等を起こして触媒
性能が却って低下する傾向があるので好ましくない。こ
の3元組成系触媒の製造に当っては、シリカおよび/ま
たはアルミナの粒状担体に、ニッケル、希土類元素およ
び白金族金属を、例えば硝酪塩水溶液の形で噴霧、散布
、浸漬等の手段により含浸させ1自然乾燥または60〜
150’Cの加温乾燥に付した後アンモニア処理。
To explain the ternary composition catalyst for converting the above-mentioned by-product carbon dioxide into methane, its preparation involves drying granular silica or alumina (commercially available products as necessary) with a particle size of 2 to 4 mm, for example. water-removed version) is used as a phase. The catalyst supported on the above-mentioned phase has a substrate of nickel, which contains a rare earth element oxide such as lanthanum, cerium, praseodymium, thorium or samarium oxide and a platinum group metal such as ruthenium, platinum, palladium. , rhodium or iridium, or when considering the catalytic effect and economic efficiency, lanthanum oxide or cerium oxide is used as the oxide of the rare earth element, and ruthenium is used as the platinum group metal. and palladium are most preferred. In the above combination,
The number of supporting paths for nickel, which is the catalyst substrate, is 3 to 3 for all catalysts.
12%, particularly preferably in the range 4-8%. In addition, oxides of rare elements are set so that the atomic ratio of nickel element to frosted earth element satisfies (2:1) to (10:1),
Further, it is preferable that the platinum group metals are supported so that the atomic ratio of nickel element to platinum group metal element satisfies (lO:1) to (30:1). In addition, even if each catalyst component is supported beyond the range specified in 1-1, the catalytic effect will be lower than that.
This is not preferable because it tends to cause blockage of the pores of the carrier and deteriorate catalyst performance on the contrary. In the production of this ternary composition catalyst, nickel, rare earth elements, and platinum group metals are applied to a granular support of silica and/or alumina in the form of an aqueous solution of nitrobutyrate by means such as spraying, scattering, or immersion. Impregnated and dried naturally or 60~
After heating and drying at 150'C, ammonia treatment was performed.

熱分解および水素還元を行なう。またこの触媒を調整す
るに当っては、ニッケル、希土類元素酸化物および白金
族金属についてそれぞれ別個に任意の順序で、あるいは
その2種以−Fを組み合わせてシリカおよび/またはア
ルミナの粒状担体に担持させるが、該担体にまず、白金
族金属を担持させ、ついでニッケルと希土類元素酸化物
を同時に411持させるような手順で行なって得られる
触媒は、二酸化炭素から炭化水素への変換性が特に優れ
ている。
Performs thermal decomposition and hydrogen reduction. In preparing this catalyst, nickel, rare earth element oxides, and platinum group metals may be supported on a granular carrier of silica and/or alumina, either separately in any order, or in combination of two or more of them. However, the catalyst obtained by first supporting a platinum group metal on the carrier and then simultaneously supporting nickel and a rare earth element oxide has particularly excellent conversion properties from carbon dioxide to hydrocarbons. ing.

なお上記3元組成系触媒の具体的な調整例を示すと次の
通りである。すなわち、シリカおよび/またはアルミナ
の粒状担体に、白金族金属塩類例えば硝酸塩や塩化物の
水溶液を、相体の細孔容積と等量だけ含浸させ、風乾又
は60〜150″Cで加温乾燥する。このときの白金族
金属の硝酸塩や同塩化物の濃度は含浸液中に所定の担持
路が含有されるようにし乾燥及びアンモニア処理後大気
中で前記含浸物を350°Cに加熱することによって前
記硝酸塩やtl化物を分解する。このようにして得られ
た白金族金属担持体に、ニッケル無機酸塩例えば硝酸塩
の水溶液と6土類元素の無機酸塩例えば硝酸塩の水溶液
との混合溶液を含浸させ、前記白金族金属を担持させた
場合と同様に乾燥、アンモニア処理、熱分解を行ない、
更にこれを不活性カスで6釈した水素濃度10〜20%
の気流中で常温から400°Cまで昇温し、同温度で3
0分間保持して還元し、ついで同気流中で常温まで冷却
することによって触媒の製造を完結する。
A specific example of the preparation of the above-mentioned ternary composition catalyst is as follows. That is, a granular support of silica and/or alumina is impregnated with an aqueous solution of platinum group metal salts such as nitrates and chlorides in an amount equal to the pore volume of the phase, and dried in the air or heated at 60 to 150''C. At this time, the concentration of nitrates and chlorides of platinum group metals can be determined by heating the impregnated material to 350°C in the air after drying and ammonia treatment so that the impregnating solution contains a predetermined carrier path. Decompose the nitrates and tl compounds.The platinum group metal support thus obtained is impregnated with a mixed solution of an aqueous solution of a nickel inorganic acid salt, such as a nitrate, and an aqueous solution of an inorganic acid salt of a hexaearth element, such as a nitrate. drying, ammonia treatment, and thermal decomposition in the same manner as in the case of supporting the platinum group metal,
Furthermore, this was diluted with inert residue to give a hydrogen concentration of 10 to 20%.
The temperature was raised from room temperature to 400°C in the airflow of
The preparation of the catalyst is completed by holding for 0 minutes for reduction, and then cooling to room temperature in the same air flow.

本発明により高カロリーガスを生成させるに当っては、
前記鉄族金属−酸化マンガン−白金族金属−アルカリ金
属酸化物、アルカリ土類金属酸化物または希土類元素の
酸化物のうちいずれか1種の酸化物よりなる4元組成系
触媒を充填した反応塔に、前記の条件で原料の低カロリ
ーカスを導入する。ここで生成したガス中に副生二酸化
炭素が含有されている場合には引きつづいて該ガスを、
ニッケルー希土類元素酸化物−白金族金属からなる第2
の3元組成系触媒の充填された別の反応塔に導入するか
、あるいは、」−記2種の触媒を1つの反応塔に直列に
充填しておき、低カロリーガスをまず本発明の前記第1
の4元組成系触媒層に接触させ、つぎに第2の3元組成
系触媒層に接触させるようにしてもよい。この場合にお
ける第1の触媒容積は一酸化炭素の転化率が100%に
達するのに必要な最少量、第2の触媒容積は含有される
二酸化炭素の転化率が100%に達するのに必要な量で
あればよい。なお、実際の操作では、第1の触媒層の温
度よりも、第2の触媒層の温度を約50°C程度高く保
持する方が二酸化炭素の炭化水素への完全転換がより容
易となる。
In producing high calorie gas according to the present invention,
A reaction tower filled with a quaternary composition catalyst comprising any one of the iron group metal-manganese oxide-platinum group metal-alkali metal oxide, alkaline earth metal oxide, or rare earth element oxide. Then, the low-calorie raw material residue is introduced under the above conditions. If the gas produced here contains by-product carbon dioxide, the gas is
A second compound consisting of nickel-rare earth element oxide-platinum group metal
Alternatively, one reaction column may be filled with two kinds of catalysts in series, and the low-calorie gas is first introduced into the above-mentioned ternary composition catalyst of the present invention. 1st
It may be brought into contact with the first four-component composition catalyst layer, and then brought into contact with the second three-component composition catalyst layer. In this case, the first catalyst volume is the minimum amount necessary to reach a conversion rate of 100% of carbon monoxide, and the second catalyst volume is the minimum amount necessary to reach a conversion rate of 100% of the contained carbon dioxide. Any amount is fine. In actual operation, it is easier to completely convert carbon dioxide into hydrocarbons by maintaining the temperature of the second catalyst layer approximately 50° C. higher than the temperature of the first catalyst layer.

本発明の触媒に低カロリーガスを接触させた場合は、従
来の触媒では達成されなかった「原料ガス中の全炭素酪
化物の完全利用」が果され、しかも、従来の触媒に比べ
て炭素数2〜4の炭化水素をより多く含む高カロリーガ
スを収得することができる。さらに、本発明の触媒を使
用しメタンのほか炭素数2〜4の炭化水素を含む高カロ
リーガスを得るに当って、ニッケル、希」二類元素酸化
物、白金族金属よりなる第2の3元組成系触媒を組み合
わせて接触させることにより、副生二酸化炭素を完全に
メタン化するこ七ができるから、二酪化炭素の分離回収
装置が不要であり、プロセス上極めて有効である。
When the catalyst of the present invention is brought into contact with a low-calorie gas, "complete utilization of all carbon butyride in the raw material gas", which was not achieved with conventional catalysts, is achieved, and moreover, the number of carbon atoms is higher than that of conventional catalysts. A high-calorie gas containing more 2-4 hydrocarbons can be obtained. Furthermore, in order to obtain a high-calorie gas containing hydrocarbons having 2 to 4 carbon atoms in addition to methane using the catalyst of the present invention, a second tertiary gas consisting of nickel, a rare 2nd class element oxide, and a platinum group metal is used. By bringing the original composition catalysts together and bringing them into contact, it is possible to completely methanize the by-product carbon dioxide, so there is no need for a carbon dibutyride separation and recovery device, which is extremely effective in terms of the process.

次に、本発明を実施例によって説明するが、本発明はそ
の要旨を逸脱しない限り、以下の実施例をしんしゃくし
て種々変更実施することができる。尚説明中「部」とあ
るのは重量部を表わす。
Next, the present invention will be described with reference to examples, but the present invention can be modified in various ways by modifying the following examples without departing from the gist thereof. In the description, "parts" represent parts by weight.

実施例1 比表面積が200〜220II+2/gの市販のアルミ
ナ球状成形体を電気炉にて常温から1060℃まで4〜
6時間で昇温し、同温度に30分間保持して熱処理した
。常温まで冷却した上記熱処理担体20部に、Ru C
13−3H201,08部を水5部に溶解させた水溶液
を噴霧法により含浸させ、ついでゆるやかに転動させな
がら一夜風乾し含浸物を得た。この含浸物をあらかじめ
lO〜11容量%の容量子ニアと6容量%の水蒸気にな
るように調整した雰囲気に2分間曝露してアンモニア処
理し、ついで空気中で約350°Cまで加熱して、含浸
させたRu金属塩を熱分解して酸化物とした。これを電
気炉に入れ、水素を20容量%の濃度で含む窒素気流を
導通しながら常温から400°Cまで1時間で昇温し、
その温度を30分間保持して還元した後、同気流中で常
温まで冷却してRu担持体20.5部を得た。次にRu
担持体21.0部に、G O(NO3) 2 ・6H2
0+2.0部およびMn (NO3) 2116H20
5,3部を水5部に溶解した溶液の1/2量を前記と同
様の噴霧法により含浸させたあと、乾燥、アンモニア処
理、熱分解を行ない、冷却後、さらに残りの上記溶液を
上記と同じ操作法で含浸させ、乾燥、アンモニア処理、
熱分解を行ない、前記と同様の方法で還元処理して、1
0%Co−6%Mn2O3−2%Ruの3元組成系相持
体24部を得た。この3元組成系担持体20部に、K2
CO30,4部を水5部に溶解した溶液を前記と同様の
噴霧法により含浸させたあと、乾燥、アンモニア処理、
熱分解を行ない前記と同様の方法で還元処理した。得ら
れた4元組成系jt1持体を100%水素気流中、常温
から850°Cまで2〜3時間を要して昇温し、同温度
に30分保持して熱処理を行ない、同気流中で常温まで
冷却することにより1組成割合が10%C0−6%Mn
20a−2%Ru−0,1%に20からなる本発明の4
元組成系触媒20.2部を得た。
Example 1 A commercially available alumina spherical molded body with a specific surface area of 200 to 220II+2/g was heated from room temperature to 1060°C in an electric furnace for 4 to 1060°C.
The temperature was raised over 6 hours, and the temperature was maintained for 30 minutes for heat treatment. Ru C was added to 20 parts of the heat-treated carrier cooled to room temperature
The sample was impregnated with an aqueous solution prepared by dissolving 1.08 parts of 13-3H in 5 parts of water by a spraying method, and then air-dried overnight while gently rolling to obtain an impregnated product. The impregnated material was ammonia-treated by being exposed for 2 minutes to an atmosphere previously adjusted to have a capacitance of 10 to 11% by volume and water vapor of 6% by volume, and then heated in air to about 350°C. The impregnated Ru metal salt was thermally decomposed to form an oxide. This was placed in an electric furnace, and the temperature was raised from room temperature to 400°C in 1 hour while passing a nitrogen stream containing hydrogen at a concentration of 20% by volume.
The temperature was maintained for 30 minutes for reduction, and then cooled to room temperature in the same air flow to obtain 20.5 parts of Ru support. Next, Ru
21.0 parts of the support, G O(NO3) 2 ・6H2
0+2.0 parts and Mn (NO3) 2116H20
After impregnating with 1/2 amount of a solution prepared by dissolving 5.3 parts in 5 parts of water by the same spraying method as above, drying, ammonia treatment, thermal decomposition, and cooling, the remaining above solution was further impregnated with the above solution. Impregnation, drying, ammonia treatment, and
Pyrolysis and reduction treatment in the same manner as above to obtain 1
24 parts of a ternary composition carrier of 0% Co-6% Mn2O3-2% Ru was obtained. To 20 parts of this ternary composition carrier, K2
After impregnating with a solution of 30.4 parts of CO dissolved in 5 parts of water by the same spraying method as above, drying, ammonia treatment,
Thermal decomposition was carried out and reduction treatment was carried out in the same manner as described above. The resulting quaternary composition jt1 carrier was heated in a 100% hydrogen stream from room temperature to 850°C over a period of 2 to 3 hours, maintained at the same temperature for 30 minutes, and heat-treated. By cooling to room temperature, the composition ratio becomes 10%C0-6%Mn.
4 of the present invention consisting of 20a-2%Ru-0.1%
20.2 parts of a catalyst based on the original composition was obtained.

