JPH0925509A - Method for melting extra-low nitrogen chromium-containing steel - Google Patents

Method for melting extra-low nitrogen chromium-containing steel

Info

Publication number
JPH0925509A
JPH0925509A JP17604095A JP17604095A JPH0925509A JP H0925509 A JPH0925509 A JP H0925509A JP 17604095 A JP17604095 A JP 17604095A JP 17604095 A JP17604095 A JP 17604095A JP H0925509 A JPH0925509 A JP H0925509A
Authority
JP
Japan
Prior art keywords
steel
molten steel
extra
decarburizing
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17604095A
Other languages
Japanese (ja)
Other versions
JP3769777B2 (en
Inventor
Hisashi Hiraoka
久 平岡
Hideji Takeuchi
秀次 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP17604095A priority Critical patent/JP3769777B2/en
Publication of JPH0925509A publication Critical patent/JPH0925509A/en
Application granted granted Critical
Publication of JP3769777B2 publication Critical patent/JP3769777B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce an extra-low nitrogen Cr-containing steel in short time and at a low cost by adding Al into molten Cr-containing steel after roughly decarburizing in a reduced-pressure vessel, raising the temp., blowing H2 gas and thereafter, vacuum-decarburizing into an extra-low carbon range. SOLUTION: Aluminum is added into the molten Cr-containing steel in the reduced-pressure vessel after roughly decarburizing, and oxidized into Al2 O3 , and the temp. of the molten steel is raised to a prescribed temp. by this oxidation heat. In this temp. raising stage, H2 gas is blown into the molten steel, desirably at >=2.0Nm<3> /hr of flow rate per molten steel ton. By this method, fine H2 gas bubbles are acted as denitrification reaction site without rising the C concn. at the initial stage to effectively execute the denitrification. Thereafter, the dacarburization is executed to the desired extra-low carbon range by the ordinary vacuum decarburizing treatment. By this method, the decarburizing time is shortened, and the erosion of refractory and the labor can be reduced. Further, the extra-low carbon and extra-low nitrogen steel having <=about 30ppm C and <= about 100ppm N is economically and efficiently achieved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、極低窒素Cr含有
鋼の溶製方法に関し、特に真空脱炭処理を行って極低炭
素鋼を製造する際に用いて有利な方法を提案しようとす
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for smelting ultra-low nitrogen Cr-containing steel, and particularly proposes a method advantageous when used for producing ultra-low carbon steel by vacuum decarburizing treatment. It is a thing.

【0002】[0002]

【従来の技術】ステンレス鋼に代表されるCr含有鋼で
は、窒素濃度を100ppm以下に下げると機械的特性が向上
することが知られている。また、フェライト系ステンレ
ス鋼では炭素濃度を30ppm 以下とすると耐銹性が飛躍的
に向上し、靱性も良くなることが知られている。このよ
うに、Cr含有鋼においては、極低炭素化・極低窒素化す
ることによって品質を大幅に改善することができる。し
たがって、かかるCr含有鋼の極低炭素化・極低窒素化に
ついて研究開発が進められている。
2. Description of the Related Art It is known that in Cr-containing steel represented by stainless steel, the mechanical properties are improved by reducing the nitrogen concentration to 100 ppm or less. It is also known that in ferritic stainless steel, when the carbon concentration is 30 ppm or less, the rust resistance is dramatically improved and the toughness is also improved. As described above, in the Cr-containing steel, the quality can be greatly improved by reducing the carbon content and the nitrogen content to extremely low levels. Therefore, research and development are underway on ultra-low carbonization and ultra-low nitrogenization of such Cr-containing steel.

