JPH0598340A - Method and apparatus for producing extremely low carbon steel - Google Patents

Method and apparatus for producing extremely low carbon steel

Info

Publication number
JPH0598340A
JPH0598340A JP25946791A JP25946791A JPH0598340A JP H0598340 A JPH0598340 A JP H0598340A JP 25946791 A JP25946791 A JP 25946791A JP 25946791 A JP25946791 A JP 25946791A JP H0598340 A JPH0598340 A JP H0598340A
Authority
JP
Japan
Prior art keywords
pressure
vacuum
molten steel
tank
vacuum chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP25946791A
Other languages
Japanese (ja)
Inventor
Shinichiro Tomino
伸一郎 冨野
Muneyasu Nasu
宗泰 那須
Akito Kiyose
明人 清瀬
Naoto Tsutsumi
直人 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP25946791A priority Critical patent/JPH0598340A/en
Publication of JPH0598340A publication Critical patent/JPH0598340A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To provide a method and an apparatus, in which decarbonize-treating time can be shortened at the time of executing the decarbonizing treatment of molten steel by using a vacuum degassing apparatus. CONSTITUTION:The method for producing an extremely low carbon steel is characterized in that after the pressure in the vacuum vessel reaches to <=20Torr during decarbonizing treatment before deoxidizing treatment, the pressure therein is returned back to >= the starting pressure of return-back + 5Torr and <=200Torr and again reduced to <=20Torr.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、極低炭素鋼の溶製方法
およびその装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for producing ultra low carbon steel.

【0002】[0002]

【従来の技術】真空脱ガス装置は、主として真空槽とそ
の下部に接続された被処理溶鋼中に浸漬される浸漬管と
から成る。この装置の代表的なものとして、浸漬管が溶
鋼上昇用の上昇管と下降用の下降管にわかれたRH式真
空脱ガス装置(環流式真空脱ガス装置)が知られてお
り、この装置による真空脱ガス処理によって、溶鋼の脱
炭、脱酸素、脱水素あるいは脱窒素処理等の溶鋼の二次
精錬処理が行われる。
2. Description of the Related Art A vacuum degassing apparatus mainly comprises a vacuum chamber and a dipping pipe connected to a lower portion of the vacuum chamber for dipping in molten steel to be treated. As a typical example of this apparatus, an RH type vacuum degassing apparatus (circulation type vacuum degassing apparatus) in which an immersion pipe is divided into an ascending pipe for rising molten steel and a descending pipe for descending is known. By vacuum degassing, secondary refining of molten steel such as decarburization, deoxidation, dehydrogenation or denitrification of molten steel is performed.

【0003】近年、冷延材や電磁材において主として焼
純工程の大幅なスピードアップによる生産性向上を図る
ため、あるいは加工性に優れる素材要求に応えるため、
極低炭素鋼製造の必要性が高まっている。一般に極低炭
素鋼を溶製する場合、まず一時精錬炉(転炉、平炉、電
気炉等)にて可及的に脱炭処理を行い、さらに所期の炭
素濃度が達成されるまで、真空脱ガス装置に供して脱炭
処理を行う。
In recent years, in cold rolled materials and electromagnetic materials, mainly in order to improve productivity by greatly speeding up the refining process, or to meet the demand for materials having excellent workability,
The need for ultra low carbon steel production is increasing. Generally, when melting ultra-low carbon steel, first decarburize as much as possible in a temporary refining furnace (converter, open furnace, electric furnace, etc.), and then vacuum until the desired carbon concentration is achieved. Decarburization is performed by using the degasser.

【0004】この真空脱ガス装置にて得られる最終炭素
濃度は、真空槽内への取鍋の未反応の溶鋼の供給速度
(以下、溶鋼環流速度と称す)、真空槽内の溶鋼攪拌状
況と圧力変化および脱炭処理時間により決定される。こ
のため、脱炭反応促進方法について様々な提案がなされ
ている。まず、溶鋼環流速度に関しては、特開平1−1
32715号公報や、特開昭64−79317号公報に
提案されているように環流ガス吹き込み方法を改善した
り、浸漬管断面積を拡大することで、溶鋼環流速度を増
大することが図られてきた。
The final carbon concentration obtained by this vacuum degassing apparatus depends on the feed rate of unreacted molten steel in the ladle into the vacuum tank (hereinafter referred to as molten steel reflux rate), the molten steel stirring status in the vacuum tank. Determined by pressure change and decarburization treatment time. For this reason, various proposals have been made regarding methods for accelerating the decarburization reaction. First, regarding molten steel recirculation velocity, Japanese Patent Application Laid-Open No. 1-1
As proposed in Japanese Patent No. 32715 and Japanese Patent Laid-Open No. 64-79317, it has been attempted to increase the molten steel recirculation velocity by improving the circulating gas injection method or enlarging the dip pipe cross-sectional area. It was