実施例2 実施例1における10%Co−6%Mn203−2%R
uの3元組成系担持体20部に、K2CO3(7)代り
ニLa (NO3) 2 ・6H200,63部を水5
部に溶解した溶液を噴霧法により含浸させたあと、乾爆
、アンモニア処理、熱分解及び還元処理し、得られた4
元組成系担持体をioo%水素気流中において実施例1
と同様の方法により熱処理を行ない、同気流中で常温ま
で冷却することにより、組成割合が10%Co−6%M
n203−2%Ru−0,1%La2O3からなる本発
明の4元組成系触媒20.2部を得た。
Example 2 10%Co-6%Mn203-2%R in Example 1
Add 200,63 parts of La (NO3) 2 .6H instead of K2CO3(7) to 20 parts of the ternary composition support of
The obtained 4
Example 1 The original composition support was placed in an ioo% hydrogen stream.
By performing heat treatment in the same manner as above and cooling to room temperature in the same air flow, the composition ratio was 10%Co-6%M.
20.2 parts of a four-component catalyst of the present invention consisting of n203-2% Ru-0.1% La2O3 was obtained.

実施例3 実施例1に記載と同様の方法によって得られた10%C
o−6%M n203−2%FI IJ(7)3元組成
系相持体20部に、K2CO3の代りにMg(NO3)
2・6H202,12部を水5部に溶解した溶液を噴霧
法により含浸させたあと、乾燥、アンモニア処理、熱分
解及び還元処理し、得られた4元組成系担持体を100
%水素気流中において実施例1と同様の方法により熱処
理を行ない、組成割合が10%C0−6%Mn203−
2%Ru−0,1%MgOからなる本発明の4元組成系
触媒20.2部を得た。
Example 3 10% C obtained by a method similar to that described in Example 1
o-6%M n203-2%FI IJ (7) Mg (NO3) instead of K2CO3 in 20 parts of ternary composition system carrier
After impregnating with a solution of 12 parts of 2.6H dissolved in 5 parts of water, drying, ammonia treatment, thermal decomposition and reduction treatment, the resulting quaternary composition support was
% in a hydrogen stream by the same method as in Example 1, and the composition ratio was 10%C0-6%Mn203-
20.2 parts of a four-component composition catalyst of the present invention consisting of 2% Ru-0.1% MgO was obtained.

実施例4 比表面積が600m2/gの市販のシリカ成形体を電気
炉にて常温から600℃まで4〜6時間でA温し、同温
度に30分間保持して熱処理した。常温まで冷却した上
記熱処理担体20部に、RuC13・3H201,08
部を水5部に溶解させた水溶液を噴霧法により含浸させ
、ついでゆるやかに転動させながら一夜風乾し含浸物を
得た。この含浸物をあらかじめ10〜11容量%のアン
モニアと6容量%の水茫気になるように調整した雰囲気
に2分間曝露してアンモニア処理し、ついで空気中で約
350°Cまで加熱して、含浸させたRu金属塩を熱分
解し酸化物とした。これを電気炉に入れ、水素を20容
量%の濃度で含む窒素気流を導通しながら常温から40
0°Cまで1時間で’il温し、この温度に30分間保
持して還元した後、同気流中で常温まで冷却してRu担
持体21部を得た。次にRu担持体21部に、C。
Example 4 A commercially available silica molded body having a specific surface area of 600 m 2 /g was heated to temperature A from room temperature to 600° C. over 4 to 6 hours in an electric furnace, and was heat-treated by holding the same temperature for 30 minutes. RuC13.3H201,08 was added to 20 parts of the heat-treated carrier cooled to room temperature.
The sample was impregnated with an aqueous solution prepared by dissolving 5 parts of water in 5 parts of water, and then air-dried overnight with gentle rolling to obtain an impregnated product. This impregnated material was ammonia-treated by being exposed for 2 minutes to an atmosphere previously adjusted to be 10-11% by volume of ammonia and 6% by volume of water, and then heated in air to about 350°C. The impregnated Ru metal salt was thermally decomposed to form an oxide. This was placed in an electric furnace and heated to 40°C from room temperature while passing a nitrogen stream containing hydrogen at a concentration of 20% by volume.
The mixture was heated to 0° C. in 1 hour, maintained at this temperature for 30 minutes for reduction, and then cooled to room temperature in the same air stream to obtain 21 parts of a Ru support. Next, C was added to 21 parts of the Ru carrier.

(NO3)2 −6H20+2部およびMn(NO3)
2 ・6H205,3部を水5部に溶解した溶液の17
2量を同様の噴霧法により含浸させたあと乾燥、アンモ
ニア処理、熱分解を行ない、冷却後、さらに残りの1−
6記溶液を」二記と同じ操作法で含浸させ乾燥、アンモ
ニア処理、熱分解を行ない、前記と同様の方法で還元処
理して10%Co−6%M+1203−2%Ruの3元
組成系相持体24部を得た。この3元組成系相持体20
部に、Mg (NO3)2−6H202,12部を水5
部に溶解した溶液を前記と同様の噴霧法により含浸させ
たあと、乾燥、アンモニア処理、熱分解を行ない、前記
と同様の方法で還元処理した。得られた4元組成系相持
体を100%水素気流中において常温から800′Cま
で2〜3時間を要して昇温し、同温度で30分間保持し
て熱処理を行ない、同気流中で常温まで冷却することに
より、組成割合が10%C0−6%Mn203−2%R
u−0,1%MgOからなる本発明の4元組成系触媒2
0.2部を得た。
(NO3)2 -6H20+2 parts and Mn(NO3)
2.17 of a solution of 3 parts of 6H205 dissolved in 5 parts of water
The remaining 1-
Impregnate the solution in 6 with the same procedure as in 2, dry, ammonia, and thermally decompose, and reduce in the same manner as above to obtain a ternary composition system of 10%Co-6%M+1203-2%Ru. 24 parts of carrier were obtained. This ternary composition carrier 20
12 parts of Mg (NO3)2-6H202 and 5 parts of water
After impregnation with a solution dissolved in 100% by the same spraying method as above, drying, ammonia treatment, thermal decomposition, and reduction treatment were performed in the same manner as above. The obtained quaternary composition system support was heated in a 100% hydrogen stream from room temperature to 800'C over a period of 2 to 3 hours, maintained at the same temperature for 30 minutes, and heat-treated. By cooling to room temperature, the composition ratio becomes 10%C0-6%Mn203-2%R
Quaternary composition catalyst 2 of the present invention consisting of u-0,1% MgO
0.2 part was obtained.

実施例5 実施例4における10%Co−6% Mn203−2%R,u (7) 3元組成系tn持体
20部に、Mg (NO3)2 ・6H20(7)代り
にLa(NO3)2 ・6H200,83部を水5部に
溶解した溶液を噴霧法により含浸させたあと、乾燥、ア
ンモニア処理、熱分解及び還元処理し、得られた4元組
成系相持体を100%水素気中において実施例4と同様
の方法により熱処理を行ない、同気流中で常温まで冷却
することにより、組成割合が10%Co−6%Mn20
3−2%Ru−0,1%La2O3からなる本発明の4
元組成系触媒20.2部を13だ。
Example 5 In 20 parts of 10%Co-6%Mn203-2%R,u (7) ternary composition tn carrier in Example 4, La(NO3) was added instead of Mg(NO3)2 ・6H20(7) 2. After impregnating with a solution of 200.83 parts of 6H dissolved in 5 parts of water by spraying, drying, ammonia treatment, thermal decomposition and reduction treatment, the obtained quaternary composition system support was soaked in 100% hydrogen atmosphere. By performing heat treatment in the same manner as in Example 4 and cooling to room temperature in the same air flow, the composition ratio was 10%Co-6%Mn20.
4 of the present invention consisting of 3-2% Ru-0,1% La2O3
20.2 parts of the original composition catalyst is 13.

実施例6 実施例1の方法によって得られた触媒上へ第1表に示す
組成よりなる低カロリーの供試ガスを圧力10kg/c
m2G 、 5V2000h r  ’  、温度29
0°Cで1回通過させたところ、CO転化率100%で
第2表に示す組成よりなる高力けり−のガスを(また。
Example 6 A low-calorie test gas having the composition shown in Table 1 was poured onto the catalyst obtained by the method of Example 1 at a pressure of 10 kg/c.
m2G, 5V2000hr', temperature 29
When passed once at 0°C, a high-strength gas having the composition shown in Table 2 was produced with a CO conversion rate of 100%.

なお、比較のために実施例1における10%C0−6%
Mn2O3−2%Ruからなる3元組成系相持体を実施
例1と同様の方法で熱処理して得られた3元組成系触媒
」二に、本実施例と同一条件で同一の低カロリーの供試
ガスを通過させた場合の結果を第2表に併記する。
For comparison, 10%C0-6% in Example 1
A ternary composition catalyst obtained by heat-treating a ternary composition support consisting of Mn2O3-2%Ru in the same manner as in Example 1."Second, the same low-calorie supply was prepared under the same conditions as in this example. Table 2 also shows the results when the test gas was passed through.

第1表 第2表 以1−の結果から明らかなように、本発明の触媒を用い
、た場合は、比較例の触媒を用いた場合に比へて生成カ
ス中の02〜C4の炭化水素含有率が高く高カロリーの
カスかtJIられることか分る。
As is clear from the results in Table 1 and Table 2 to Table 1-1, when the catalyst of the present invention was used, the 02 to C4 hydrocarbons in the produced residue were lower than when the catalyst of the comparative example was used. It can be seen that the dregs with high content and high calories are tJI.

実施例7 実施例2の方法によって得られた触媒上へ、実施例6で
用いられたものと回−の組成よりなる低カロリーの供試
カスを実施例6と同一条件で1回通過させたところ、C
O転化率100%で第3表に示す組成よりなる高カロリ
ーのガスを得た。
Example 7 A low-calorie test residue having the same composition as that used in Example 6 was passed once over the catalyst obtained by the method of Example 2 under the same conditions as Example 6. However, C
A high-calorie gas having the composition shown in Table 3 was obtained with an O conversion rate of 100%.

第3表 実施例8 実施例4の方法によって得られた触媒上へ、実施例6で
用いられたものと同一の組成よりなる低カロリーの供試
ガスを実施例6と同一条件で1回通過させたところ、C
O転化率100%で第4表に示す組成よりなる高カロリ
ーのガスを得た。なお、比較のために実施例4における
10%Go−6%Mn203−2%Ruからなる3元組
成系担持体を実施例4と同様の方法で熱処理して得られ
た3元組成系触媒上に、実施例6と同一条件で同一の低
カロリーの供試ガスを通過させた場合の結果を第4表に
併記する。
Table 3 Example 8 A low-calorie test gas having the same composition as that used in Example 6 was passed once under the same conditions as Example 6 over the catalyst obtained by the method of Example 4. When I did it, C
A high-calorie gas having the composition shown in Table 4 was obtained with an O conversion rate of 100%. For comparison, a ternary composition catalyst obtained by heat-treating the ternary composition support consisting of 10%Go-6%Mn203-2%Ru in Example 4 in the same manner as in Example 4 was used. Table 4 also shows the results obtained when the same low-calorie test gas was passed under the same conditions as in Example 6.

(啼゛j智) 舅にす7 第     4    表 以J−の結果から明らかなように、本発明の触媒を用い
た場合は、比較例の触/iWを用いた場合に封べて生成
ガス中の02〜C4の炭化水素含有率力高く高カロリー
のガスが得られることが分る。
(Satoshi) As is clear from the results in Table 4, the generated gas is lower when the catalyst of the present invention is used than when the catalyst/iW of the comparative example is used. It can be seen that a high-calorie gas with a high content of 02 to C4 hydrocarbons can be obtained.