【0003】しかし、Cr含有鋼は普通鋼に比べて平衡窒
素濃度が高いため、単なる真空脱ガス処理では極低窒素
濃度まで脱窒することは困難である。それゆえ極低窒素
Cr鋼を溶製するための通常の手法は、減圧槽内に収容し
た溶鋼の初期C濃度を一定濃度以上に高くしておき、か
かる減圧槽内に酸素を吹込む真空脱炭処理の、その初期
において多量に発生するCOガス気泡を脱窒の反応サイト
として利用する脱窒処理法、すなわち鋼中窒素を該COガ
ス気泡内に窒素ガスとして溶解させることによって該気
泡の浮上除去とともに窒素を系外に放出する処理法が行
われている。
However, since Cr-containing steel has a higher equilibrium nitrogen concentration than ordinary steel, it is difficult to denitrify it to an extremely low nitrogen concentration by simply performing vacuum degassing treatment. Therefore very low nitrogen
The usual method for smelting Cr steel is to use a vacuum decarburizing process in which the initial C concentration of the molten steel contained in the decompression tank is made higher than a certain concentration and oxygen is blown into the decompression tank. A denitrification treatment method in which CO gas bubbles generated in large amounts in the initial stage are used as a reaction site for denitrification, that is, nitrogen in the steel is dissolved as nitrogen gas in the CO gas bubbles to remove the air from the bubbles and remove nitrogen. There is a treatment method to release to the outside.

【0004】このような処理法では、脱炭と共に脱窒を
も行われるけれども、Cr含有鋼は、極低窒素濃度が要求
される鋼種では、ほとんどの場合に極低炭素濃度も要求
されるのであり、したがって処理後にC、Nのどちらか
一方の濃度を極小にしたとしても、他方の濃度がそれほ
どに低減されていない場合には所望の特性が得られな
い。結局のところ、炭素濃度と窒素濃度との総和(C+
N)をパラメ−タとしてC、Nの両方を低減することが
必要である。
In such a treatment method, although denitrification is performed together with decarburization, Cr-containing steels are required to have an extremely low nitrogen concentration in most cases in the case of steel types requiring an extremely low nitrogen concentration. Therefore, even if the concentration of either C or N is minimized after the treatment, desired characteristics cannot be obtained if the concentration of the other is not reduced so much. After all, the sum of carbon concentration and nitrogen concentration (C +
It is necessary to reduce both C and N by using N) as a parameter.

【0005】ところが、上述したように、従来の方法で
該Cr含有溶鋼を極低窒素濃度まで脱窒するためにはむし
ろ、処理前溶鋼のC濃度を一定濃度以上に高くする必要
がある。このことは、極低窒素を得ようとする溶鋼を極
低炭素濃度まで脱炭するために長時間の処理が必要とな
ることを意味し、処理時間が長期化によって、耐火物の
溶損や処理用役が増大し、大幅なコストアップとなると
いう弊害を招いていた。
However, as described above, in order to denitrify the Cr-containing molten steel to an extremely low nitrogen concentration by the conventional method, it is necessary to raise the C concentration of the untreated molten steel to a certain level or higher. This means that long-term treatment is required to decarburize the molten steel to obtain ultra-low nitrogen to an ultra-low carbon concentration. This has had the adverse effect of increasing the number of processing utilities and increasing the cost significantly.

【0006】[0006]

【発明が解決しようとする課題】この発明は、上記の問
題点を有利に解決するもので、極低窒素Cr含有鋼を溶製
するにあたり、初期C濃度を高くすることなしに極低窒
素濃度域までの脱窒を可能にし、したがって、目標とす
る極低炭素域まで脱炭する処理時間を短縮でき、耐火物
の溶損低減及び用役低減による処理コストの削減を可能
とする方法を提案することを目的とする。
SUMMARY OF THE INVENTION The present invention advantageously solves the above-mentioned problems. In melting an extremely low nitrogen Cr-containing steel, an extremely low nitrogen concentration can be obtained without increasing the initial C concentration. Proposal of a method that enables denitrification up to the target area, thus shortening the processing time for decarburization to the target ultra-low carbon area, and reducing the melting loss of refractory materials and the utility costs The purpose is to do.