【0005】次に、真空槽内の攪拌を十分行うために、
RH真空槽の槽底の浸漬管槽内開口端間の位置にガス吹
き込み羽口を設けた装置(特開昭57−110611号
公報)の他、真空槽内の不特定部位に不活性ガス吹き込
み羽口を設置した方法(特開昭58−73716号公
報)、リニアモータと組み合わせた方法(特開平2−1
41521号公報)が提案されている。
Next, in order to perform sufficient stirring in the vacuum chamber,
In addition to a device (Japanese Patent Laid-Open No. 57-110611) in which a gas blowing tuyere is provided at a position between the opening ends of the immersion tube inside the tank of the RH vacuum tank, an inert gas is blown into an unspecified portion of the vacuum tank. A method in which a tuyere is installed (Japanese Patent Laid-Open No. 58-73716) and a method in combination with a linear motor (Japanese Patent Laid-Open No. 2-1)
No. 41521) has been proposed.

【0006】そして、真空槽内の圧力変化に関しては、
減圧速度を760〜1Torrの平均で120Torr
/min以上とする方法(特開昭60−63311号公
報)が提案されている。また、脱炭処理時間を延長すれ
ば、最終炭素濃度を低くできるのは、公知の事実であ
る。
Regarding the pressure change in the vacuum chamber,
Decompression rate is 760 to 1 Torr on average 120 Torr
/ Min or more (Japanese Patent Laid-Open No. 60-63311) has been proposed. Further, it is a known fact that the final carbon concentration can be lowered by extending the decarburization treatment time.

【0007】以上述べた方法以外に、化学的に反応を促
進する方法として、脱炭処理中に溶鋼中にCO2 ガスを
吹き込む方法(特開昭56−44711号公報)が提案
されている。
In addition to the method described above, a method of blowing CO 2 gas into molten steel during decarburization treatment (Japanese Patent Laid-Open No. 56-44711) has been proposed as a method of chemically promoting the reaction.

【0008】[0008]

【発明が解決しようとする課題】しかしながら従来の方
法だけでは、必ずしもコストおよび品質的に十分ではな
かった。まず、溶鋼環流速度を増大させる技術に関して
は、前述の方法により、ほぼ限界に達しており、これ以
上の改善余地は殆ど残されていない。
However, the conventional methods are not always sufficient in terms of cost and quality. First, regarding the technique for increasing the molten steel recirculation velocity, the above-mentioned method has almost reached the limit, and there is almost no room for improvement.

【0009】次に、真空槽内へのガス吹き込みにより溶
鋼攪拌力を増大させる方法は、ガス吹き込みに伴い発生
するスプラッシュの量が増大し、真空槽内壁に付着する
地金の量も増大するので、成分調整用合金を投入する際
の障害となる他、地金の発達により、真空槽内の溶鋼表
面における真空度が悪化し、脱炭速度が低下するため好
ましくない。
Next, in the method of increasing the molten steel stirring force by blowing gas into the vacuum chamber, the amount of splash generated by the gas blowing increases and the amount of metal that adheres to the inner wall of the vacuum chamber also increases. In addition to being an obstacle when the alloy for adjusting the composition is added, the degree of vacuum on the surface of the molten steel in the vacuum tank is deteriorated due to the development of the metal, and the decarburization rate is reduced, which is not preferable.

【0010】さらに、リニアモータを組み合わせる方法
は、リニアモータの装置そのものが高価であるため、コ
スト的に好ましくない。そして、平均減圧速度を120
Torr/min以上とする方法は、処理前半の脱炭促
進には効果が認められるものの、処理後半のいわゆる脱
炭停滞期に脱炭速度が急激に低下するという問題は解決
されていなかった。
Furthermore, the method of combining linear motors is not preferable in terms of cost because the linear motor device itself is expensive. Then, the average depressurization rate is 120
Although the method of setting Torr / min or more is effective in promoting decarburization in the first half of the treatment, the problem that the decarburization rate sharply decreases during the so-called decarburization stagnation period in the latter half of the treatment has not been solved.