実施例9 実施例4の方法によってシリカ成形担体(直ぢ0.5〜
2 mm)に、10%C0−6%Mn2O3−2%Ru
−0,1%MgOを担持させた本発明の触媒(第1の触
媒)と、同じシリカ成形担体に7.5%Ni−3,6%
La203−0.5%Ruを担持させた第2の触媒とを
組み合わせ、実施例8の場合と同一組成の水素および一
酸化炭素を含む供試ガスを第1の真中I某」二に、つい
で第2の触々某」二に1回通過させた。なお、この時の
条件は、第1の触媒上を通過させるときはS V160
0h r−1、温度280°C1圧力20 kg/am
2Gで、第2の触媒上を通過させるときは、5V100
0h r−1、温度320 ’Oであり、その他の条件
は第1の触媒上を通過させる場合と同様に行った。この
結果CO転化率は100%で第5表に示す組成よりなる
ガスを得た。
Example 9 A silica molded carrier (direction 0.5~
2 mm), 10%C0-6%Mn2O3-2%Ru
-0.1%MgO supported catalyst of the present invention (first catalyst) and 7.5%Ni-3.6% on the same silica molded support.
La203 was combined with a second catalyst carrying 0.5% Ru, and a test gas containing hydrogen and carbon monoxide having the same composition as in Example 8 was added to the first middle part. The second touch was passed once in two. Note that the conditions at this time are SV160 when passing over the first catalyst.
0h r-1, temperature 280°C1 pressure 20 kg/am
When passing over the second catalyst at 2G, 5V100
0 h r-1, temperature 320'O, and other conditions were the same as in the case of passing over the first catalyst. As a result, a gas having a composition shown in Table 5 was obtained with a CO conversion rate of 100%.

第5表 以上の結果から明らかなとおり、本発明による第1の触
媒と第2の触媒とを組み合わせ、これに水素と一酸化炭
素とを含む低カロリーガスを接触させることにより、メ
タンのほか、炭素数が2〜4の炭化水素を含有し、二酸
化炭素を含有しない高カロリーガスが得られることが分
かる。
As is clear from the results in Table 5 and above, by combining the first catalyst and the second catalyst of the present invention and bringing them into contact with a low-calorie gas containing hydrogen and carbon monoxide, in addition to methane, It can be seen that a high-calorie gas containing hydrocarbons having 2 to 4 carbon atoms and no carbon dioxide can be obtained.

実施例10 実施例9で使用したものと同じ2つの触媒を組み合わせ
、第6表に示すような組成の供試ガスを第1の触媒上、
ついで第2の触媒上に1回通過させた。なおこのときの
条件は第1の触媒上をS V]E100h r−’ 、
温度290℃、圧力20kg/Cl112Gで通過させ
、ついで第2の触媒上を通過させる時は、5V1000
h r−1、温度330℃で、その他の条件は、第1の
触媒上を通過させる場合と同様とした。この結果、CO
転化率は100%で、第7表に示す組成よりなるガスを
得た。
Example 10 The same two catalysts used in Example 9 were combined, and a test gas having the composition shown in Table 6 was applied to the first catalyst.
It was then passed once over a second catalyst. Note that the conditions at this time are S V]E100h r-' on the first catalyst,
When passing at a temperature of 290°C and a pressure of 20 kg/Cl112G, and then passing over the second catalyst, 5V1000
h r-1, temperature 330° C., and other conditions were the same as in the case of passing over the first catalyst. As a result, CO
The conversion rate was 100%, and a gas having the composition shown in Table 7 was obtained.

第6表 第7表 以上の結果から明らかなように、本発明の第1の触媒と
、第2の触媒とを組み合わせ、これに第6表に示すよう
な組成分の供試ガスを接触させることにより、10.2
00kcal/Nm3の高カロリーガスを得ることがで
き、なおかつ供試ガス中に含有される酸素も、反応の選
択になんら影響を与えることなく完全に除去できること
が分かる。
As is clear from the results shown in Table 6 and Table 7, the first catalyst of the present invention and the second catalyst are combined and brought into contact with the sample gas having the composition shown in Table 6. By this, 10.2
It can be seen that a high calorie gas of 0.00 kcal/Nm3 can be obtained, and that oxygen contained in the sample gas can also be completely removed without affecting the reaction selection in any way.

出願人 武上善信 同      乾    智 行 同   関西熱化学株式会社 手糸光補正書(自発) 1.1部バ件の表示 昭和58年特許願第54888号 2、発明の名称 高カロリーガス製造用触媒とその製造方法および高カロ
リーカスの製造方法 3、補止をする者 事件との関係  特許出願人 京都市左京区修学院高部町5番地 武 上 善 信 (はが2名) 4、代  理  人     〒530大阪市北区堂島
2丁目3番7号 シンコービル 明細書の「特許請求の範囲」及び「発明の詳(1)「特
許請求の範囲」を別紙の通り訂正します。
Applicants Yoshinobu Takegami and Satoshi Inui Kansai Thermal Chemical Co., Ltd. Teito Hikari Amendment (spontaneous) 1. Display of 1 copy 1982 Patent Application No. 54888 2 Name of invention Catalyst for producing high calorie gas and its manufacturing method and manufacturing method for high-calorie cassettes 3. Relationship with the supplementary case Patent applicant Yoshinobu Takekami, 5, Shugakuin Takabe-cho, Sakyo-ku, Kyoto City (2 people) 4. Agent Shinko Building, 2-3-7 Dojima, Kita-ku, Osaka 530, Japan The "Scope of Claims" and "Details of the Invention (1) "Scope of Claims" in the specification will be corrected as shown in the attached sheet.

(2)明細書第8頁下から7行の「高カロリーガス」を
「高カロリー」と訂正します。
(2) Correct "high calorie gas" in the bottom 7 lines of page 8 of the statement to "high calorie."

(3)同第14頁第6〜12行の「上記以外の方法・・
・・・・を同時に」を下記の文章に訂正します。
(3) "Methods other than the above..." on page 14, lines 6-12
``at the same time'' is corrected to the following sentence.

[上記以外の方法、例えば白金族金属と酸化マンガンと
鉄族金属とを同時に担持させ、そのあとでアルカリ金属
酸化物またはアルカリ土類金属の酸化物または希土類元
素の酸化物のいずれか1つを担持させるとか、白金族金
属と酸化マンカンと鉄族金属と、アルカリ金属酸化物ま
たはアルカリ土類金属の酸化物または希土類元素の酸化
物のいずれか1つとを同時に」 (4)同第14頁下から4行の「担持量が多い場合には
」を[全相持量が全触媒に対して10%以七と多い場合
には」と訂正します。
[A method other than the above, for example, a platinum group metal, manganese oxide, and an iron group metal are simultaneously supported, and then one of an alkali metal oxide, an alkaline earth metal oxide, or a rare earth element oxide is applied. "(4) At the same time, a platinum group metal, a mankanoxide, an iron group metal, and any one of an alkali metal oxide, an alkaline earth metal oxide, or a rare earth element oxide are supported." In line 4 from 4th line, ``If the supported amount is large'' should be corrected to ``If the total supported amount is 10% or more of the total catalyst''.

(5)同第15頁第1〜2行の「あるいは白金族金属、
酸化マンガン」を「あるいは白金族金属を担持さぜ、つ
いで酸化マンガンJと訂正します。
(5) “Or platinum group metals,” on page 15, lines 1 and 2,
"Manganese oxide" should be corrected to "Or supporting a platinum group metal," then "manganese oxide J."

(6) PJ第15頁第9行の[述べられるJを「述べ
る」と訂止します。
(6) In PJ, page 15, line 9, [stated J is corrected to ``state.''

(7)同818頁第11行の「同温度を」を「同温度で
」に訂止します。
(7) On page 818, line 11, "at the same temperature" is revised to "at the same temperature."

(8)同第20頁第12〜13行の「シリカまたはアル
ミナ」を「シリカおよび/またはアルミナ」と訂正しま
す。
(8) "Silica or alumina" on page 20, lines 12-13 will be corrected to "silica and/or alumina."

(9)同第25頁下から8行の「球状成形体jを担体J
と訂正します。
(9) On page 25, line 8 from the bottom, “Global molded body j is
I will correct it.

(10)同第28頁下から8行の「成形体Jを[担体J
と訂正します。
(10) On page 28, line 8 from the bottom, “Molded body J [Carrier J
I will correct it.

(11)同第37頁第6行の「成形相体Jを「担体」と
訂正します。
(11) "Molding phase J" in line 6 on page 37 is corrected to "carrier."

(12)同第42頁を別紙第42〜59頁と差し替えま
す。
(12) Replace page 42 with attached pages 42-59.

以りの結果から明らかなように、本発明の第1の触媒と
、第2の触媒とを組み合わせ、これを第6表に示すよう
な組成分の供試ガスを接触させることにより、10.2
00kca l/N+a”(7) iA カロIJ −
カスle得ることができ、なおかつ供試ガス中に含有さ
れる#素も、反応の選択になんら影響を与えることなく
完全に除去できることが分る。
As is clear from the above results, 10. 2
00kcal/N+a” (7) iA Calo IJ −
It can be seen that scum can be obtained, and # element contained in the sample gas can be completely removed without affecting the reaction selection in any way.

実施例11 比表面積が200〜220 m2/gの市販アルミナ担
体を電気炉にて常温から1060℃まで4部6眸間で昇
温し、同温度に30分間保持して熱処理した。常温才で
冷却した上記熱処理担体10部にRuC13−3H20
0,3部を水5部に溶解させた水溶液を噴霧法により含
浸させついでゆるやかに転動させながら一夜風乾し含浸
物を得た。この含浸物をあらかじめ10〜11容量%の
アンモニアと6容量%の水蒸気になるように調整した雰
囲気に2分間曝露してアンモニア処理し、ついで空気中
で約350℃まで加熱して、含浸させたRu金属塩を熱
分解して酸化物とした。これを電気炉に入れ、水素を2
0容都%の濃度で含む窒素気流を導通しながら常温から
400°Cまて1時間で昇温し、その温度を30分間保
持して還元した後、同気流中で常温まで冷却してRu担
持休体0.04部を得た。次ぎにRu担持体10部に、
C。
Example 11 A commercially available alumina carrier having a specific surface area of 200 to 220 m2/g was heated in an electric furnace from room temperature to 1060 DEG C. in 4 parts and 6 times, and was heat-treated by holding the same temperature for 30 minutes. RuC13-3H20 was added to 10 parts of the above heat-treated carrier cooled at room temperature.
The impregnated material was impregnated with an aqueous solution prepared by dissolving 0.3 parts in 5 parts of water by a spraying method, and then air-dried overnight with gentle rolling. This impregnated material was exposed to an atmosphere preliminarily adjusted to contain 10 to 11% by volume of ammonia and 6% by volume of water vapor for ammonia treatment, and then heated in air to approximately 350°C to impregnate it. The Ru metal salt was thermally decomposed to form an oxide. Put this in an electric furnace and add 2 hydrogen
The temperature was raised from room temperature to 400°C in 1 hour while passing through a nitrogen flow containing a concentration of 0% by volume, and the temperature was maintained for 30 minutes for reduction, and then cooled to room temperature in the same airflow to remove Ru. 0.04 part of supported suspension was obtained. Next, 10 parts of Ru carrier,
C.

(NO3) 2  ・6H202,8部およびMn(N
O3)2 ・6H200,5部を水5部に溶解した溶液
を前記と同様の噴霧法により含浸させたあと、乾燥、ア
ンモニア処理、熱分解を行い、前記と同様の方法で還元
処理して、5%C0−1%M n 203−0.4%R
uの3元組成系担持体10.6部を得た。この3元組成
系担持体10部にMg(NO3) 2 #6H200,
5部に溶解した溶液をiff記と同様の噴霧法により含
浸させたあと、乾燥、アンモニア処理、熱分解を行い前
記の方法で還元処理した。得られた4元組成系担持体を
100%水素気流中、常温から600℃まで2〜3時間
を要して昇温し、同温度に30分保持して熱処理を行い
、同気流中で常温まで冷却すること(こより組成割合が
5%C0−1%Mn203−0.4%Ru−0,05%
MgOからなる本発明の4元組成系触媒10.0部を得
た。
(NO3) 2 ・6H202, 8 parts and Mn(N
After impregnating with a solution of 200.5 parts of O3)2.6H dissolved in 5 parts of water by the same spraying method as above, drying, ammonia treatment, thermal decomposition, and reduction treatment in the same manner as above, 5%C0-1%M n 203-0.4%R
10.6 parts of a ternary composition carrier of u was obtained. To 10 parts of this ternary composition support, Mg(NO3) 2 #6H200,
After impregnation with a solution dissolved in 5 parts by the same spraying method as described in IF, drying, ammonia treatment, thermal decomposition, and reduction treatment by the above method. The resulting quaternary composition support was heated in a 100% hydrogen stream from room temperature to 600°C over 2 to 3 hours, maintained at the same temperature for 30 minutes for heat treatment, and then heated to 600°C in the same airflow at room temperature. (The composition ratio is 5%C0-1%Mn203-0.4%Ru-0.05%).
10.0 parts of a four-component catalyst of the present invention consisting of MgO was obtained.