【0007】[0007]

【課題を解決するための手段】この発明は、粗脱炭後の
減圧槽内クロム含有溶鋼にAlを添加し酸化させてこの酸
化発熱により溶鋼を昇温させる間に、水素ガスをこの溶
鋼中に吹き込み、しかる後に真空脱炭処理により極低炭
素域まで脱炭することを特徴とする極低窒素Cr含有鋼の
溶製方法(第1発明)である。
According to the present invention, hydrogen gas is added to molten chromium-containing molten steel in a decompression tank after rough decarburization while Al is added to oxidize the molten steel to raise the temperature of the molten steel. It is a method for melting ultra-low nitrogen Cr-containing steel (first invention), which comprises decarburizing to a very low carbon region by vacuum decarburizing treatment.

【0008】この発明の方法においては、溶鋼トン当た
り2.0Nm3/hr 以上の流量で水素ガスを溶鋼中に吹き込む
ことが有利であり、また、減圧槽が、VOD 法, DH法又は
RH法で用いる減圧槽であることが望ましい。
In the method of the present invention, it is advantageous to blow hydrogen gas into the molten steel at a flow rate of 2.0 Nm 3 / hr or more per ton of molten steel, and the decompression tank has a VOD method, a DH method or
It is desirable that the decompression tank be used in the RH method.

【0009】[0009]

【発明の実施の形態】以下、この発明を減圧槽としてVO
D 法の減圧槽を用いた場合を例にして具体的に説明す
る。減圧下におけるCr含有鋼の脱炭において、初期C濃
度を高くすると脱窒が進行することは従来から知られて
いる。その一例として、鉄鋼便覧(日本鉄鋼協会編、丸
善株式会社発行、1978 第2巻、第708 頁)から引用し
た到達N濃度に及ぼす初期C濃度の影響を図1に示す。
図1から、初期C濃度が高いほど脱炭処理後の到達N濃
度が低くなっていることがわかる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below as a decompression tank using
A case where a decompression tank of Method D is used will be specifically described. In decarburization of Cr-containing steel under reduced pressure, it has been conventionally known that denitrification proceeds when the initial C concentration is increased. As an example thereof, FIG. 1 shows the influence of the initial C concentration on the reached N concentration quoted from the Iron and Steel Handbook (edited by Japan Iron and Steel Institute, published by Maruzen Co., Ltd., 1978, Vol. 2, page 708).
From FIG. 1, it can be seen that the higher the initial C concentration, the lower the reached N concentration after the decarburization treatment.

【0010】このことは、脱炭反応で発生するCO気泡
が、脱窒反応サイトである気液界面積を増大させること
によって、脱窒反応速度が促進されるため、換言すれば
該COガス気泡内にN2 ガスとして鋼中窒素を溶解させる
ことで、該気泡の浮上除去とともに窒素を系外に放出す
るためと考えられている。
This means that the CO bubbles generated in the decarburization reaction increase the denitrification reaction rate by increasing the gas-liquid interface area which is the denitrification reaction site. In other words, the CO gas bubbles It is considered that the nitrogen in the steel is dissolved as N 2 gas in the inside to release the nitrogen out of the system together with the floating removal of the bubbles.

【0011】また、この発明の発明者らが行ったCr含有
溶鋼の真空脱炭処理中における溶鋼中窒素濃度の推移を
示す図2に示す。図2から、脱窒が進行するのはCOガス
気泡の発生が多い脱炭初期であり、C濃度が0.1 %以下
ではほとんど脱窒が進行しないことが判明した。
FIG. 2 shows the transition of the nitrogen concentration in the molten steel during the vacuum decarburization treatment of the Cr-containing molten steel carried out by the inventors of the present invention. From Fig. 2, it was found that denitrification progressed at the early stage of decarburization where many CO gas bubbles were generated, and denitrification hardly progressed when the C concentration was 0.1% or less.