【0011】また、処理時間の延長は、二次精錬処理中
の溶鋼温度降下量が増大するため、一次精錬炉の吹き止
め温度を上昇させる必要が生じ、耐火物および成分調整
用の合金コストが上昇するので、必ずしも有効な方法で
はなかった。最後に、CO2 を吹き込むことによる脱炭
促進方法は、 C + CO2 =2CO が吸熱反応のため、脱炭処理中の温度降下量が増大する
ので、処理時間延長と同様の理由により好ましくない。
In addition, the extension of the treatment time causes an increase in the molten steel temperature drop during the secondary refining treatment, so that it is necessary to raise the blow-off temperature of the primary refining furnace, which results in the cost of refractory and alloys for component adjustment. It wasn't always an effective way to go up. Finally, the method of promoting decarburization by blowing CO 2 is not preferable for the same reason as the extension of the treatment time because the temperature drop amount during the decarburization treatment increases because C + CO 2 = 2CO 3 is an endothermic reaction. ..

【0012】[0012]

【課題を解決するための手段】本発明は、前記の従来技
術がもつ課題を有利に解決するためになされたものであ
って、(1)真空脱ガス法により、製品炭素濃度;40
ppm以下の鋼の溶製を行う脱炭処理において、脱酸処
理前の脱炭処理中に真空槽内の圧力が20Torr以下
に到達した後に、少なくとも1回、復圧開始圧力+5T
orr以上200Torr以下に復圧させ、再度20T
orr以下まで減圧することを特徴とする極低炭素鋼の
溶製方法、(2)脱酸処理前の脱炭処理中に真空槽内圧
力情報により、真空槽内圧力を自動制御することを特徴
とする(1)記載の極低炭素鋼の溶製方法、(3)真空
槽とその下端に設置した浸漬管を、取鍋内の溶鋼に浸漬
させた状態で真空槽内を減圧し、真空槽内に溶鋼を吸引
し、溶鋼を減圧雰囲気に曝すことで、溶鋼の脱ガス処理
を行う真空脱ガス装置において、真空槽または排気系配
管に接続された圧力調節用タンクと、この圧力調節用タ
ンクから真空槽または排気系配管に接続する途中の配管
に真空槽内圧力調節弁を設けたことを特徴とする極低炭
素鋼の溶製装置、を要旨とするものである。
The present invention has been made in order to advantageously solve the above-mentioned problems of the prior art. (1) Product carbon concentration of 40 by vacuum degassing method.
In the decarburization treatment for melting steel of less than ppm, during the decarburization treatment before the deoxidation treatment, after the pressure in the vacuum tank reaches 20 Torr or less, at least once, the re-compression start pressure + 5T
Re-pressurize from orr to 200 Torr or less and re-apply 20T
Ultra-low carbon steel melting method characterized by decompressing to less than orr, (2) Automatically controlling the vacuum tank internal pressure based on the vacuum tank internal pressure information during decarburizing before deoxidation (1) The method for melting ultra-low carbon steel according to (1), (3) the vacuum tank and the immersion pipe installed at the lower end thereof are immersed in the molten steel in the ladle to reduce the pressure in the vacuum tank, and to produce a vacuum. In a vacuum degassing device for degassing molten steel by sucking the molten steel into the tank and exposing the molten steel to a decompressed atmosphere, a pressure control tank connected to the vacuum tank or the exhaust system pipe, and this pressure control tank The gist is an apparatus for melting ultra-low carbon steel, which is characterized in that a pressure control valve in a vacuum tank is provided in a pipe in the middle of connecting a tank to a vacuum tank or an exhaust system pipe.