実施例12 比表面積が20+++2/gの市販アルミナ担体10部
にCo (NO3)2 ・6H2012部、Mn(NO
3)’2  拳6H205,3部およびMg(NO3)
 2 ・6H201,12部を水5部に溶解させた水溶
液を噴霧法により含浸させ、ついでゆるやかに転動させ
ながら一夜風乾し含浸物を得た。この含浸物をあらかじ
め10〜11容量%のアンモニアと6容量%の水蒸気に
なるように調整した雰囲気に2分間曝露してアンモニア
処理し、ついで空気中で、約350°Cまで加熱して、
含浸させたRu金属塩を熱分解し酸化物とした。これを
電気炉に入れ、水素を20容量%の濃度で含む窒素気流
を導通しながら常温から400 ’Cまで1時間で昇温
し、この温度に30分間保持して還元した後、同気流中
で常温まで冷却して担持体11.6部を得た。次にこの
担持体10部にRuCl3 ・3H201,08部を水
5部に溶解した溶液を同様の噴霧法により含浸させたあ
と乾燥、アンモニア処理、熱分解を行い、前記と同様の
方法で還元処理して10%C0−6%Mn2O3−2%
Ru−0,05%MgOの4元′M1成系担持体10.
2部を得た。
Example 12 2012 parts of Co (NO3)2 6H and Mn(NO
3)'2 Fist 6H205, 3 parts and Mg (NO3)
The sample was impregnated with an aqueous solution in which 12 parts of 2.6H20 was dissolved in 5 parts of water by a spraying method, and then air-dried overnight while gently rolling to obtain an impregnated product. The impregnated material was ammonia-treated by exposing it to an atmosphere previously adjusted to 10-11% by volume ammonia and 6% by volume water vapor for 2 minutes, and then heated in air to about 350°C.
The impregnated Ru metal salt was thermally decomposed to form an oxide. This was placed in an electric furnace, and the temperature was raised from room temperature to 400'C in 1 hour while passing a nitrogen stream containing hydrogen at a concentration of 20% by volume, and after being reduced by maintaining this temperature for 30 minutes, it was heated in the same air stream. The mixture was cooled to room temperature to obtain 11.6 parts of a carrier. Next, 10 parts of this support was impregnated with a solution of 1.08 parts of RuCl3.3H dissolved in 5 parts of water by the same spraying method, followed by drying, ammonia treatment, thermal decomposition, and reduction treatment by the same method as above. and 10%C0-6%Mn2O3-2%
Ru-0,05% MgO quaternary M1 support 10.
Got 2 copies.

得られた4元組成系担持体を100%水素気流中におい
て常温から700’Cまで2〜3時間を要して昇温し、
同温度で30分間保持して熱処理を行い同気流中で常温
まで冷却することにより1組成割合が10%Co−6%
Mn203−2%Ru−0,05%MgOからなる本発
明の4元組成系触媒10.2部を得た。
The obtained quaternary composition support was heated from room temperature to 700'C in a 100% hydrogen stream over a period of 2 to 3 hours,
By holding at the same temperature for 30 minutes, heat treatment, and cooling to room temperature in the same air flow, the composition ratio becomes 10%Co-6%
10.2 parts of a four-component composition catalyst of the present invention consisting of Mn203-2% Ru-0.05% MgO was obtained.

実施例13 実施例11の方法によすって得られた触媒−トへ第1表
に示す組成よりなる低カロリーの供試ガスを圧力1.0
 kg/Cm2G 、 S V5500h r−’ 、
温度270℃で1回通過させたところ、CO転化率10
0%で第1表に示す組成よりなる高カロリーのガスを得
た。なお、比較のために実施例11と同じ市販のアルミ
ナ担体10部にRuCl3・3H200,3部、co(
NO3)21I6H202,8部、Mn (NO3) 
2 ・6H200,05部およびMg(NO3)2 ・
6H200,5部を水5部に溶解させた水溶液を噴霧法
により含浸させ、ついでゆるやかに転動させながら一夜
風乾し含浸物を得、この含浸物をあらかじめ10〜11
容量%のアンモニアと6容量%の水蒸気になるように調
整した雰囲気に2分間曝露してアンモニア処理し、つい
で空気中で約350℃まで加熱して、含浸させたRu金
属塩を熱分解し酸化物とした。これを電気炉に入れ、水
素を20容量%の濃度で含む窒素気流を導通しながら常
温から400℃まで1時間で昇温し、この温度に30分
間保持して還元してえられた5%Co−1%Mr++0
+ −0,4%Ru−0,05%MgOからなる4元組
成系触媒」二に、本実施例と同一条件で同一の低カロリ
ーの供試カスを通過させたところCO転化率70%で第
7表に併記するような結果を得た。
Example 13 A low-calorie test gas having the composition shown in Table 1 was added to the catalyst obtained by the method of Example 11 at a pressure of 1.0.
kg/Cm2G, SV5500hr-',
When passed once at a temperature of 270°C, the CO conversion rate was 10.
At 0%, a high calorie gas having the composition shown in Table 1 was obtained. For comparison, 200.3 parts of RuCl3.3H and 3 parts of co(
NO3) 21I6H202, 8 parts, Mn (NO3)
2 ・6H200.05 parts and Mg(NO3)2 ・
An aqueous solution of 200.5 parts of 6H dissolved in 5 parts of water was impregnated by a spraying method, and then air-dried overnight while gently rolling to obtain an impregnated product.
The impregnated Ru metal salt was thermally decomposed and oxidized by being exposed to an atmosphere adjusted to have vol.% ammonia and 6 vol.% water vapor for 2 minutes to perform ammonia treatment, and then heating in air to approximately 350°C. It became a thing. This was placed in an electric furnace, and the temperature was raised from room temperature to 400°C in one hour while passing a nitrogen stream containing hydrogen at a concentration of 20% by volume, and this temperature was maintained for 30 minutes to reduce the resulting 5% Co-1%Mr++0
+ - A four-component catalyst consisting of 0.4% Ru and 0.05% MgO. Second, when the same low-calorie test residue was passed under the same conditions as in this example, the CO conversion rate was 70%. The results shown in Table 7 were obtained.

第7表 以上の結果から明らかなように、本発明の触媒を用いた
場合は、比較例の触媒を用いた場合に比べてCO転化率
が高く、生成ガス中の02〜C4の炭化水素含有率が多
く高カロリーのガスが得られることが分る。
As is clear from the results in Table 7 and above, when the catalyst of the present invention is used, the CO conversion rate is higher than when the catalyst of the comparative example is used, and the content of 02 to C4 hydrocarbons in the generated gas is It can be seen that a high-calorie gas can be obtained.

実施例14 実施例12の方法によって得られた触媒上へ、実施例1
3で用いられたものと同一の組成よりなる低カロリーの
供試ガスを温度300℃で圧力、Svは実施例13と同
一条件で1回通過させたところ、CO転化率100%で
第8表に示す組成よりなる高カロリーのガスを得た。
Example 14 Example 1 onto the catalyst obtained by the method of Example 12
When a low-calorie test gas having the same composition as that used in Example 3 was passed once at a temperature of 300°C and a pressure and Sv under the same conditions as in Example 13, the CO conversion rate was 100%, as shown in Table 8. A high-calorie gas with the composition shown in was obtained.

第8表 実施例15 比表面積が200〜220m/gの市販アルミナ担体を
電気炉にて常温から1060’(!まで4〜6時間で昇
温し、同温度に30分間保持して熱処理した。常温まで
冷却した上記熱処理担体20部に、 RIJc 13 
・3H201,08部を水5部に溶解させた水溶液を噴
霧法により含浸させついでゆるやかに転動させながら一
夜風乾し含浸物を得た。この含浸物をあらかじめ10〜
11容量%のアンモニアと6容量%の水蒸気になるよう
に調整した雰囲気に2.分間曝露してアンモニア処理し
、ついで空気中で約350°Cまで加熱して、含浸させ
たRu金属塩を熱分解して酸化物とした。これを電気炉
に入れ、水素を20容量%の濃度で含む窒素気流を導通
しながら常温から400℃まで1時間で昇温し、その温
度を30分間保持して還元した後、同気流中で常温まで
冷却してRu担持体20.5部を得た。次ぎにRu担持
体20,0部に、C0(NO3) 2−6H2012,
0部、Mn(NO3) 2  ・6 H205,3部お
よびMg(NO3)2φ6H201,06部を水5部に
溶解した溶液の172量を前記と同様の噴霧法により含
浸させたあと、乾燥、アンモニア処理、熱分解を行い、
冷却後、さらに残りの上記溶液を上記と同じ操作法で含
浸させ、乾燥、アンモニア処理、熱分解を行い前記の方
法で還元処理して、10%Co−6%Mn20i −2
%Ru −0,05%MgOの4元組成系相持体23.
3部を得た。得られた4元組成系担持体20.0部をi
oo%水素気流中、常温から800°Cまで2〜3時間
を要して昇温し、同温度で30分間保持して熱処理を行
い同気流中で常温まで冷却することにより、組成割合が
10%C0−6%Mn203−2%Ru −0,05%
MgOからなる本発明の4元組成系触媒20.0部を得
た。
Table 8 Example 15 A commercially available alumina carrier having a specific surface area of 200 to 220 m/g was heated in an electric furnace from room temperature to 1060' (!) in 4 to 6 hours, and was heat-treated by maintaining the same temperature for 30 minutes. RIJc 13 was added to 20 parts of the heat-treated carrier cooled to room temperature.
- An aqueous solution of 201.08 parts of 3H dissolved in 5 parts of water was impregnated by a spraying method, and then air-dried overnight while gently rolling to obtain an impregnated product. This impregnated material is prepared in advance for 10~
2. In an atmosphere adjusted to have 11% by volume ammonia and 6% by volume water vapor. The impregnated Ru metal salt was thermally decomposed into an oxide by exposure to ammonia for a minute and then heating to about 350° C. in air. This was placed in an electric furnace, and the temperature was raised from room temperature to 400°C in 1 hour while passing a nitrogen stream containing hydrogen at a concentration of 20% by volume. After reducing by holding that temperature for 30 minutes, it was heated in the same air stream. It was cooled to room temperature to obtain 20.5 parts of Ru carrier. Next, 20.0 parts of Ru carrier was added with C0(NO3) 2-6H2012,
After impregnating with 172 parts of a solution prepared by dissolving 0 parts of Mn(NO3) 2 .6H, 3 parts of Mn(NO3) 2 . processing, pyrolysis,
After cooling, the remaining solution was impregnated using the same method as above, dried, treated with ammonia, thermally decomposed, and reduced using the method described above to obtain 10%Co-6%Mn20i-2.
%Ru-0.05%MgO quaternary composition system support 23.
I got 3 copies. 20.0 parts of the obtained quaternary composition support was
oo% In a hydrogen stream, the temperature is raised from room temperature to 800°C over 2 to 3 hours, and the composition ratio is 10 %C0-6%Mn203-2%Ru -0,05%
20.0 parts of a four-component catalyst of the present invention consisting of MgO was obtained.

実施例16 比表面積が1o112/gの市販アルミナ担体20部に
Co (NO3)2−6H2012部、Mn(NO3)
2 ・6H205,4部を水5部に溶解させた水溶液を
噴霧法により含浸させ、ついでゆるやかに転動させなが
ら一夜風乾し含浸物を得た。
Example 16 20 parts of a commercially available alumina carrier with a specific surface area of 10112/g was mixed with 2012 parts of Co(NO3)2-6H and Mn(NO3).
The sample was impregnated with an aqueous solution prepared by dissolving 4 parts of 2.6H205 in 5 parts of water by a spraying method, and then air-dried overnight while gently rolling to obtain an impregnated product.

この含浸物をあらかじめto−ii容量%のアンモニア
と6容量%の水蒸気になるように調整した雰囲気に2分
間曝露してアンモニア処理し、ついで空気中で、約35
0°Cまで加熱して、含浸させた金属塩を熱分解し酸化
物とした。これを電気炉に入れ、水素を20容量%の濃
度で含む窒素気流を導通しながら常温から400℃まで
1時間で昇温し、この温度に30分間保持して還元した
後、同気流中で常温まで冷却してCo−Mn2O3担持
体23.2部を得た。次ぎに、このCo−Mn2O3担
持体20.0部にRuC13書3H201,0部を水5
部に溶解した溶液を同様の噴霧法により含浸させたあと
乾燥、アンモニア処理、熱分解を行い、冷却後さらに残
りの上記溶液と同じ操作法で含浸させ、乾燥、アンモニ
ア処理、熱分解を行い、前記と同様の方法で還元処理し
て10%Co−6%Mn2O3−2%Ruの3元組成系
相持体20.2部を得た。この3元組成系担持体20部
+:I’vfg (NO3) 2116H201,08
部を水5部に′溶解した溶液を前記と同様の噴霧法によ
り含浸させたあと乾燥、アンモニア処理、熱分解を行い
前記と同様の方法で還元処理した。得られた4元組成系
担持体を100%水素気流中、常温から800 ’Cま
で2〜3時間を要して昇温し、同温度に30分間保持し
て熱処理を行い、同気流中で常温まで冷却することによ
り、組成割合が10%Co−6%Mn203−2%Ru
 −0,05%MgOからなる本発明の4元組成系触媒
20.3部を得た。
This impregnated material was ammonia-treated by exposing it for 2 minutes to an atmosphere adjusted in advance to have to-ii volume % ammonia and 6 volume % water vapor, and then in air for about 35
It was heated to 0°C to thermally decompose the impregnated metal salt into an oxide. This was placed in an electric furnace, and the temperature was raised from room temperature to 400°C in 1 hour while passing a nitrogen stream containing hydrogen at a concentration of 20% by volume. After being reduced by maintaining this temperature for 30 minutes, It was cooled to room temperature to obtain 23.2 parts of Co-Mn2O3 support. Next, 1.0 parts of RuC13 3H was added to 20.0 parts of this Co-Mn2O3 support with 5 parts of water.
After being impregnated with the solution dissolved in the remaining part by the same spraying method, drying, ammonia treatment, and thermal decomposition are performed, and after cooling, the remaining solution is further impregnated with the same operation method as the above solution, followed by drying, ammonia treatment, and thermal decomposition. Reduction treatment was performed in the same manner as above to obtain 20.2 parts of a ternary composition carrier of 10% Co-6% Mn2O3-2% Ru. 20 parts of this ternary composition carrier +: I'vfg (NO3) 2116H201,08
A solution prepared by dissolving 5 parts of water in 5 parts of water was impregnated by the same spraying method as above, followed by drying, ammonia treatment, thermal decomposition, and reduction treatment in the same manner as above. The obtained quaternary composition support was heated in a 100% hydrogen stream from room temperature to 800'C over a period of 2 to 3 hours, maintained at the same temperature for 30 minutes, and heat-treated. By cooling to room temperature, the composition ratio becomes 10%Co-6%Mn203-2%Ru
-20.3 parts of a four-component catalyst of the present invention consisting of 0.05% MgO was obtained.