【0012】以上のような実験結果を基に、発明者らは
さらに鋭意研究を重ねた結果、脱窒の反応サイトとし
て、COガス気泡の代わりに水素ガス気泡を利用すること
を発案したのである。すなわち、溶鋼中へ水素ガスを吹
き込むと、吹き込まれた水素ガスはその性質上、溶鋼中
に容易に溶解し、鋼浴表面近傍で再度水素ガスからなる
無数の微細気泡となることから、脱窒サイトである気液
界面積が飛躍的に増大することになる。この鋼浴表面近
傍で生成する無数の微細気泡中では、窒素ガス分圧が零
であるため、気泡内に窒素ガスが生成するようにして脱
窒反応が進行する。云うなれば、CO気泡が存在しない場
合でも、水素ガスを吹き込むことによって、微細かつ内
部のCO分圧が零である水素ガス気泡が浴表面近傍に存在
することになるため、脱窒反応の経路としては、従来と
は異なった経路が形成されることになり、脱窒反応が促
進されるのである。
[0012] Based on the above experimental results, the inventors further conducted intensive studies, and as a result, devised to use hydrogen gas bubbles instead of CO gas bubbles as a denitrification reaction site. . That is, when hydrogen gas is blown into the molten steel, the blown hydrogen gas easily dissolves in the molten steel due to its nature, and becomes numerous micro bubbles of hydrogen gas again near the surface of the steel bath. The gas-liquid interface area, which is the site, will increase dramatically. Since the nitrogen gas partial pressure is zero in the innumerable fine bubbles generated near the surface of the steel bath, the denitrification reaction proceeds as nitrogen gas is generated in the bubbles. In other words, even if there are no CO bubbles, by blowing hydrogen gas, fine hydrogen gas bubbles with a CO partial pressure of zero inside will be present near the bath surface. As a result, a pathway different from the conventional one is formed, and the denitrification reaction is promoted.

【0013】なお、水素ガスを減圧槽の底部から吹き込
む場合は、溶鋼静圧下で一旦溶鋼中に溶解するが、この
溶解水素は浴表面近傍で溶鋼静圧が低下することから、
再度水素ガス気泡となり、浴表面近傍で無数の微細気泡
が生成することになる。また、水素ガスの吹き込みは、
かかる底吹きの例に限らず、その他浸漬ランスの例や側
壁羽口からの横吹きの例であってもよい。
When hydrogen gas is blown from the bottom of the decompression tank, it is once dissolved in the molten steel under the static pressure of the molten steel, but this dissolved hydrogen reduces the static pressure of the molten steel near the bath surface.
It becomes hydrogen gas bubbles again, and countless fine bubbles are generated near the bath surface. Also, the blowing of hydrogen gas is
The example is not limited to such bottom blowing, but may be an example of another immersion lance or side blowing from a side wall tuyere.

【0014】さらに、減圧槽は、VOD 法に用いる減圧槽
に限らずRH法やDH法に用いる減圧槽でも良く、また他の
真空脱炭処理方法でも同様の効果が得られた。
Further, the decompression tank is not limited to the decompression tank used for the VOD method, but may be a decompression tank used for the RH method or the DH method, and the same effect can be obtained by other vacuum decarburization treatment methods.

【0015】ところで、上述のような水素ガスで脱窒反
応を促進させる場合において、特に好適な条件があるこ
とが、発明者らの広範な実験・検討によって初めて明ら
かとなった。すなわち、Cr含有鋼を溶製するに際して、
Crの酸化損失を低減するためには高温処理が適している
けれども、通常、転炉等による粗脱炭後からVOD 等の真
空脱炭処理の開始までの時間に溶鋼温度が低下するのは
避け難い。そのため、VOD 処理開始直後にAlを添加し、
例えば送酸することによってこのAlを酸化・発熱させ、
その酸化発熱を利用して溶鋼の昇温が行われることが多
い。
By the way, it was revealed for the first time by extensive experiments and studies by the inventors that there are particularly suitable conditions for promoting the denitrification reaction with hydrogen gas as described above. That is, when melting Cr-containing steel,
Although high-temperature treatment is suitable for reducing the oxidation loss of Cr, it is usually avoided that the molten steel temperature decreases in the time from the rough decarburization in a converter to the start of vacuum decarburization treatment such as VOD. hard. Therefore, add Al immediately after the start of VOD treatment,
For example, by sending acid, this Al is oxidized and generates heat,
The temperature of molten steel is often raised by utilizing the heat generated by the oxidation.