【0013】[0013]

【作用】以下、本発明について、図面を参照しながら、
より詳細に説明する。図1は、本発明の一例を概略的に
示す断面図である。蒸気エジェクターあるいは真空ポン
プ等の真空排気系に真空排気口10を介して接続された
真空槽1の下部に2本の浸漬管2が設けられており、取
鍋3の被処理溶鋼4中に該浸漬管が浸漬している。真空
槽内を真空排気することにより、溶鋼4を真空槽1内に
吸い上げ、浸漬管2の一方から環流ガス管7および浸漬
管羽口8を通じて環流ガスを吹き込み、エアリフトポン
プの動作原理で溶鋼が連続的に環流することにより、脱
炭、脱水素等の真空脱ガス処理が行われ、また真空槽1
の側壁に設けられた合金投入口9を介して成分調整用の
合金が投入されることで、溶鋼の成分調整が行われる。
The present invention will be described below with reference to the drawings.
This will be described in more detail. FIG. 1 is a sectional view schematically showing an example of the present invention. Two dip pipes 2 are provided in the lower part of a vacuum tank 1 connected to a vacuum exhaust system such as a steam ejector or a vacuum pump via a vacuum exhaust port 10, and the dipping pipes 2 are provided in a molten steel 4 to be treated in a ladle 3. The dip tube is submerged. By evacuating the inside of the vacuum chamber, the molten steel 4 is sucked up into the vacuum chamber 1, and the circulating gas is blown from one of the dipping pipes 2 through the circulating gas pipe 7 and the dipping pipe tuyere 8. Vacuum degassing such as decarburization and dehydrogenation is performed by continuously circulating the gas, and the vacuum chamber 1
The composition of the molten steel is adjusted by introducing the alloy for adjusting the composition through the alloy injection port 9 provided on the side wall of the steel.

【0014】RH式脱ガス装置を用いて脱炭処理を行う
場合、通常は処理開始後10〜15分の〔C〕含有量:
20〜50ppmで脱炭反応速度が急激に低下する、い
わゆる脱炭停滞が生じる。本発明者らが、この脱炭停滞
の原因を調査した結果、脱炭停滞が生じる原因は真空槽
内の圧力変化が停滞することによるものであることが明
らかになった。通常の真空排気系の能力は、真空度が高
くなる(圧力が低下する)ほど全排気量が低下するた
め、20Torr以下の領域で必要な減圧速度を確保す
ることは困難となる。そこで、一旦20Torr以下の
真空度となった後に、復圧開始の圧力+5torr以上
に復圧し、再度排気することにより減圧させ、圧力変化
速度を確保したところ、脱炭停滞が生じることなく所期
の炭素濃度まで脱炭できることがわかった。
When decarburization treatment is carried out by using an RH type degasser, the [C] content is usually 10 to 15 minutes after the treatment is started:
At 20 to 50 ppm, the so-called decarburization stagnation occurs, in which the decarburization reaction rate rapidly decreases. As a result of investigating the cause of the decarburization stagnation, the present inventors have revealed that the cause of the decarburization stagnation is that the pressure change in the vacuum chamber is stagnant. With respect to the capacity of a normal vacuum exhaust system, as the degree of vacuum increases (the pressure decreases), the total exhaust amount decreases, so that it becomes difficult to secure a necessary decompression rate in a region of 20 Torr or less. Therefore, once the degree of vacuum is reduced to 20 Torr or less, the pressure is restored to the pressure at which the decompression starts +5 torr or more, and the pressure is reduced by exhausting it again to secure the pressure change rate. It was found that decarburization up to carbon concentration was possible.

【0015】なお、本発明は脱炭停滞期の脱炭速度を促
進する際に有効である。従って、溶製対象鋼種を製品炭
素濃度が40ppm以下のものに限定する。ここで、溶
鋼中炭素濃度が50ppm以下の領域で脱炭するために
は、槽内圧力を50Torr以下にする必要があるの
で、真空槽内の圧力は50Torr以下の範囲で復圧さ
せることが望ましい。本発明者らの調査では、復圧開始
時の真空槽内圧力を1〜10Torrの範囲、復圧後の
真空槽内圧力を10〜30Torrの範囲に調節した時
が、脱炭速度を増加させるのに最も効果的であった。
The present invention is effective in promoting the decarburization rate during the decarburization stagnation period. Therefore, the steel types to be melted are limited to those having a product carbon concentration of 40 ppm or less. Here, in order to decarburize in the region where the carbon concentration in the molten steel is 50 ppm or less, it is necessary to set the pressure in the tank to 50 Torr or less, so it is desirable to restore the pressure in the vacuum tank within the range of 50 Torr or less. .. According to the investigation conducted by the present inventors, the decarburization rate is increased when the pressure inside the vacuum chamber at the start of the pressure recovery is adjusted to the range of 1 to 10 Torr and the pressure inside the vacuum chamber after the pressure recovery is adjusted to the range of 10 to 30 Torr. Was most effective in