なお、比較例として、次のような方法により4元組成系
触媒を得た。すなわち、比表面積が20m2/gの市販
アルミナ担体20部にRuCl3・3H201,08部
、Go(NO3)2・6H2012部、Mn (NO3
) 2 ・6H205,3部を水5部に溶解させた水溶
液を噴霧法により含浸させ、ついでゆるやかに転勤させ
ながら一夜風乾し含浸物を得た。この含浸物をあらかじ
め10〜11容量%のアンモニアと6容量%の水蒸気に
なるように調整した雰囲気に2分間曝露してアンモニア
処理し、ついで空気中で、約350℃まで加熱して、含
浸させたRu金属塩を熱分解し酸化物とした。これを電
気炉に入れ、水素を20容量%の濃度で含む窒素気流を
導通しながら常温から400℃まで1時間で昇温し、こ
の温度に30分間保持して還元し10%Co−6%Mn
203−2%Ruの3元組成系担持体23.6部を得た
。この3元組成系担持体20部にMg (No3) 2
・6H202,12部を水5部に溶解した溶液を前記と
同様の噴霧法により含浸させたあと、乾燥、アンモニア
処理、熱分解を行い、前記と同様の方法で還元処理した
。得られた4元組成系担持体を100%水素51中にお
いて常温から800℃まで2〜3時間を要して昇温し、
同温度で30分間保持して熱処理を行い同気流中で常温
まで冷却することにより、組成割合が10%C0−6%
Mn20+−2%Ru −0,05%MgOからなる本
発明の4元組成系触媒20.2部を得た。
As a comparative example, a four-component composition catalyst was obtained by the following method. That is, 20 parts of a commercially available alumina carrier with a specific surface area of 20 m2/g, 201.08 parts of RuCl3.3H, 2012 parts of Go(NO3)2.6H, Mn (NO3
) An aqueous solution prepared by dissolving 3 parts of 2.6H205 in 5 parts of water was impregnated by a spraying method, and then air-dried overnight while being gently transferred to obtain an impregnated product. This impregnated material was exposed to an atmosphere adjusted in advance to have 10 to 11% by volume of ammonia and 6% by volume of water vapor for ammonia treatment, and then heated in air to about 350°C to impregnate it. The Ru metal salt was thermally decomposed to form an oxide. This was placed in an electric furnace, and the temperature was raised from room temperature to 400°C in 1 hour while passing a nitrogen stream containing hydrogen at a concentration of 20% by volume, and this temperature was maintained for 30 minutes to reduce to 10%Co-6%. Mn
23.6 parts of a ternary composition support of 203-2% Ru was obtained. Mg (No3) 2 is added to 20 parts of this ternary composition carrier.
- After impregnating with a solution of 12 parts of 6H202 dissolved in 5 parts of water by the same spraying method as above, drying, ammonia treatment, thermal decomposition, and reduction treatment were performed in the same manner as above. The obtained quaternary composition support was heated in 100% hydrogen 51 from room temperature to 800°C over a period of 2 to 3 hours,
By holding at the same temperature for 30 minutes, heat treatment, and cooling to room temperature in the same air flow, the composition ratio becomes 10%C0-6%
20.2 parts of a four-component composition catalyst of the present invention consisting of Mn20+-2%Ru-0.05%MgO was obtained.

実施例17 実施例15の方法のよって得られた触媒上へ第1表に示
す組成よりなる低カロリーの供試ガスを圧力10 kg
/cm2G 、 S V4000h r−’ 、温度2
90℃1回通過させたところ、Co転化率100%で第
9表に示す組成よりなる高カロリーのカスを得た。なお
、比較例の10%C0−6%Mn203−2%Ru−0
,1%MgOからなる4元組成系触媒−Lに、本実施例
と同一条件で同一の低カロリーの供試ガスを通過させた
場合の結果を第9表に併記する。
Example 17 A low-calorie test gas having the composition shown in Table 1 was applied to the catalyst obtained by the method of Example 15 at a pressure of 10 kg.
/cm2G, SV4000hr-', temperature 2
When the mixture was passed through 90° C. once, a high-calorie scum with a Co conversion rate of 100% and a composition shown in Table 9 was obtained. In addition, 10%C0-6%Mn203-2%Ru-0 of the comparative example
, 1% MgO when the same low-calorie test gas was passed under the same conditions as in this example, and the results are also shown in Table 9.

(以−心) ・鼾ヴ 第9表 以−1−の結果から明らかなように、本発明の触媒を用
いた場合は、比較例の触媒を用いた場合に比べてCO転
化率も高く、生成ガス中の02〜C4の炭化水素含有率
が多く高カロリーのガスが得られることが分る。
(Heart) - As is clear from the results in Table 9-1, when the catalyst of the present invention was used, the CO conversion rate was higher than when the catalyst of the comparative example was used. It can be seen that the produced gas has a high content of 02 to C4 hydrocarbons and a high-calorie gas can be obtained.

実施例18 実施例16の方法によって得られた触媒上へ第1表に示
す組成よりなる低カロリーの供試ガスを圧力10kg/
Cm G 、 5V4000h r−’ 、温度290
°C1回通過させたところ、Co転化率100%で第1
O表に示す組成よりなる高カロリーのガスを得た。
Example 18 A low-calorie test gas having the composition shown in Table 1 was poured onto the catalyst obtained by the method of Example 16 at a pressure of 10 kg/
Cm G, 5V4000hr-', temperature 290
After one pass through °C, the Co conversion rate was 100% and the first
A high-calorie gas having the composition shown in Table O was obtained.

第  lO表 2、特許請求の範囲 (1)触媒基質としての鉄族金属に、酪化マンガンおよ
び白金族金属ならひにアルカリ金属酸化物、アルカリ土
類金属酸化物または希土類元素の醇化物のうちいずれか
1種の酸化物を組み合わせ シリカおよび/またはアル
ミナよりなる担体に11!持させてなることを特徴とす
る高カロリーカス製造用触媒。
Table 2, Claims (1) Manganese butyride and platinum group metals as catalyst substrates, including alkali metal oxides, alkaline earth metal oxides or rare earth element infusions. Combining any one type of oxide onto a support made of silica and/or alumina 11! A catalyst for producing high-calorie scum, which is characterized by a high calorie content.

(2)触媒基質としての鉄族金属がコバルI・または鉄
のいずれかである特許請求の範囲第1項記載の高カロリ
ーガス製造用触媒。
(2) The catalyst for producing high-calorie gas according to claim 1, wherein the iron group metal as the catalyst substrate is either cobal I or iron.

(3)白金族金属がルテニウム、ロジウム、パラジウム
、白金またはイリジウムのいずれかである特許請求の範
囲第1項または第2項記載の高カロリーガス製造用触媒
(3) The catalyst for producing high-calorie gas according to claim 1 or 2, wherein the platinum group metal is ruthenium, rhodium, palladium, platinum, or iridium.

(4)アルカリ金属の酸化物がカリウム、ナトリウム、
リチウム、セシウムまたはルビジウムのいずれか1種の
酸化物であり、アルカリ土類金属の酸化物がマグネシウ
ム、カルシウム、ストロンチウムまたは/゛・リウムの
いずれか1種の酸化物であり、希土類元素の酸化物がラ
ンタン、セリウム。
(4) The alkali metal oxides are potassium, sodium,
An oxide of any one of lithium, cesium, or rubidium, an oxide of an alkaline earth metal is an oxide of any one of magnesium, calcium, strontium, or lithium, and an oxide of a rare earth element. is a lantern, cerium.

プラセオジウムまたはサマリウムのいずれか1種の酸化
物である特許請求の範囲第1〜3項のいずれかに記載の
高カロリーカス製造用触媒。
The catalyst for producing high-calorie scum according to any one of claims 1 to 3, which is an oxide of either praseodymium or samarium.

(5)鉄族金属=3〜15%、(重量%の意味、以下回
し) 酸化マンカン:鉄族金属元素対マンガン元素の原子比が
(5:l)〜 (5:4)を満足する星、 白金族金属二鉄族金属元素対白金族金属元素の原子比が
(30:])〜(5:2)を満足する量、 アルカリ金属酸化物、アルカリ土類金属酸化物または希
土類元素の酸化物のうち、いずれか1種の酸化物:0.
01−1.0%である特許請求の範囲第1〜4項のいず
れかに記・1夕の高カロリーガス製造用触媒。
(5) Iron group metal = 3 to 15%, (meaning of weight %, below) Mancan oxide: Star whose atomic ratio of iron group metal element to manganese element satisfies (5:l) to (5:4) , an amount in which the atomic ratio of platinum group metal diiron group metal element to platinum group metal element satisfies (30:]) to (5:2), oxidation of alkali metal oxide, alkaline earth metal oxide or rare earth element Any one of the oxides: 0.
01-1.0% of the catalyst for producing high-calorie gas in one night according to any one of claims 1 to 4.

せ、ついでアルカリ金属の酸化物、アルカリ土類(7)
触媒基質として鉄族金属がコバルトまたは鉄のいずれか
である特許請求の範囲第6項記載の高カロリーガス製造
用触媒の製造方法。
Then, oxides of alkali metals, alkaline earths (7)
7. The method for producing a catalyst for producing high-calorie gas according to claim 6, wherein the iron group metal as the catalyst substrate is either cobalt or iron.

(8)白金族金属がルテニウム、ロジウム、パラジウム
、白金またはイリジウムのいずれかである特許請求の範
囲第6項又は第7項記載の高カロリーガス製造用触媒の
製造方法。
(8) The method for producing a catalyst for producing a high-calorie gas according to claim 6 or 7, wherein the platinum group metal is ruthenium, rhodium, palladium, platinum or iridium.

(9)アルカリ金属の酸化物がカリウム、ナトリウム、
リチウム、セシウムまたはルビジウムのいずれか1種の
酸化物であり、アルカリ土類金属の醇化物がマグネシウ
ム、カルシウム、ストロンチウムまたはバリウムのいず
れか1種の酸化物であり、希土類元素の酸化物かランタ
ン、セリウ1、。
(9) The alkali metal oxides are potassium, sodium,
An oxide of any one of lithium, cesium, or rubidium, an oxide of an alkaline earth metal such as magnesium, calcium, strontium, or barium, an oxide of a rare earth element, or lanthanum, Seryu 1.

プラセオジウムまたはサマリウムのいずれか1種の酸化
物である特許請求の範囲第6〜8項のいずれかに記載の
高カロリーガス製造用触媒の製造方法。
The method for producing a catalyst for producing a high-calorie gas according to any one of claims 6 to 8, wherein the catalyst is an oxide of either praseodymium or samarium.

(10)鉄族金属:3〜15%、 酸化マンガン:鉄族金属元素対マンガン元素の原子比が
(5:l)〜 (5:4)を満足するが、 白金族金属:鉄族金属元素対白金族金属元素の原子比が
(30:1)〜(5:2)を満足する址、 アルカリ金属酸化物、アルカリ土類金属酸化物または希
土類元素の酸化物のうち、いずれか1種の醇化物: 0
.01〜1.0%である@訂請求の範囲第6〜9項のい
ずれかに記イタの高カロリーガス製造用触媒の製造方法
(10) Iron group metal: 3 to 15%, manganese oxide: iron group metal element to manganese element atomic ratio satisfies (5:l) to (5:4), platinum group metal: iron group metal element Any one of alkali metal oxides, alkaline earth metal oxides, or rare earth element oxides whose atomic ratio of platinum group metal elements to platinum group metal elements satisfies (30:1) to (5:2). Infusion: 0
.. 01 to 1.0%. A method for producing a catalyst for producing a high-calorie gas according to any one of claims 6 to 9.