【0016】このようなAlの酸化発熱による溶鋼の昇温
期にはAlが優先的に燃焼するため、脱炭反応は進行する
ことがない。そこで、このAlが優先的に燃焼している時
期に水素ガスを鋼浴中に吹き込むならば、脱窒反応だけ
が進行することになる。ということは、初期C濃度が低
くしておいても低N濃度まで到達することができる。逆
に云えば、初期C濃度を脱窒反応促進のために上昇させ
ておく必要がなくなるということであり、これにより、
真空脱炭・脱窒処理時間の短縮を図ることができるので
ある。
[0016] Since Al burns preferentially during the temperature rising period of the molten steel due to the heat of oxidation of Al as described above, the decarburization reaction does not proceed. Therefore, if hydrogen gas is blown into the steel bath while Al is burning preferentially, only the denitrification reaction will proceed. This means that even if the initial C concentration is low, a low N concentration can be reached. Conversely, it means that it is not necessary to increase the initial C concentration in order to accelerate the denitrification reaction, and by this,
The vacuum decarburization / denitrification processing time can be shortened.

【0017】以上のような溶鋼昇温時において溶鋼中に
吹き込む水素ガスの流量は、溶鋼トン当たりの水素ガス
溶解量、溶解した水素が浴表面で再度水素気泡となって
ガス化する速度、溶鋼流動量及び水素ガス吹き込み位置
での溶鋼静圧等によって異なるが、種々の実験や検討か
ら溶鋼トン当たり2.0Nm3/hr 以上の流量とすることが好
適であることが判明した。それ未満の水素ガス流量で
は、脱窒にさほど寄与しないために脱窒速度の向上は望
めず、処理時間が長くなることから、工業的に有効な脱
窒効果が期待できない。一方で水素ガス流量は多いほど
脱窒速度が増大するけれども、吹き込む水素ガス流量が
過大な場合はスプラッシュの飛散が多く、かつ、真空度
も低下するため、その容器・設備に応じて吹き込みガス
流量の上限は適宜規制される。
The flow rate of the hydrogen gas blown into the molten steel during the temperature rise of the molten steel as described above depends on the amount of dissolved hydrogen gas per ton of molten steel, the rate at which the dissolved hydrogen gasifies again into hydrogen bubbles on the bath surface, the molten steel. Although it depends on the flow rate and the static pressure of molten steel at the hydrogen gas injection position, various experiments and studies have found that a flow rate of 2.0 Nm 3 / hr or more per ton of molten steel is suitable. If the flow rate of hydrogen gas is less than that, the denitrification rate cannot be improved because it does not contribute much to denitrification, and the treatment time becomes long, so an industrially effective denitrification effect cannot be expected. On the other hand, the denitrification rate increases as the flow rate of hydrogen gas increases, but if the flow rate of hydrogen gas to be blown is too large, the splash will be scattered and the degree of vacuum will decrease. The upper limit of is appropriately regulated.

【0018】なお、上記のような水素ガス吹き込みを脱
炭中に行う場合について発明者らが広範に検討した結
果、この脱炭中の水素ガス吹き込みは、高炭素濃度域で
はスプラッシュ発生量が増大し、それを防ぐためにはCO
ガス発生速度を抑制することになり脱窒に不利となり、
一方、低炭素濃度域では溶鋼中の溶存酸素濃度が上昇す
るため脱窒に不利となり、いずれにしても得策とはいえ
ないことが判明した。
As a result of extensive study by the inventors of the case where the hydrogen gas injection as described above is performed during decarburization, the hydrogen gas injection during decarburization causes an increase in splash generation amount in the high carbon concentration region. And to prevent it, CO
It will reduce the gas generation rate and will be disadvantageous for denitrification.
On the other hand, it was found that in the low carbon concentration range, the dissolved oxygen concentration in the molten steel increases, which is disadvantageous for denitrification.

