JPS6063311A - Manufacture of dead soft steel by rh degassing - Google Patents

Manufacture of dead soft steel by rh degassing

Info

Publication number
JPS6063311A
JPS6063311A JP17137983A JP17137983A JPS6063311A JP S6063311 A JPS6063311 A JP S6063311A JP 17137983 A JP17137983 A JP 17137983A JP 17137983 A JP17137983 A JP 17137983A JP S6063311 A JPS6063311 A JP S6063311A
Authority
JP
Japan
Prior art keywords
molten steel
degassing
inert gas
furnace
dead soft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17137983A
Other languages
Japanese (ja)
Inventor
Masayuki Hanmiyo
半明 正之
Takayoshi Anzai
安斎 孝儀
Haruyoshi Tanabe
治良 田辺
Masabumi Ikeda
正文 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP17137983A priority Critical patent/JPS6063311A/en
Publication of JPS6063311A publication Critical patent/JPS6063311A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum

Abstract

PURPOSE:To decarburize efficiently molten steel by an RH degassing method by evacuating an RH vacuum treatment furnace at a specified rate and blowing an inert gas for circulating the molten steel by a specified volume. CONSTITUTION:When molten steel is decarburized by releasing gaseous CO by circulation in an RH degassing furnace, the furnace in which the molten steel is circulated is evacuated from 760Torr-1Torr at >=120Torr/min average rate. An inert gas for circulating the molten steel such as Ar is blown by a volume Q(Nm<3>/min) satisfying equation 1. The molten steel having about 200-300ppm carbon content can be easily decarburized in a short time to obtain dead soft steel having about 20ppm carbon content.

Description

【発明の詳細な説明】 この発明はRI(脱ガスを用いた極低炭素鋼の溶製方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing ultra-low carbon steel using RI (degassing).

従来、RI(脱ガスを用いて極低炭素鋼を溶製する場合
、事前処理として転炉での底吹きガス攪拌や2次精錬設
備により鋼中[()濃度をI Q Oppm 程既にし
た後、RH脱炭処理を20〜30分行う必要があった。
Conventionally, when ultra-low carbon steel is melted using RI (degassing), as a pretreatment, bottom-blown gas stirring in a converter or secondary refining equipment is used to reduce the concentration in the steel to I Q Oppm. , it was necessary to perform RH decarburization treatment for 20 to 30 minutes.

そのためコスト的にもまた大量溶製の観点からも改善が
望まれていた。
Therefore, improvements have been desired in terms of cost and mass production.

本発明はこのためになされたもので、事前処理を必要と
せず、しかもRH脱ガス処理時間の短い溶製法を提供し
ようとするものであるO RH脱ガスにおける脱炭速度は、この脱炭反応を一次反
応とみなすと次のように表わせる。
The present invention was made for this purpose, and aims to provide a melting method that does not require pre-treatment and has a short RH degassing time. When considered as a first-order reaction, it can be expressed as follows.

ここで〔C〕:バルクのC0度 [C]i : Pco K平衡する[:C] e度A 
:反応界面積 したがって脱炭速匿を向上させるためには反応界面積を
増大させることが重要である0この反応界面積を増大さ
せる方法として、浸漬管からのArガス等の環流用不活
性ガス吹込量を増大させ環流量を増大させる方法と、真
空庭の早期向上によJCO/<プルの発生を増し反応界
面積の増大を図る方法とが考えら・れる0前者のガス吹
込量と環流量とには、第1図に示すようなモデルを考え
ると、次のような関係があることが知られている。
Here [C]: Bulk C0 degree [C]i: Pco K equilibrium [:C] e degree A
: Reaction interfacial area Therefore, it is important to increase the reaction interfacial area in order to improve decarburization speed.0 As a method of increasing this reaction interfacial area, inert gas for reflux such as Ar gas from the immersion pipe is used. Two methods are considered: one is to increase the amount of gas injected to increase the reflux amount, and the other is to increase the generation of JCO/< pull and increase the reaction interfacial area by improving the vacuum chamber early. Considering the model shown in FIG. 1, it is known that the flow rate has the following relationship.