(11)触媒基質としての鉄族金属に酸化マンガンおよ
び白金族金属ならびにアルカリ金属酸化物、アルカリ土
類金属酸化物または希土類元素酸化物のうちいずれか1
種の酸化物を組み合わせ、シリカおよび/またはアルミ
ナよりなる担体に担持させてなる触媒」−に、水素と一
酸化炭素を含むガスあるいは水素と一酸化炭素と二酸化
炭素を含むガスを導通することを特徴とする高カロリー
ガスの製造方法。
(11) Manganese oxide, platinum group metal, and any one of an alkali metal oxide, an alkaline earth metal oxide, or a rare earth element oxide as a catalyst substrate for an iron group metal.
A catalyst consisting of a combination of oxides of various species supported on a carrier made of silica and/or alumina is a catalyst in which a gas containing hydrogen and carbon monoxide or a gas containing hydrogen, carbon monoxide and carbon dioxide is passed through the catalyst. Features: A method for producing high-calorie gas.

(12)触媒基質として鉄族金属がコバルトまたは鉄の
いずれかである特許請求の範囲第11項記載の高カロリ
ーカスの製造方法。
(12) The method for producing a high-calorie scum according to claim 11, wherein the iron group metal as the catalyst substrate is either cobalt or iron.

(13)白金族金属がルテニウム、ロジウム、パラジウ
ム−9白金またはイリジウムのいずれかである特許請求
の範囲第11項又は第12項記載の高カロリーガスの製
造方法。
(13) The method for producing a high-calorie gas according to claim 11 or 12, wherein the platinum group metal is ruthenium, rhodium, palladium-9 platinum, or iridium.

(14)アルカリ金属の酸化物がカリウム、ナトリウム
、リチウム、セシウムまたはルビジウムのいずれか1種
の酸化物であり、アルカリ土類金属の酸化物がマグネシ
ウム、カルシウム、ストロンチウムまたはバリウムのい
ずれか1種の酸化物であり、希土類元素の酸化物がラン
タン、セリウム。
(14) The alkali metal oxide is any one of potassium, sodium, lithium, cesium, or rubidium, and the alkaline earth metal oxide is any one of magnesium, calcium, strontium, or barium. Oxides of rare earth elements are lanthanum and cerium.

プラセオジウムまたはサマリウムのいずれか1種の酸化
物である特許請求の範囲第11〜13項のいずれかに記
載の高カロリーガスの製造方法。
The method for producing a high-calorie gas according to any one of claims 11 to 13, wherein the oxide is one of praseodymium and samarium.

(15)鉄族金属=3〜15%、 酸化マンカン二鉄族金属元素対マンガン元素の原子比が
(5:I)〜 (5:4)を満足する量、 白金族金属:鉄族金属元素対白金族金属元素の原子比が
(30:l)〜(5:2)を満足する量、 アルカリ金属酸化物、アルカリ土類金属酸化物または希
土類元素の酸化物のうち、いずれか1種の酸化物: 0
.01〜1.0%である特許請求の範囲第11〜14項
のいずれかに記載の高カロリーガスの製造方法。
(15) Iron group metal = 3 to 15%, amount that satisfies the atomic ratio of mankanese diiron group metal element to manganese element (5:I) to (5:4), platinum group metal: iron group metal element An amount in which the atomic ratio of the platinum group metal element to the platinum group metal element satisfies (30:l) to (5:2); any one of alkali metal oxides, alkaline earth metal oxides, or rare earth element oxides; Oxide: 0
.. 01 to 1.0%.

(16)触媒基質としてのコバルトまたは鉄のいずれか
よりなる鉄族金属に酸化マンガンおよび白金族金属なら
びにアルカリ金属酸化物、アルカリ土類金属酸化物また
は希土類元素の酸化物のうちいずれか1種の醇化物を組
み合わせ、シリカおよび/またはアルミナよりなる担体
に担持させた第1の触媒上に、水素と一酸化炭素を含む
ガスあるいは水素と一酸化炭素と二酸化炭素を含むガス
を導通し、ついで触媒基質としてのニッケルに希土類元
素の酸化物と白金族金属とを組み合わせ、シリカおよび
/またはアルミナよりなる担体に担持させた第2の触媒
上に導通することを特徴とする高カロリーカスの製造方
法。
(16) An iron group metal consisting of either cobalt or iron as a catalyst substrate, manganese oxide and a platinum group metal, and any one of an alkali metal oxide, an alkaline earth metal oxide, or a rare earth element oxide. A gas containing hydrogen and carbon monoxide or a gas containing hydrogen, carbon monoxide, and carbon dioxide is passed over the first catalyst, which is a combination of ingots and supported on a carrier made of silica and/or alumina, and then a gas containing hydrogen, carbon monoxide, and carbon dioxide is introduced into the catalyst. A method for producing a high-calorie scum, which comprises combining nickel as a substrate with an oxide of a rare earth element and a platinum group metal, and conducting the mixture over a second catalyst supported on a carrier made of silica and/or alumina.

(17)第1の触媒におけるアルカリ金属の酸化物かカ
リウム、ナトリウム、リチウム、セシウムまたはルビジ
ウムのいずれか1種の酸化物であり、アルカリ土類金属
の酸化物がマグネシウム、カルシウム、ストロンチウム
またはバリウムのいずれか1種の酸化物であり、希土類
元素の酸化物がランタン、セリウム、プラセオジウムま
たはサマリウムのいずれか1[の酸化物よりなる特許請
求の範囲第16項記載の高カロリーガスの製造方法。
(17) The alkali metal oxide in the first catalyst is an oxide of potassium, sodium, lithium, cesium or rubidium, and the alkaline earth metal oxide is magnesium, calcium, strontium or barium. 17. The method for producing a high-calorie gas according to claim 16, wherein the rare earth element oxide is an oxide of any one of lanthanum, cerium, praseodymium, and samarium.

(18)鉄族金属:3〜15%。(18) Iron group metal: 3-15%.

酸化マンガン:鉄族金属元素対マンガン元素の原子比が
(5:l)〜 (5:4)を満足する都、 白金族金属:鉄族金属元素対白金族金属元素の原子比が
(30:1)〜(5:2)を満足する皺、 アルカリ金属酸化物、アルカリ土類金属酸化物または希
土類元素の酢化物のうち、いずれか1種の酸化物: 0
.01〜1,0%である特許請求の範囲第16項又は1
7項の記載の高カロリーガスの製造方法。
Manganese oxide: The atomic ratio of iron group metal element to manganese element satisfies (5:l) to (5:4), Platinum group metal: The atomic ratio of iron group metal element to platinum group metal element satisfies (30: Wrinkles satisfying 1) to (5:2), any one oxide among alkali metal oxides, alkaline earth metal oxides, or rare earth element acetides: 0
.. Claim 16 or 1 which is 01 to 1,0%
The method for producing high calorie gas as described in item 7.

−丁−系先補ItE書 (自発) 1.りG件の表>1< 昭和58年特許願第54888号 2発明の名称 高カロリーカス製造用触媒とその製造方法および高カロ
リーガスの製造方法 3、補正をする渚 事件との関係  特許出願人 京都市左京区修学院高部町5番地 武 」二 善 信 (ほか2名) 4、代  理  人     〒530大阪市北区堂島
2丁目3番7号 シンコービル 明細書の「発明の詳細な説明」の各欄 6、補正の内容 (1)クツ#l書の所定箇所を別紙正誤表の通り訂正し
ます。
- Ding - system supplementary ItE book (spontaneous) 1. Table of G > 1 < 1988 Patent Application No. 54888 2 Name of the invention Catalyst for producing high-calorie gas and method for producing the same and method for producing high-calorie gas 3 Relationship with the Nagisa case to be amended Patent applicant 5 Take, Shugakuin Takabe-cho, Sakyo-ku, Kyoto-shi Nobu Niyoshi (and 2 others) 4. Agent: Shinko Building, 2-3-7 Dojima, Kita-ku, Osaka 530 "Detailed description of the invention" in the specification Each column 6, contents of amendment (1) The specified parts of Shoes #l will be corrected as shown in the attached errata.

正  誤  族 実施例15 比表面積が200〜220m”/gの市販アルミナ11
体を電気炉にて常温から1060’Cまで4〜6時間で
昇温し、同温度に30分間保持して熱処理した。常温ま
で冷却した上記熱処理担体20部に、RuC13拳3H
201,08部を水5部に溶解させた水n液を噴霧法に
より含浸させついでゆるやかに転動させながら一夜風乾
し含浸物を得た。この含浸物をあらかじめ10〜11容
量%のアンモニアと6容量%の水蒸気になるように調整
した雰囲気に2分間曝露してアンモニア処理し、ついで
空気中で約350℃まで加熱して、含浸させたRu金属
塩を熱分解して酸化物とした。これを電気炉に入れ、水
素を20容量%の濃度で含む窒素気流を導通しながら常
温から400℃まで1II1間で昇温し、その温度を3
0分間保持して還元した後、同気流中で常温まで冷却し
てRu担持体20.5部を得た。次ぎにRu担持体20
.0部に、G。
True False Group Example 15 Commercially available alumina 11 with a specific surface area of 200 to 220 m”/g
The body was heated in an electric furnace from room temperature to 1060'C over 4 to 6 hours, and then maintained at the same temperature for 30 minutes for heat treatment. RuC13 Fist 3H was added to 20 parts of the heat-treated carrier cooled to room temperature.
The product was impregnated with a water solution prepared by dissolving 201.08 parts in 5 parts of water by a spraying method, and then air-dried overnight while gently rolling to obtain an impregnated product. This impregnated material was exposed to an atmosphere preliminarily adjusted to contain 10 to 11% by volume of ammonia and 6% by volume of water vapor for ammonia treatment, and then heated in air to approximately 350°C to impregnate it. The Ru metal salt was thermally decomposed to form an oxide. This was placed in an electric furnace, and the temperature was raised from room temperature to 400°C at a rate of 1II1 while passing a nitrogen stream containing hydrogen at a concentration of 20% by volume.
After holding for 0 minutes for reduction, the mixture was cooled to room temperature in the same air flow to obtain 20.5 parts of Ru support. Next, Ru carrier 20
.. In part 0, G.

(NO3) 2116H2012,0部、Mn(NO3
) 2  参6H205,3部およびMg(NO3)2
・6H201,06部を水5部に溶解した溶液の172
量を前記と同様の噴霧法により含浸させたあと、乾燥、
アンモニア処理、熱分解を行い、冷却後、さらに残りの
−1:記溶液を上記と同じ操作法で含浸させ、乾燥、ア
ンモニア処理、熱分解を行い前記の方法で還元処理して
、工0%Co−6%Mn203−2%Ru −0,05
%MgOの4元組成系担持体23.3部を得た。得られ
た4元組成系担持体20.0部を100%水素気流中、
常温から800℃まで2〜3時間を要して昇温し、同温
度で30分間保持して熱処理を行い同気流中で常温まで
冷却することにより、組成割合が10%Co−6%Mn
203−2%Ru −0,05%MgOからなる本発明
の4元組成系触媒20.0部を得た。
(NO3) 2116H2012, 0 parts, Mn(NO3
) 2 Reference 6H205, 3 parts and Mg(NO3)2
・172 of a solution of 201.06 parts of 6H dissolved in 5 parts of water
After impregnating the amount by the same spraying method as above, drying,
Ammonia treatment and thermal decomposition are performed, and after cooling, the remaining -1: solution is impregnated in the same manner as above, dried, ammonia treated, thermally decomposed, and reduced by the above method. Co-6%Mn203-2%Ru -0,05
23.3 parts of a quaternary composition support of %MgO was obtained. 20.0 parts of the obtained quaternary composition support in a 100% hydrogen stream,
The composition ratio is 10%Co-6%Mn by raising the temperature from room temperature to 800℃ over 2 to 3 hours, holding it at the same temperature for 30 minutes, performing heat treatment, and cooling it to room temperature in the same air flow.
20.0 parts of a four-component catalyst of the present invention consisting of 203-2% Ru and 0.05% MgO was obtained.