【0019】以上のことから、水素ガス吹き込みの終期
は、脱炭反応の開始時であって、投入したAlが全て酸化
してしまった後でも脱炭反応によるCOガスボイリングの
程度が小さい間は水素ガスを吹き込むことによって脱窒
促進が期待できる。特に窒素濃度を低減した鋼を得よう
とする場合には、Alの酸化後、送酸を中断することで脱
炭反応開始までの時間を積極的に設けることが有利であ
る。
From the above, the final stage of hydrogen gas blowing is at the start of the decarburization reaction, and even after all of the charged Al has been oxidized, while the degree of CO gas boiling due to the decarburization reaction is small. Blowing hydrogen gas can be expected to accelerate denitrification. Particularly when it is desired to obtain steel with a reduced nitrogen concentration, it is advantageous to positively set the time until the decarburization reaction starts by interrupting the acid feeding after the oxidation of Al.

【0020】なお、脱炭処理中に脱窒不良が判明した場
合で脱炭が進行している場合(溶鋼中が低い)には、
脱炭のための送酸を停止し、水素ガスを吹き込むことに
よって脱窒することが可能である。また、水素ガス吹き
込みの際の雰囲気は、平衡N2濃度を低下させる及びH2
泡の膨張が大きくなるという観点から減圧の方が好まし
いが常圧でも良い。
When denitrification failure is found during decarburization and decarburization is in progress (low O in molten steel),
It is possible to denitrify by stopping the feeding of acid for decarburization and blowing hydrogen gas. Further, the atmosphere for blowing the hydrogen gas is preferably reduced pressure from the viewpoint of decreasing the equilibrium N 2 concentration and increasing the expansion of H 2 bubbles, but normal pressure may also be used.

【0021】[0021]

【実施例】転炉で粗脱炭した17%Cr鋼約70t を取鍋に受
けた。かかる取鍋内溶鋼の成分組成は表1に示すとおり
である。
[Example] About 70 tons of 17% Cr steel roughly decarburized in a converter was received in a ladle. The composition of the molten steel in the ladle is shown in Table 1.

【0022】[0022]

【表1】 [Table 1]

【0023】これらの溶鋼についてVOD 処理を行った。
処理前の窒素濃度は170 〜200ppmであり、処理開始前温
度は1600±20℃の範囲で、Alを溶鋼トン当たり4.0 〜4.
5 kg添加し、真空度10〜20Torrで、上吹きランスから酸
素ガスを25〜30Nm3/hr t-steelの流速で15〜20min 間流
し、約50℃昇温した。その後、通常の脱炭処理を行っ
た。
VOD treatment was performed on these molten steels.
The nitrogen concentration before treatment is 170-200ppm, the temperature before treatment starts is in the range of 1600 ± 20 ℃, and Al is 4.0-4.
5 kg was added, and oxygen gas was flown from the top blowing lance at a flow rate of 25 to 30 Nm 3 / hr t-steel for 15 to 20 minutes at a vacuum degree of 10 to 20 Torr, and the temperature was raised to about 50 ° C. Then, the usual decarburization treatment was performed.