W=K(H’Q’/’ −D2)1/2 ・・・・・・
・・・・・・・・・・・・・・・・・・・・・■ここで
W:環流量(t/m1n) H:不活性ガス吹込深さくm) Q:不活性ガス吹込量(Nm”7m1ri )D=浸漬
管内径(m) そして水モデル実験によれば、このWを最大にするQが
下記0式に示すように存在し、従来はこれ以上にQが増
大してもWはむしろ減少すると考えられていた。
W=K(H'Q'/'-D2)1/2...
・・・・・・・・・・・・・・・・・・・・・ ■Where W: Circulation amount (t/m1n) H: Inert gas injection depth (m) Q: Inert gas injection amount (Nm”7m1ri) D=Immersion pipe inner diameter (m) According to the water model experiment, there is a Q that maximizes this W as shown in equation 0 below, and conventionally, even if Q increases beyond this, It was thought that W would actually decrease.

Q=3.9X10−2X(IOD)”・08 ・・・・
・・・・・・・・・・・■しかし、本発明者らの実験研
究によれば、不活性ガス流量の増大は確実に脱炭速度の
向上をもたらすことが明らかとなった。第2図はその関
係を示すもので、初期Ar流量70ONt/minのも
のはlo o o Nt/minのものに比べて初期脱
炭速度は速く、また70ONt/minに流量を増した
時点で再び脱炭速度が向上していることがわかる。
Q=3.9X10-2X (IOD)"・08...
......■ However, according to the experimental research conducted by the present inventors, it has been revealed that an increase in the inert gas flow rate definitely brings about an improvement in the decarburization rate. Figure 2 shows the relationship.The initial decarburization rate is faster when the initial Ar flow rate is 70ONt/min compared to the lo o o Nt/min, and when the flow rate is increased to 70ONt/min, It can be seen that the decarburization rate has improved.

以上の結果から、本発明においては不活性ガス流量を従
来の上限とされていた値以上、即ち、Q (Nm3/m
1n) > 3.9 X 10−2X (l0D)2−
”と限定する。
From the above results, it is clear that in the present invention, the inert gas flow rate is higher than the conventional upper limit, that is, Q (Nm3/m
1n) > 3.9 X 10-2X (l0D)2-
”.

次に第2図に脱炭速度に及ぼす減圧パターンの影響を示
す。このグラフから減圧パターンを遅くしたものについ
1は初期脱炭速度が遅いことがわかる。また第1図と第
2図よシ初期脱炭速度の向上が到達炭素濃度に影響を及
はしていると推定される。
Next, Figure 2 shows the influence of the pressure reduction pattern on the decarburization rate. From this graph, it can be seen that the initial decarburization rate of No. 1 is slow among those with a slow depressurization pattern. Furthermore, as shown in Figures 1 and 2, it is presumed that the improvement in the initial decarburization rate has an effect on the carbon concentration reached.

従って減圧速度になるべく速くすることが望聾しく、本
発明においては減圧速度を760 torr 〜i t
orrまでの平均速度で120torr/min 以上
と限定する。
Therefore, it is desirable to make the decompression speed as fast as possible, and in the present invention, the decompression speed is set to 760 torr to i t
The average speed up to orr is limited to 120 torr/min or more.

以上のような本発明法によυ、第4図に示す結果か得ら
ルた。この方法により200〜300ppm の高炭素
濃度域より20ppm以下の低炭素濃度域まで約15分
で脱炭可能となった。
By the method of the present invention as described above, the results shown in FIG. 4 were obtained. By this method, it became possible to decarburize from a high carbon concentration range of 200 to 300 ppm to a low carbon concentration range of 20 ppm or less in about 15 minutes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はRH脱ガス法のモデル図、第2図は不活性ガス
吹込量と脱炭速度との関係を示スゲラフ、第3図は脱炭
速度と減圧ノくターンの関係を示すグラフ、第4図は本
発明法の結果を示すグラフである。 特許出願人 日本鋼管株式会社 発 明 者 半 明 正 2 同 安 新 孝 6 同 1) 辺 治 長 間 池 1) 正 文 代理人弁理士 吉 原 省 三 同 同 高 晧 消 量 弁鏝士 吉 原 弘 子 111 図 第2図 Time (min)
Figure 1 is a model diagram of the RH degassing method, Figure 2 is a graph showing the relationship between inert gas injection amount and decarburization rate, and Figure 3 is a graph showing the relationship between decarburization rate and pressure reduction turn. FIG. 4 is a graph showing the results of the method of the present invention. Patent Applicant Nippon Kokan Co., Ltd. Inventor Masaaki Han 2 Takashi Yasu Arata 6 1) Osamu Be, Ike Nagama 1) Masafumi Patent Attorney Sho Yoshihara Sando Do Takashi Akira Mitsuru Benshiro Yoshihara Hiroko 111 Figure 2 Time (min)

Claims (1)

【特許請求の範囲】[Claims] 減圧速度を760 torr = 1 torr ”!
での平均速度で120 torr/min 以上とし、
環流用不活性ガス吹込量Q (Nm”/min )を、
Q≧3.9 X 10−” X (10D )”l”と
することを特徴とするRH脱ガスを用いた極低炭素鋼の
溶製方法。
The decompression speed is 760 torr = 1 torr”!
The average speed shall be 120 torr/min or more,
The amount of inert gas blown for reflux Q (Nm”/min) is
A method for producing ultra-low carbon steel using RH degassing, characterized in that Q≧3.9 X 10-"X (10D)"l".
JP17137983A 1983-09-19 1983-09-19 Manufacture of dead soft steel by rh degassing Pending JPS6063311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17137983A JPS6063311A (en) 1983-09-19 1983-09-19 Manufacture of dead soft steel by rh degassing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17137983A JPS6063311A (en) 1983-09-19 1983-09-19 Manufacture of dead soft steel by rh degassing

Publications (1)

Publication Number Publication Date
JPS6063311A true JPS6063311A (en) 1985-04-11

Family

ID=15922082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17137983A Pending JPS6063311A (en) 1983-09-19 1983-09-19 Manufacture of dead soft steel by rh degassing

Country Status (1)

Country Link
JP (1) JPS6063311A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04176812A (en) * 1990-11-08 1992-06-24 Kawasaki Steel Corp Method for refining ultra low carbon steel
CN112011670A (en) * 2020-08-20 2020-12-01 邯郸钢铁集团有限责任公司 Method for increasing RH refining decarburization rate of ultra-low carbon steel and side blowing device
CN117230281A (en) * 2023-11-14 2023-12-15 山西同航特钢有限公司 Production process of high-phosphorus IF steel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04176812A (en) * 1990-11-08 1992-06-24 Kawasaki Steel Corp Method for refining ultra low carbon steel
CN112011670A (en) * 2020-08-20 2020-12-01 邯郸钢铁集团有限责任公司 Method for increasing RH refining decarburization rate of ultra-low carbon steel and side blowing device
CN117230281A (en) * 2023-11-14 2023-12-15 山西同航特钢有限公司 Production process of high-phosphorus IF steel
CN117230281B (en) * 2023-11-14 2024-01-23 山西同航特钢有限公司 Production process of high-phosphorus IF steel

Similar Documents

Publication Publication Date Title
JPS6063311A (en) Manufacture of dead soft steel by rh degassing
CA2052737C (en) Method of producing ultra-low-carbon steel
US3208844A (en) Process for producing a low-temperature tough steel
JP2002012912A (en) Method for producing high-carbon/low-nitrogen steel
JPH0146563B2 (en)
JPS6021207B2 (en) Manufacturing method of ultra-low carbon molten steel
KR100406394B1 (en) Refining process of extra low carbon steel by throwing carburizing material in vaccum degassing
JPS63143216A (en) Melting method for extremely low carbon and low nitrogen steel
JPH05214430A (en) Method for vacuum-refining molten steel
JPH0465883B2 (en)
JPH06330148A (en) Method for melting low n steel in vacuum refining furnace
JPH0754034A (en) Production of ultralow carbon steel
JPH06299227A (en) Production of extra low carbon steel by rh type degassing apparatus
JPH08302419A (en) Refining method of molten steel
JP3118606B2 (en) Manufacturing method of ultra-low carbon steel
JPH08109410A (en) Finish decarburization refining of stainless steel
GB1569158A (en) Methods of and apparatus for vacuum refining molten steel
JPS60141818A (en) Production of dead soft steel by vacuum degassing treatment
MX166925B (en) PROCEDURE FOR PRODUCING STEEL WITH LOW HYDROGEN CONTENT
JPS61264122A (en) Vacuum refining method
JPH0925509A (en) Method for melting extra-low nitrogen chromium-containing steel
JPH02225615A (en) Method for refining high-nitrogen and low-oxygen steel
SU1756366A1 (en) Process for producing corrosion-resistant steel
JPH0598340A (en) Method and apparatus for producing extremely low carbon steel
JPH04141512A (en) Method for refining ultra low carbon steel by rh process