なお、比較例として、次のような方法により4元組成系
触媒を得た。すなわち、比表面積が201112/gの
市販アルミナ担体20部に、RuCl3*3H201,
08部、Co、 (NO3) 2・6H2012部、M
n (NO3) 2 争6H205,3部を水5部に溶
解させた水溶液を噴霧法により含浸させ、ついでゆるや
かに転動させながら一夜風乾し含浸物を得た。この含浸
物をあらかじめ10〜11容敏%のアンモニアと6容量
%の水蒸気になるように調整した雰囲気に2分間曝露し
てアンモニア処理し、ついで空気中で、約350℃まで
加熱して、含浸させたRu金属塩を熱分解し酸化物とし
た。これを電気炉に入れ、水素を20容量%の濃度で含
む窒素気流を導通しながら常温から400°Cまで1時
間で昇温し、この温度に30分間保持し”CM元しio
%Co−6%Mn2O3−2%Ruの3元組成系担持体
23.6部を得た。この3元組成系担持体20部にMg
(NO3)2・6 H202,12′?Bを水5部に溶
解した溶液を前記と同様の噴霧法により含浸させたあと
、乾燥、アンモニア処理、熱分解を行い、前記と同様の
方法で還元処理した。得られた4元組成系相持体を10
0%水素気流中において常温から8oo℃まで2〜3時
間を要して昇温し、同温度で30分間保持して熱処理を
行い同気流中で常温まで冷却することにより、組成割合
が10%co−6%Mn203−2%Ru−0,1%M
gOからなる本発明の4元組成系触媒20.2部を得た
As a comparative example, a four-component composition catalyst was obtained by the following method. That is, RuCl3*3H201, RuCl3*3H201,
08 part, Co, (NO3) 2.6H2012 part, M
An aqueous solution prepared by dissolving 3 parts of 6H205 in 5 parts of water was impregnated by a spraying method, and then air-dried overnight while gently rolling to obtain an impregnated product. This impregnated material was exposed for 2 minutes to an atmosphere adjusted to have 10-11% ammonia and 6% water vapor by volume for ammonia treatment, and then heated in air to about 350°C to impregnate. The resulting Ru metal salt was thermally decomposed to form an oxide. This was placed in an electric furnace, and the temperature was raised from room temperature to 400°C in 1 hour while passing a nitrogen stream containing hydrogen at a concentration of 20% by volume, and this temperature was maintained for 30 minutes.
23.6 parts of a ternary composition support of %Co-6%Mn2O3-2%Ru was obtained. Mg is added to 20 parts of this ternary composition support.
(NO3) 2.6 H202,12'? After impregnation with a solution prepared by dissolving B in 5 parts of water by the same spraying method as above, drying, ammonia treatment, thermal decomposition, and reduction treatment were performed in the same manner as above. The resulting quaternary composition carrier was 10
The composition ratio is increased to 10% by raising the temperature from room temperature to 80°C over 2 to 3 hours in a 0% hydrogen stream, holding it at the same temperature for 30 minutes for heat treatment, and cooling it to room temperature in the same air stream. co-6%Mn203-2%Ru-0,1%M
20.2 parts of a quaternary composition catalyst of the present invention consisting of gO was obtained.

実施例16 実施例15の方が、のよって得られた触媒−にへ第1表
に示す組成よりなる低カロリーの供試ガスを圧力10k
g/cm2G 、 5V4000h r”” 、温度2
90°C1回通過させたところ、co転化率100%で
第10表に示す組成よりなる高カロリーのガスを得た。
Example 16 In Example 15, a low-calorie test gas having the composition shown in Table 1 was heated to a pressure of 10 k to the catalyst thus obtained.
g/cm2G, 5V4000hr"", temperature 2
When the mixture was passed through 90° C. once, a high-calorie gas having a composition shown in Table 10 was obtained with a co conversion rate of 100%.

なお、実施例15において得られた比較例の4元組成系
触媒(10%Co−6%Mn203−2 %Ru−0,
1%Mg0)J二に、本実施例と同一条件で同一の低カ
ロリーの供試ガスを通過させた場合の結果を$10表に
併記する。
Note that the four-component composition catalyst of the comparative example obtained in Example 15 (10%Co-6%Mn203-2%Ru-0,
The results when the same low calorie test gas was passed through 1%Mg0)J2 under the same conditions as in this example are also listed in the $10 table.

第  10  表 上記の結果から明らかなように、本発明の触媒を用いた
場合は、比較例の触媒を用いた場合に比べてCO転化率
も高く、生成カス中の02〜C4の炭化水素含有率が多
く高カロリーのガスが得られることが分る。
Table 10 As is clear from the above results, when the catalyst of the present invention is used, the CO conversion rate is higher than when the catalyst of the comparative example is used, and the content of 02 to C4 hydrocarbons in the generated sludge is lower. It can be seen that a high-calorie gas can be obtained.

実施例17 比表面積がLow2/gの市販アルミナ担体20部にC
o (NO3)2 ・6H2012部、Mn(NO3)
2 ・6H205,4部を水5部に溶解させた水溶液を
噴霧法により含浸させ、ついでゆるやかに転動させなか
ら−・夜風乾し含浸物を得た。
Example 17 20 parts of a commercially available alumina carrier with a specific surface area of Low2/g was
o (NO3)2 ・6H2012 parts, Mn(NO3)
The sample was impregnated by a spraying method with an aqueous solution of 4 parts of 2.6H205 dissolved in 5 parts of water, and then gently rolled and air-dried at night to obtain an impregnated product.

この含浸物をあらかじめlO〜11容ψ%のアンモニア
と6容量%の水蒸気になるように、調整した雰囲気に2
分間曝露してアンモニア処理し、ついで空気中で、約3
50℃まで加熱して、含浸させた金属塩を熱分解し酸化
物とした。これを電気炉に入れ、水素を20容量%の濃
度で含む窒素気流を導通しながら常温から400℃まで
1時間で昇温し、この温度に30分間保持して還元した
後。
This impregnated material was placed in an atmosphere adjusted in advance to have 10 to 11 volume ψ% ammonia and 6 volume % water vapor.
ammonia treatment by exposure for 30 minutes, then in air for approximately 3 hours.
It was heated to 50°C to thermally decompose the impregnated metal salt into an oxide. This was placed in an electric furnace, and the temperature was raised from room temperature to 400° C. in 1 hour while passing a nitrogen stream containing hydrogen at a concentration of 20% by volume, and this temperature was maintained for 30 minutes for reduction.

同気流中で常温まで冷却してCo−Mn20311」特
休23 、2JRを得た。次ぎに、このCo−Mn20
31目持体20.0部にRuC13・3H201,0部
を水5部に溶解した溶液を同様の噴霧法により含浸させ
たあと乾燥、アンモニア処理、熱分解を行い、冷却後さ
らに残りの]−記溶液と同じ操作法で含浸させ、乾燥、
アンモニア処理、熱分解を行い、前記と同様の方法で還
元処理して10%Co−6%Mn2O3−2%Ruの3
元組成系担持体20.2部を得た。この3元組成系担持
体20部にMg(NC):+)2舎6H201,08部
を水5部に溶解した溶液を前記と同様の噴霧法により含
浸させたあと乾燥、アンモニア処理、熱分解を行い前記
と同様の方法で還元処理した。得られた4元組成系担持
体を100%水素気流中、常温から800°Cまで2部
3詩間を要して賓温し、同温度に30分間保持して熱処
理を行い、同気流中で常温まで冷却することにより、組
成割合が10%Co−6%Mr++Oa −2%Ru 
−0,05%MgOからなる本発明の4元組成系触媒2
0.3部を得た。
It was cooled to room temperature in the same air flow to obtain "Co-Mn20311" Special Holiday 23, 2JR. Next, this Co-Mn20
After impregnating 20.0 parts of the 31-molecular weight carrier with a solution of 1.0 parts of RuC13.3H dissolved in 5 parts of water using the same spraying method, drying, ammonia treatment, and thermal decomposition were performed, and after cooling, the remaining ]- Impregnate with the same procedure as the above solution, dry,
Ammonia treatment, thermal decomposition, and reduction treatment were performed in the same manner as above to obtain 10%Co-6%Mn2O3-2%Ru.
20.2 parts of a carrier based on the original composition was obtained. 20 parts of this ternary composition support was impregnated with a solution of 1.08 parts of Mg(NC):+)2-6H dissolved in 5 parts of water by the same spraying method as above, followed by drying, ammonia treatment, and thermal decomposition. and reduction treatment was carried out in the same manner as above. The obtained quaternary composition support was heated in a 100% hydrogen stream from room temperature to 800°C over 2 parts and 3 days, and then heat-treated by keeping it at the same temperature for 30 minutes. By cooling to room temperature, the composition ratio becomes 10%Co-6%Mr++Oa-2%Ru
- Quaternary composition catalyst 2 of the present invention consisting of 0.05% MgO
0.3 parts were obtained.

実施例18 実施例17の方法によって得られた触媒トへ第1表に示
す組成よりなる低カロリーの供試カスを圧力10 kg
/cm2G 、 S V4000h r−” 、温(y
 290℃1回通過させたところ、CO転化率100%
で第11表に示す組成よりなる高カロリーのガスを得た
Example 18 A low-calorie test residue having the composition shown in Table 1 was added to the catalyst obtained by the method of Example 17 at a pressure of 10 kg.
/cm2G, SV4000hr-”, temperature (y
When passed once at 290°C, CO conversion rate was 100%.
A high calorie gas having the composition shown in Table 11 was obtained.

Claims (1)