【0024】かかる処理に当たって、この発明を適用し
た実施例1〜3については、初期C濃度が0.51, 0.42,
0.24%であり、Al酸化発熱を利用する昇温期に水素ガス
を2.0, 3.5, 3.5Nm3/hr t-steel の流量で底吹きノズル
から吹き込んだ。一方、比較材では水素ガスの吹き込み
を行わなかった。比較材の初期C濃度は 0.55, 0.26%
であった。実施例及び比較材の処理条件及び0.1 ±0.02
%Cまで脱炭した時点での窒素濃度を表2に示す。な
お、脱窒後、引き続き極低炭素域まで脱炭し、炭素濃度
0.003 %を得、またその際の窒素濃度の変化は微小であ
った。
In this treatment, in Examples 1 to 3 to which the present invention was applied, the initial C concentration was 0.51, 0.42,
It was 0.24%, and hydrogen gas was blown from the bottom blowing nozzle at a flow rate of 2.0, 3.5, 3.5 Nm 3 / hr t-steel in the temperature rising period utilizing Al oxidation heat generation. On the other hand, the comparative material was not blown with hydrogen gas. The initial C concentration of the comparative material is 0.55, 0.26%
Met. Example and comparative material treatment conditions and 0.1 ± 0.02
Table 2 shows the nitrogen concentration at the time of decarburization to% C. In addition, after denitrification, decarburization is continued to the extremely low carbon range,
0.003% was obtained, and the change in nitrogen concentration at that time was minute.

【0025】[0025]

【表2】 [Table 2]

【0026】実施例及び比較材の到達窒素濃度の比較か
ら、初期C濃度が等しい場合には水素ガス吹き込みによ
って到達窒素濃度が約25%低減されていることが判る。
また、初期C濃度が0.26%の比較材では到達窒素濃度が
95ppm であり、脱窒不良であるのに対し、この発明の実
施例では68ppm まで脱窒が進んでおり、約25分の脱炭時
間の短縮が図られていることが明白である。
From the comparison of the achieved nitrogen concentrations of the example and the comparative material, it is understood that when the initial C concentration is the same, the reached nitrogen concentration is reduced by about 25% by blowing hydrogen gas.
In addition, in the comparative material with an initial C concentration of 0.26%, the reached nitrogen concentration is
The denitrification rate is 95 ppm, which indicates poor denitrification, whereas in the example of the present invention, denitrification progresses to 68 ppm, and it is clear that the decarburization time is shortened by about 25 minutes.

【0027】[0027]

【発明の効果】この発明によれば、従来よりも到達窒素
濃度が低減され、かつ短時間で極低窒素、極低炭素のCr
含有鋼を溶製することができる。
EFFECTS OF THE INVENTION According to the present invention, the ultimate nitrogen concentration is reduced as compared with the conventional one, and Cr of extremely low nitrogen and extremely low carbon can be obtained in a short time.
The contained steel can be melted.

【図面の簡単な説明】[Brief description of drawings]

【図1】VODにおいて到達N濃度に及ぼす初期C濃度
の影響を示すグラフである。
FIG. 1 is a graph showing the effect of initial C concentration on the reached N concentration in VOD.

【図2】Cr含有溶鋼の真空脱炭処理中における溶鋼中窒
素濃度の推移を示すグラフである。
FIG. 2 is a graph showing a transition of nitrogen concentration in molten steel during vacuum decarburization treatment of molten steel containing Cr.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 粗脱炭後の減圧槽内クロム含有溶鋼にAl
を添加し酸化させてこの酸化発熱により溶鋼を昇温させ
る間に、水素ガスをこの溶鋼中に吹き込み、しかる後に
真空脱炭処理により極低炭素域まで脱炭することを特徴
とする極低窒素Cr含有鋼の溶製方法。
1. The molten chromium-containing steel in a decompression tank after rough decarburization contains Al
Is added to oxidize and the temperature of the molten steel is raised by this exothermic heat of oxidation, hydrogen gas is blown into the molten steel, and then decarburization is performed to a very low carbon range by vacuum decarburization treatment. Method for melting Cr-containing steel.
【請求項2】 溶鋼トン当たり2.0Nm3/hr 以上の流量で
水素ガスを溶鋼中に吹き込む請求項1記載の方法。
2. The method according to claim 1, wherein hydrogen gas is blown into the molten steel at a flow rate of 2.0 Nm 3 / hr or more per ton of molten steel.
【請求項3】 減圧槽が、VOD 法, DH法又はRH法で用い
る減圧槽である請求項1又は2記載の方法。
3. The method according to claim 1, wherein the decompression tank is a decompression tank used in the VOD method, the DH method or the RH method.
JP17604095A 1995-07-12 1995-07-12 Method for melting ultra-low nitrogen Cr-containing steel Expired - Fee Related JP3769777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17604095A JP3769777B2 (en) 1995-07-12 1995-07-12 Method for melting ultra-low nitrogen Cr-containing steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17604095A JP3769777B2 (en) 1995-07-12 1995-07-12 Method for melting ultra-low nitrogen Cr-containing steel