【0016】また、復圧レベル(復圧開始時と復圧後の
圧力差)は、5Torr以上であれば所期の目的は達せ
られるが、復圧レベルが小さいと必要な圧力変化速度を
確保できる時間が短くなるため、復圧レベルは10To
rr以上とすることが望ましい。ただし、これらの値
は、脱ガス装置の排気能力と全ガス量の関係に依存する
ため、最適な復圧開始圧力と復圧後の圧力は、脱ガス装
置毎に異なるのはいうまでもない。さらに、同一の装置
でも全ガス量のうちリークガス量は、装置の状況(フラ
ンジの締め具合、槽の使用回数)により変化し、発生ガ
ス量も、溶鋼中の炭素濃度や酸素濃度により変化するの
に加え、蒸気エジェクター方式の真空排気装置を採用し
ている脱ガス装置の場合、コンデンサーの冷却水温度に
より排気能力が変化するため、最適な復圧開始圧力と復
圧後の圧力範囲の最適値は変化する。
Further, if the recompression level (pressure difference between the start of recompression and the pressure after recompression) is 5 Torr or more, the intended purpose can be achieved, but if the recompression level is small, the required pressure change speed is secured. Since the time that can be set is shortened, the recompression level is 10To.
It is desirable to be rr or more. However, since these values depend on the relationship between the exhaust gas capacity of the degassing device and the total amount of gas, it goes without saying that the optimum pressure for starting re-compression and the pressure after re-compression differ depending on the degassing device. .. Furthermore, even with the same device, the leak gas amount of the total gas amount changes depending on the condition of the device (flange tightening condition, number of times the tank is used), and the generated gas amount also changes depending on the carbon concentration and oxygen concentration in the molten steel. In addition, in the case of a degasser that employs a steam ejector type vacuum exhaust device, the exhaust capacity changes depending on the cooling water temperature of the condenser. Changes.

【0017】また、真空槽内圧力が200Torrを超
えるとRH式脱ガス装置では環流が停止し、処理継続が
困難となるため、復圧後の圧力は大きくとも200To
rr以下とする。なお、復圧させる手段は、図1に示す
ように真空排気系配管の途中に真空槽内圧力調節弁11
を設け、一時的に排気を中断させることにより、槽内圧
力が時間経過とともに上昇することで達成される。
Further, when the pressure in the vacuum chamber exceeds 200 Torr, the recirculation is stopped in the RH type degassing apparatus, which makes it difficult to continue the treatment. Therefore, the pressure after the recompression is at most 200 Tor.
rr or less. In addition, as shown in FIG. 1, the means for restoring the pressure is such that the vacuum tank internal pressure control valve 11
Is provided and the exhaust is temporarily stopped, so that the pressure in the tank rises with the passage of time.

【0018】また、図2に示すように、復圧用タンク1
2から真空槽または排気系配管に接続する途中の配管に
真空槽内圧力調節弁11を設け、該弁の動作により真空
槽内の圧力を調節すれば、復圧に要する時間短縮が可能
となるため(復圧過程における脱炭速度はあまり早くな
い)、迅速な脱炭により有効である。ここで、通常は復
圧用のガスにはコスト的に有利な窒素ガスを使用するた
め、窒素規制の厳しい鋼種の溶製に際しては、図3に示
すように復圧専用のタンクを別途設け、不活性ガス等、
品質上問題とならないガスで復圧することが好ましい。
このような場合には、通常の復圧タンクとは別に圧力調
整用タンク14を設置することで対応が可能となる。た
だし、通常の極低炭素鋼溶製に際しては、脱炭処理中は
溶鋼中の酸素濃度を250ppm以上に保持するため、
窒素が溶鋼内に侵入することを酸素が妨げるので、一般
には窒素ガスを使用して復圧させても溶鋼中の窒素濃度
上昇は軽微であることは公知の事実である。そして、溶
製対象鋼種に応じて、図2と図3に示す装置を使い分け
ることが有利であることはいうまでもない。
Further, as shown in FIG. 2, the pressure recovery tank 1
If the pressure control valve 11 in the vacuum chamber is provided in the pipe connecting from 2 to the vacuum chamber or the exhaust system pipe, and the pressure in the vacuum chamber is adjusted by the operation of the valve, the time required for recompression can be shortened. Because of this (the decarburization rate in the repressurization process is not very high), rapid decarburization is effective. Here, since nitrogen gas, which is advantageous in terms of cost, is normally used as the gas for recompression, a special tank for decompression is provided separately as shown in FIG. Active gas, etc.
It is preferable to restore the pressure with a gas that does not pose a quality problem.
In such a case, it is possible to cope with this by installing the pressure adjusting tank 14 in addition to the normal recompression tank. However, in the ordinary melting of ultra-low carbon steel, the oxygen concentration in the molten steel is maintained at 250 ppm or more during the decarburization treatment,
It is a known fact that the increase in nitrogen concentration in molten steel is generally slight even if the pressure is restored by using nitrogen gas, because oxygen prevents nitrogen from penetrating into the molten steel. Needless to say, it is advantageous to properly use the devices shown in FIGS. 2 and 3 according to the type of steel to be melted.

【0019】さらに、図4に示すように真空槽内圧力調
節弁11の動作を真空槽内の圧力を検知するセンサー1
5から得られる情報で自動的に制御することは、弁の動
作タイミングや弁開度と復圧の範囲を排気系の能力に応
じた最適な条件で制御することが可能となり、脱炭速度
促進効果を効率的に享受できる点で有利である。ここ
で、前述のように復圧開始時と終了後の真空槽内圧力の
最適な組合せは、その都度変化するため人工知能等を組
合せて制御すればさらに効果的であることはいうまでも
ない。
Further, as shown in FIG. 4, the operation of the pressure control valve 11 in the vacuum chamber is controlled by the sensor 1 for detecting the pressure in the vacuum chamber.
By automatically controlling with the information obtained from No. 5, it becomes possible to control the valve operation timing and the range of valve opening and recuperation pressure under the optimum conditions according to the exhaust system capacity, and accelerate the decarburization speed. It is advantageous in that the effect can be efficiently enjoyed. Here, it goes without saying that the optimum combination of the pressure in the vacuum chamber at the time of starting the pressure recovery and after the pressure recovery is changed as described above, so that it is more effective if it is controlled by combining artificial intelligence and the like. ..

【0020】また、一度復圧させた後も、ある程度減圧
すると再び圧力変化が停滞してくるため、再度復圧を繰
り返すことも有効である。ここで、復圧用タンクのガス
供給系能力が不足している場合には、復圧用タンクを複
数個備えることが有効であることはいうまでもない。
Further, even after the pressure is restored once, if the pressure is reduced to a certain extent, the pressure change becomes stagnant again. Therefore, it is effective to repeat the pressure restoration again. Here, it goes without saying that it is effective to provide a plurality of pressure-recovery tanks when the gas supply system capacity of the pressure-recovery tank is insufficient.

【0021】[0021]

【実施例】図2に示す実施装置のRH式真空脱ガス装置
にて、溶鋼の脱炭処理を行う際に脱炭停滞期に真空槽内
圧力の変化速度を変化させて最終炭素濃度がどう変わる
のかをテストした。この時の操業(従来と本発明の共
通)条件は、 ・処理前炭素濃度:370ppm ・溶鋼量:310Ton ・浸漬管内径:650mmφ ・環流ガス流量:2000N1/min ガス種:アルゴン ・脱炭処理時間:20min である。
[Example] In the RH-type vacuum degassing apparatus of the apparatus shown in FIG. 2, when performing decarburization treatment of molten steel, the rate of change in the pressure in the vacuum tank was changed during the decarburization stagnant period to determine the final carbon concentration. Tested to change. The operating conditions (common to the conventional and the present invention) at this time are: -carbon concentration before treatment: 370 ppm-amount of molten steel: 310 Ton-immersion pipe inner diameter: 650 mm-circulating gas flow rate: 2000 N1 / min gas type: argon-decarburization treatment time : 20 min.

【0022】この時の真空槽内圧力の経時変化を図5に
示した。なお、本発明法では、処理開始後7分、12
分、17分の計3回、それぞれ真空槽内圧力が1.5T
orrに到達した時に、真空槽内圧力を20Torrま
で復圧させた。図6に示すように、本発明の方法および
装置で脱炭処理を行うことにより、従来法に比べて、特
に脱炭処理の後半で脱炭速度が促進され、より炭素濃度
の低い鋼を容易に溶製することができた。
FIG. 5 shows the change with time in the vacuum chamber pressure at this time. In the method of the present invention, 7 minutes after starting the treatment, 12
Minute, 17 minutes 3 times, the pressure in the vacuum chamber is 1.5T each
When the pressure reached to orr, the pressure in the vacuum chamber was restored to 20 Torr. As shown in FIG. 6, by performing the decarburization treatment with the method and apparatus of the present invention, the decarburization rate is accelerated particularly in the latter half of the decarburization treatment as compared with the conventional method, and a steel having a lower carbon concentration can be easily produced. Could be melted.

【0023】[0023]

【発明の効果】以上述べたように、本発明によれば真空
槽内の圧力変化速度を確保した状態にて脱炭処理を行う
結果、通常認められるような脱炭停滞現象を生じること
なしに、所望の炭素濃度まで脱炭できる。
As described above, according to the present invention, the decarburization treatment is performed in a state where the pressure change rate in the vacuum chamber is secured, and as a result, the decarburization stagnation phenomenon which is usually recognized is not generated. , Can decarburize to a desired carbon concentration.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の態様の一例を概略的に示す断面
図である。
FIG. 1 is a sectional view schematically showing an example of an embodiment of the present invention.

【図2】真空槽内圧力調節のための圧力調節弁の配置の
一例を示す図である。
FIG. 2 is a diagram showing an example of the arrangement of pressure control valves for controlling the pressure in the vacuum chamber.

【図3】通常の復圧タンクとは別に復圧専用のタンクを
設けた真空槽内圧力調節のための実施態様を示す図であ
る。
FIG. 3 is a diagram showing an embodiment for adjusting the pressure in the vacuum chamber, in which a tank for exclusive use of pressure restoration is provided separately from a normal pressure restoration tank.

【図4】真空槽内圧力調節弁の動作を真空槽内の圧力を
検知するセンサーからの情報で自動的に制御するための
実施態様を示す図である。
FIG. 4 is a diagram showing an embodiment for automatically controlling the operation of the pressure control valve in the vacuum chamber with information from a sensor that detects the pressure in the vacuum chamber.

【図5】真空槽内圧力と処理開始後経過時間の関係を示
す図である。
FIG. 5 is a diagram showing the relationship between the pressure in the vacuum chamber and the elapsed time after the start of processing.

【図6】溶鋼中炭素濃度と処理開始後経過時間の関係を
示す図である。
FIG. 6 is a diagram showing the relationship between the carbon concentration in molten steel and the elapsed time after the start of treatment.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 堤 直人 愛知県東海市東海町5−3 新日本製鐵株 式会社名古屋製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Naoto Tsutsumi 5-3 Tokai-cho, Tokai-shi, Aichi Nippon Steel Co., Ltd. Nagoya Steel Works

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 真空脱ガス法により、製品炭素濃度:4
0ppm以下の鋼の溶製を行う脱炭処理において、脱酸
処理前の脱炭処理中に真空槽内の圧力が20Torr以
下に到達した後に、少なくとも1回、復圧開始圧力+5
Torr以上200Torr以下に復圧させ、再度20
Torr以下まで減圧することを特徴とする極低炭素鋼
の溶製方法。
1. Product carbon concentration: 4 by vacuum degassing method
In the decarburization treatment for smelting steel of 0 ppm or less, during the decarburization treatment before the deoxidation treatment, after the pressure in the vacuum tank reached 20 Torr or less, at least once, the re-compression start pressure +5
Restore the pressure from above Torr to below 200 Torr, and re-apply 20
A method for melting ultra-low carbon steel, characterized in that the pressure is reduced to not more than Torr.
【請求項2】 脱酸処理前の脱炭処理中に真空槽内圧力
情報により、真空槽内圧力を自動制御することを特徴と
する請求項1記載の極低炭素鋼の溶製方法。
2. The method for melting ultra-low carbon steel according to claim 1, wherein the internal pressure of the vacuum chamber is automatically controlled based on the internal pressure information of the vacuum chamber during the decarburizing process before the deoxidizing process.
【請求項3】 真空槽とその下端に設置した浸漬管を、
取鍋内の溶鋼に浸漬させた状態で真空槽内を減圧し、真
空槽内に溶鋼を吸引し、溶鋼を減圧雰囲気に曝すこと
で、溶鋼の脱ガス処理を行う真空脱ガス装置において、
真空槽または排気系配管に接続された圧力調節用タンク
と、この圧力調節用タンクから真空槽または排気系配管
に接続する途中の配管に真空槽内圧力調節弁を設けたこ
とを特徴とする極低炭素鋼の溶製装置。
3. A vacuum chamber and a dip tube installed at its lower end,
In a vacuum degassing device for degassing molten steel by depressurizing the vacuum tank while being immersed in molten steel in a ladle, sucking molten steel in the vacuum tank, and exposing the molten steel to a decompressed atmosphere,
A pressure control tank connected to a vacuum tank or an exhaust system pipe, and a pole in which a pressure control valve in the vacuum tank is provided in a pipe in the middle of connecting the pressure control tank to the vacuum chamber or the exhaust system pipe. Low carbon steel melting equipment.
JP25946791A 1991-10-07 1991-10-07 Method and apparatus for producing extremely low carbon steel Withdrawn JPH0598340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25946791A JPH0598340A (en) 1991-10-07 1991-10-07 Method and apparatus for producing extremely low carbon steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25946791A JPH0598340A (en) 1991-10-07 1991-10-07 Method and apparatus for producing extremely low carbon steel

Publications (1)

Publication Number Publication Date
JPH0598340A true JPH0598340A (en) 1993-04-20

Family

ID=17334483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25946791A Withdrawn JPH0598340A (en) 1991-10-07 1991-10-07 Method and apparatus for producing extremely low carbon steel

Country Status (1)

Country Link
JP (1) JPH0598340A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000077264A1 (en) * 1999-06-16 2000-12-21 Nippon Steel Corporation Refining method and refining apparatus of molten steel
JP2008115452A (en) * 2006-11-08 2008-05-22 Nippon Steel Engineering Co Ltd Evacuation system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000077264A1 (en) * 1999-06-16 2000-12-21 Nippon Steel Corporation Refining method and refining apparatus of molten steel
US6432164B1 (en) 1999-06-16 2002-08-13 Nippon Steel Corporation Method for refining molten steel and apparatus therefor
JP2008115452A (en) * 2006-11-08 2008-05-22 Nippon Steel Engineering Co Ltd Evacuation system

Similar Documents

Publication Publication Date Title
US5520718A (en) Steelmaking degassing method
KR0159182B1 (en) Method of manufacturing low carbon molten steel by vacuum degasification and decarbonization
CN111944955A (en) RH vacuum refining method
JPH0598340A (en) Method and apparatus for producing extremely low carbon steel
EP1757706B1 (en) Method for refining molten steel
JP3481292B2 (en) Melting method of ultra low carbon steel
JP3752080B2 (en) Vacuum refining method for molten steel with less dust
JP2002363636A (en) Method for smelting molten steel in rh vacuum degassing apparatus
JP2998038B2 (en) Manufacturing method of ultra-low carbon steel
JPH08302419A (en) Refining method of molten steel
JPS60141818A (en) Production of dead soft steel by vacuum degassing treatment
JP2998039B2 (en) Manufacturing method of ultra-low carbon steel
JP2988737B2 (en) Manufacturing method of ultra-low carbon steel
JPH10310817A (en) Decarburizing method in vacuum degassing apparatus
JP3118606B2 (en) Manufacturing method of ultra-low carbon steel
JPH09143546A (en) Oxygen top blowing method in rh degassing equipment
JP2780342B2 (en) Vacuum degassing method for molten metal
JP3296249B2 (en) Manufacturing method of ultra low nitrogen steel
JP2962163B2 (en) Melting method of high clean ultra low carbon steel
JPH04131316A (en) Method and device for vacuum degassing of extra-low-carbon steel
JPH02267213A (en) Method for vacuum-decarbonizing molten steel
JP3071445B2 (en) Methods for reducing nitrogen in vacuum refining of molten steel.
JPH06212243A (en) Production of high cleanliness molten steel
JPH10176215A (en) Rh degassing treatment of molten steel
JP2002105530A (en) Method for refining molten steel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990107