【特許請求の範囲】 (1)触媒基質としての鉄族金属に、醇化マンガンおよ
び白金族金属ならびにアルカリ金属酸化物、アルカリ土
類金属酸化物または希土類元素の酸化物のうちいずれか
1種の酸化物を組み合わせ、シリカおよび/またはアル
ミナよりなる担体にJ月持させてなることを特徴とする
高カロリーガス製造用触媒。 (2)触媒基質としての鉄族金属がコバルトまたは鉄の
いずれかである特許請求の範囲第1項記載の高カロリー
ガス製造用触媒。 (3)白金族金属がルテニウム、ロジウム、パラジウム
、白金またはイリジウムのいずれかである特許請求の範
囲第1項または第2項記載の高カロリーガス製造用触媒
。 (4)アルカリ金属の醇化物がカリウム、ナトリウム、
リチウム、セシウムまたはルビジウムのいずれか1種の
酸化物であり、アルカリ土類金属の酸化物がマグネシウ
ム、カルシウム、ストロンチウムまたはバリウムのいず
れか1種の酸化物であり、る土類元素の酸化物がランタ
ン、セリウム。 プラセオジウムまたはサマリウムのいずれかl&Iの酸
化物である特許請求の範囲第1〜3項のいずれかに記載
の高カロリーガス製造用触媒。 (5)鉄族金属=3〜15%(重a%の意味、以下同じ
)、 酸化マンガン:鉄族金属元素対マンガン元素の原子比が
(5:1)〜 (5:4)を満足する邦二、 白金族金属:鉄族金属元素対白金族金属元素の原子比が
(30:I)〜(5:2)を満足する量、 アルカリ金属酸化物、アルカリ土類金属醇化物または希
土類元素の酸化物のうち、いずれか1種の酸化物: 0
.01〜1.0%である特許請求の範囲第1〜4項のい
ずれかに記載の高カロリーカス製造用触媒。 (6)シリカおよび/またはアルミナよりなる担体に、
まず白金族金属を相持させ、つぎにこれを鉄族金属と酸
化マンガンとを同時に担持させ、ついでアルカリ金属の
酸化物、アルカリ土類金属の醇化物および昂二に類元素
の酸化物のうち、いずれか1種の酸化物を担持させるこ
とを特徴とする高カロリーガス製造用触媒の製造方法。 (7)触1iM基質としての鉄族金属がコバルトまたは
鉄のいずれかである特許請求の範囲第6項記載の高カロ
リーガス製造用触媒の製造方法。 (8)白金族金属がルテニウム、ロジウム、パラジウム
、白金またはイリジウムのいずれかである特許請求の範
囲第6項又は第7項記載の高カロリーガス製造用触媒の
製造方法。 (9)アルカリ金属の酸化物がカリウム、ナトリウム、
リチウム、セシウムまたはルビジウムのいずれか1種の
酸化物であり、アルカリ土類金属の酸化物がマグネシウ
ム、カルシウム、ストロンチウムまたはバリウムのいず
れか1種の酸化物であり、希土類元素の酸化物がランタ
ン、セリウム。 プラセオジウムまたはサマリウムのいずれか1種の酸化
物である特許請求の範囲第6〜8項いずれかに記載の高
カロリーガス製造用触媒の製造方法。 (lO)鉄族金属:3〜15%。 酸化マンガン:鉄族金属元素対マンガン元素の原子比が
(5:I)〜 (5:4)を満足する星、 白金族金属:鉄族金属元素対白金族金属元素の原子比が
(30:1)〜(5:2)を晶足する量、 アルカリ金属酸化物、アルカリ土類金属酸化物または希
土類元素の酸化物のうち、いずれか1種の酸化物: 0
.01〜1.0%である特許請求の範囲第6〜9項のい
ずれかに記載の高カロリーガス製造用触媒の製造方法。 (11)触媒基質としての鉄族金属に、酸化マンガンお
よび白金族金属ならびにアルカリ金属酸化物、アルカリ
土類金属酸化物または希土類元素酸化物のうちいずれか
1種の酸化物を組み合わせ、シリカおよび/またはアル
ミナよりなる担体に担持させてなる触媒」−に、水素と
一酸化炭素を含むカスあるいは水素と一酸化炭素と二酸
化炭素を含むガスを導通ずることを特徴とする高カロリ
ーガスの製造方法。 (12)触媒基質としての鉄族金属がコバルトまたは鉄
のいずれかである特許請求の範囲第11項記載の高カロ
リーカスの製造方法。 (13)白金族金属がルテニウム、ロジウム、パラジウ
ム、白金またはイリジウムのいずれかである特許請求の
範囲第11又は第12項記載の高カロリーカスの製造方
法。 (14)アルカリ金属の酸化物がカリウム、すトリウム
、リチウム、セシウムオたはルビジウムのいずれか1種
の酸化物であり、アルカリ土類金属の酸化物がマグネシ
ウム、カルシウム、ストロンチウムまたはバリウムのい
ずれか1種の酸化物であり、希土類元素の酸化物がラン
タン、セリウム。 プラセオジウムまたはサマリウムのいずれか1種の酸化
物である特許請求の範囲第11〜13項のいずれかに記
載の高カロリーガスの製造方法。 (15)鉄族金属=3〜15%、 酸化7ノガン:鉄族金属元素対マンガン元素の原イ比が
(5:1)〜 (5:4)を満足する量、 白金族金属:鉄族金属元素対白金族金属元素の原子比が
(30:1)〜(5:2)を満足する量、 アルカリ金属酸化物、アルカリ土類金属酸化物または希
土類元素の酸化物のうちいずれか1種の酸化物: 0.
01〜1.0%である特許請求の範囲第11〜14項の
いずれかに記載の高カロリーガスの製造方法。 (1B)触媒基質としてのコバルトまたは鉄のいずれか
よりなる鉄族金属に酸化マンガンおよび白金族金属なら
ひにアルカリ金属酸化物、アルカリ土類金属酸化物また
はる土類元素の酸化物のうちいずれか1種の酸化物を組
み合わせ、シリカおよび/またはアルミナよりなる担体
に担持させた第】の触媒」−に、水素と一酸化炭素を含
むガスあるいは水素と一酸化炭素と二酸化炭素を含むガ
スを導通し、ついで触媒基質としてのニッケルに希」二
類元素の醇化物と白金族金属とを組み合わせ、シリカお
よび/またはアルミナよりなる担体に担持さぜた第2の
触媒上に導通することを特徴とする高カロリーガスの製
造方法。 (17)第1の触媒におけるアルカリ金属の酸化物がカ
リウム、ナトリウム、リチウム、セシウムまたはルビジ
ウムのいずれか1種の酸化物であり、アルカリ土類金属
の酸化物がマグネシウム、カルシウム、ストロンチウム
またはバリウムのいずれか1種の酸化物であり、6土類
元素の酸化物がランタン、セリウム、プラセオジウムま
たはサマリウムのいずれか1種の酸化物よりなる特許請
求の範囲第16項記載の高カロリーガスの製造方法。 (18)鉄族金属:3〜15%、 酸化マンガン:鉄族金属元素対マンガン元素の原子比が
(5:I)〜 (5:4)を満足する量、 白金族金属:鉄族金属元素対白金族金属元素の原子比が
(30:l)〜(5:2)を満足する量、 アルカリ金属酸化物、アルカリ土類金属酸化物または希
土類元素の酸化物のうちいずれか1種の酸化物: 0.
01〜1.0%である特許請求の範囲第16項又は17
項記載の高カロリーガスの製造方法。
[Scope of Claims] (1) An iron group metal as a catalyst substrate is oxidized with manganese in solution, a platinum group metal, and any one of an alkali metal oxide, an alkaline earth metal oxide, or a rare earth element oxide. 1. A catalyst for producing a high-calorie gas, characterized in that it is made of a combination of substances and maintained on a carrier made of silica and/or alumina for J months. (2) The catalyst for producing high-calorie gas according to claim 1, wherein the iron group metal as the catalyst substrate is either cobalt or iron. (3) The catalyst for producing high-calorie gas according to claim 1 or 2, wherein the platinum group metal is ruthenium, rhodium, palladium, platinum, or iridium. (4) The alkali metal liquefied substances are potassium, sodium,
The oxide of any one of lithium, cesium or rubidium is an oxide of any one of alkaline earth metals, the oxide of an alkaline earth metal is an oxide of any one of magnesium, calcium, strontium or barium, and the oxide of an earth element is an oxide of any one of magnesium, calcium, strontium or barium. Lantern, cerium. The catalyst for producing high-calorie gas according to any one of claims 1 to 3, which is an oxide of praseodymium or samarium I&I. (5) Iron group metal = 3 to 15% (meaning of weight a%, same below), manganese oxide: atomic ratio of iron group metal element to manganese element satisfies (5:1) to (5:4) Kuniji, Platinum group metal: an amount in which the atomic ratio of iron group metal element to platinum group metal element satisfies (30:I) to (5:2), alkali metal oxide, alkaline earth metal moltenide, or rare earth element Any one type of oxide among the oxides: 0
.. 5. The catalyst for producing high-calorie residue according to any one of claims 1 to 4, wherein the content is 01 to 1.0%. (6) A carrier made of silica and/or alumina,
First, a platinum group metal is supported, then an iron group metal and a manganese oxide are simultaneously supported, and then, among oxides of alkali metals, infusions of alkaline earth metals, and oxides of secondary elements, A method for producing a catalyst for producing high-calorie gas, characterized by supporting any one type of oxide. (7) The method for producing a catalyst for producing a high-calorie gas according to claim 6, wherein the iron group metal as the substrate is either cobalt or iron. (8) The method for producing a catalyst for producing a high-calorie gas according to claim 6 or 7, wherein the platinum group metal is ruthenium, rhodium, palladium, platinum or iridium. (9) The alkali metal oxides are potassium, sodium,
The oxide of any one of lithium, cesium, or rubidium, the oxide of the alkaline earth metal is an oxide of any one of magnesium, calcium, strontium, or barium, and the oxide of the rare earth element is lanthanum, cerium. The method for producing a catalyst for producing a high-calorie gas according to any one of claims 6 to 8, wherein the catalyst is an oxide of praseodymium or samarium. (lO) Iron group metal: 3-15%. Manganese oxide: A star whose atomic ratio of iron group metal elements to manganese elements satisfies (5:I) to (5:4), Platinum group metal: A star whose atomic ratio of iron group metal elements to platinum group metal elements satisfies (30: 1) to (5:2), any one oxide among alkali metal oxides, alkaline earth metal oxides, and rare earth element oxides: 0
.. The method for producing a catalyst for producing high-calorie gas according to any one of claims 6 to 9, wherein the content is 01 to 1.0%. (11) An iron group metal as a catalyst substrate is combined with manganese oxide, a platinum group metal, and any one of an alkali metal oxide, an alkaline earth metal oxide, or a rare earth element oxide, and silica and/or or a catalyst supported on a carrier made of alumina. (12) The method for producing a high-calorie scum according to claim 11, wherein the iron group metal as the catalyst substrate is either cobalt or iron. (13) The method for producing a high-calorie scum according to claim 11 or 12, wherein the platinum group metal is ruthenium, rhodium, palladium, platinum, or iridium. (14) The alkali metal oxide is any one of potassium, thorium, lithium, cesium or rubidium, and the alkaline earth metal oxide is any one of magnesium, calcium, strontium or barium. Oxides of rare earth elements include lanthanum and cerium. The method for producing a high-calorie gas according to any one of claims 11 to 13, wherein the oxide is one of praseodymium and samarium. (15) Iron group metal = 3 to 15%, Nogan 7 oxide: an amount that satisfies the original ratio of iron group metal element to manganese element (5:1) to (5:4), platinum group metal: iron group metal An amount in which the atomic ratio of metal element to platinum group metal element satisfies (30:1) to (5:2), any one of alkali metal oxide, alkaline earth metal oxide, or rare earth element oxide Oxide of: 0.
01 to 1.0%. (1B) An iron group metal consisting of either cobalt or iron as a catalyst substrate, manganese oxide and a platinum group metal, an alkali metal oxide, an alkaline earth metal oxide or an oxide of an earth element. A gas containing hydrogen and carbon monoxide, or a gas containing hydrogen, carbon monoxide, and carbon dioxide is added to the first catalyst, which is a combination of one of the above oxides and supported on a carrier made of silica and/or alumina. conduction, and then conduction over a second catalyst made of nickel as a catalyst substrate, a combination of a diluted compound of a rare class 2 element and a platinum group metal, and supported on a carrier made of silica and/or alumina. A method for producing high calorie gas. (17) The alkali metal oxide in the first catalyst is any one of potassium, sodium, lithium, cesium, or rubidium, and the alkaline earth metal oxide is magnesium, calcium, strontium, or barium. The method for producing a high-calorie gas according to claim 16, wherein the oxide of the hexaearth element is an oxide of any one of lanthanum, cerium, praseodymium, or samarium. . (18) Iron group metal: 3 to 15%, manganese oxide: an amount that satisfies the atomic ratio of iron group metal element to manganese element (5:I) to (5:4), platinum group metal: iron group metal element An amount in which the atomic ratio of the platinum group metal element to the platinum group metal element satisfies (30:l) to (5:2), oxidation of any one of alkali metal oxides, alkaline earth metal oxides, or rare earth element oxides. Things: 0.
Claim 16 or 17 which is 01 to 1.0%.
2. Method for producing high calorie gas as described in Section 1.
JP58054888A 1983-03-30 1983-03-30 Catalyst for producing high calory gas and its production and production of high calory gas Granted JPS59179154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58054888A JPS59179154A (en) 1983-03-30 1983-03-30 Catalyst for producing high calory gas and its production and production of high calory gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58054888A JPS59179154A (en) 1983-03-30 1983-03-30 Catalyst for producing high calory gas and its production and production of high calory gas

Publications (2)

Publication Number Publication Date
JPS59179154A true JPS59179154A (en) 1984-10-11
JPH0211306B2 JPH0211306B2 (en) 1990-03-13

Family

ID=12983124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58054888A Granted JPS59179154A (en) 1983-03-30 1983-03-30 Catalyst for producing high calory gas and its production and production of high calory gas

Country Status (1)

Country Link
JP (1) JPS59179154A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014510613A (en) * 2010-12-22 2014-05-01 サウディ ベーシック インダストリーズ コーポレイション Useful catalysts for Fischer-Tropsch synthesis
US9085324B2 (en) 2012-09-27 2015-07-21 Fuji Jukogyo Kabushiki Kaisha Front pillar structure for vehicle
US9096270B2 (en) 2012-09-27 2015-08-04 Fuji Jukogyo Kabushiki Kaisha Pillar structure for vehicle
US9422204B2 (en) 2012-06-25 2016-08-23 Saudi Basic Industries Corporation Process for producing ethylene and propylene from syngas
US9545620B2 (en) 2012-06-27 2017-01-17 Saudi Basic Industries Corporation Catalyst and process for selective production of lower hydrocarbons C1-C5 from syngas with low methane and CO2 production

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014510613A (en) * 2010-12-22 2014-05-01 サウディ ベーシック インダストリーズ コーポレイション Useful catalysts for Fischer-Tropsch synthesis
US9416067B2 (en) 2010-12-22 2016-08-16 Saudi Basic Industries Corporation Catalyst useful in fisher-tropsch synthesis
US9422204B2 (en) 2012-06-25 2016-08-23 Saudi Basic Industries Corporation Process for producing ethylene and propylene from syngas
US9545620B2 (en) 2012-06-27 2017-01-17 Saudi Basic Industries Corporation Catalyst and process for selective production of lower hydrocarbons C1-C5 from syngas with low methane and CO2 production
US10239800B2 (en) 2012-06-27 2019-03-26 Saudi Basic Industries Corporation Catalyst and process for selective production of lower hydrocarbons C1—C5 from syngas with low methane and CO2 production
US9085324B2 (en) 2012-09-27 2015-07-21 Fuji Jukogyo Kabushiki Kaisha Front pillar structure for vehicle
US9096270B2 (en) 2012-09-27 2015-08-04 Fuji Jukogyo Kabushiki Kaisha Pillar structure for vehicle

Also Published As

Publication number Publication date
JPH0211306B2 (en) 1990-03-13

Similar Documents

Publication Publication Date Title
US4755498A (en) Steam reforming catalyst
EP1481729B1 (en) Process for the autothermal reforming of a hydrocarbon feedstock
US20070167323A1 (en) Porous carrier for steam-reforming catalysts, steam-reforming catalyst and process for producing reactive mixed gas
CN101045527B (en) Regeneration of complex metal oxides for the production of hydrogen
JP2958242B2 (en) Hydrocarbon steam reforming method
US3451949A (en) Catalyst for reforming hydrocarbons
JPH0680972A (en) Depth desulfurization of light-to-middle oil
Do et al. Effective hydrogen productions from propane steam reforming over spinel‐structured metal‐manganese oxide redox couple catalysts
He et al. Improving the carbon resistance of iron-based oxygen carrier for hydrogen production via chemical looping steam methane reforming: A review
AU5054999A (en) Catalyst carrier carrying nickel ruthenium and lanthanum
JPS59179154A (en) Catalyst for producing high calory gas and its production and production of high calory gas
US4414140A (en) Catalyst for steam reforming
JPS5929633B2 (en) Low-temperature steam reforming method for hydrocarbons
JP2885153B2 (en) Catalyst material for producing SNG and method for producing SNG
Royer et al. Enthalpy recovery of gases issued from H2 production processes: Activity and stability of oxide and noble metal catalysts in oxidation reaction under highly severe conditions
DK142606B (en) Catalyst for methanation reactions.
JPS5997501A (en) Manufacture of gas abounding in hydrogen
JPS62294442A (en) Reducing catalyst
WO2021138728A1 (en) Method for preparing a steam reforming catalyst, catalyst and related use
JPH01148343A (en) Catalyst for production of synthesis gas
JPS6064631A (en) Method for preparing high calorie gas and catalyst therefor
JPS60132649A (en) Catalyst for preparing high calorie gas, its preparation and preparation of high calorie gas
JPS5946133A (en) Catalyst for preparing high calorie gas, preparation thereof and preparation of high calorie gas
CA1284984C (en) Steam reforming catalyst
US2561422A (en) Process of extracting iron from clay