Publications (2)

Publication Number Publication Date
JPH0925509A true JPH0925509A (en) 1997-01-28
JP3769777B2 JP3769777B2 (en) 2006-04-26

Family

ID=16006674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17604095A Expired - Fee Related JP3769777B2 (en) 1995-07-12 1995-07-12 Method for melting ultra-low nitrogen Cr-containing steel

Country Status (1)

Country Link
JP (1) JP3769777B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000034533A3 (en) * 1998-12-04 2002-10-03 Vai Technometal Gmbh Method for removing nitrogen from steel melts
WO2007091700A1 (en) * 2006-02-09 2007-08-16 Jfe Steel Corporation Method of denitrifying molten steel
CN113373277A (en) * 2021-05-18 2021-09-10 北京科技大学 Method for smelting stainless steel by blowing hydrogen in AOD furnace

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000034533A3 (en) * 1998-12-04 2002-10-03 Vai Technometal Gmbh Method for removing nitrogen from steel melts
WO2007091700A1 (en) * 2006-02-09 2007-08-16 Jfe Steel Corporation Method of denitrifying molten steel
US7901482B2 (en) 2006-02-09 2011-03-08 Jfe Steel Corporation Removal method of nitrogen in molten steel
CN113373277A (en) * 2021-05-18 2021-09-10 北京科技大学 Method for smelting stainless steel by blowing hydrogen in AOD furnace

Also Published As

Publication number Publication date
JP3769777B2 (en) 2006-04-26

Similar Documents

Publication Publication Date Title
JPH0925509A (en) Method for melting extra-low nitrogen chromium-containing steel
FI67094B (en) FOERFARANDE FOER ATT FOERHINDRA ATT SLAGGMETALL VAELLER UPP ID PNEUMATISK UNDER YTAN SKEENDE RAFFINERING AV STAOL
JPH09165615A (en) Denitrifying method for molten metal
JP3241910B2 (en) Manufacturing method of extremely low sulfur steel
JP3044642B2 (en) Decarburization refining method of chromium-containing molten steel
JP4025751B2 (en) Hot metal refining method
JPH0346527B2 (en)
JP4839658B2 (en) Refining method of bearing steel
JPH05171250A (en) Operation of rh degassing
JP3769779B2 (en) Method for melting ultra-low carbon Cr-containing steel
JP7235070B2 (en) Method for secondary refining of molten steel and method for manufacturing steel
JPH06330143A (en) Treatment of decarburization of chromium-containing molten steel in reduced pressure
WO2022259806A1 (en) Molten steel denitrification method and steel production method
JP3439517B2 (en) Refining method of chromium-containing molten steel
JPH0841516A (en) Pre-refining method
JP3785257B2 (en) Method for degassing stainless steel
JP3800866B2 (en) Hot metal desiliconization method
JPH089730B2 (en) Decarburization refining method for molten steel containing chromium
JPH049423A (en) Method for smelting dead soft steel
JPH07138633A (en) Production of extra-low carbon steel by vacuum degassing
JP2004256854A (en) Method for decarbonization-refining stainless steel
JPH06116625A (en) Method for degassing and decarburizing molten stainless steel
JPH0633133A (en) Production of ultralow carbon steel
JP3914611B2 (en) Decarburizing and refining method for stainless steel
JPH04180512A (en) Method for smelting dead soft steel

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060117

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060130

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100217

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20110217

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees