JPS6059786A - Manufacture of photovoltaic device - Google Patents

Manufacture of photovoltaic device

Info

Publication number
JPS6059786A
JPS6059786A JP58168762A JP16876283A JPS6059786A JP S6059786 A JPS6059786 A JP S6059786A JP 58168762 A JP58168762 A JP 58168762A JP 16876283 A JP16876283 A JP 16876283A JP S6059786 A JPS6059786 A JP S6059786A
Authority
JP
Japan
Prior art keywords
substrate
film
curved surface
transparent conductive
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58168762A
Other languages
Japanese (ja)
Other versions
JPH0548633B2 (en
Inventor
Masaru Yamano
山野 大
Yukinori Kuwano
桑野 幸徳
Shoichi Nakano
中野 昭一
Tsugifumi Matsuoka
松岡 継文
Soichi Sakai
総一 酒井
Hiroshi Yagi
八木 啓吏
Nobuhiro Okuda
奥田 信宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP58168762A priority Critical patent/JPS6059786A/en
Priority to FR8412006A priority patent/FR2550007A1/en
Publication of JPS6059786A publication Critical patent/JPS6059786A/en
Priority to US06/899,789 priority patent/US4670293A/en
Publication of JPH0548633B2 publication Critical patent/JPH0548633B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03921Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • H02S20/22Supporting structures directly fixed to an immovable object specially adapted for buildings
    • H02S20/23Supporting structures directly fixed to an immovable object specially adapted for buildings specially adapted for roof structures
    • H02S20/25Roof tile elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To obtain a photovoltaic device which uses a curved surface insulating surface such as a roof tiles having solar cells as a substrate by patterning a filmy photoelectric converting region covered directly on the nonplane insulating surface of the substrate in parallel with the edge line of the curved surface by emitting an energy beam to divide into a plurality of photoelectric converting regions. CONSTITUTION:A transparent conductive film 3 made of laminated structure of oxidized indium tin and oxidized tin covered directly by electron beam deposition on the entire surface of a curved surface insulating surface which includes a plurality of photoelectric converting regions 2, 2,... in the state that the peripheral edge of a substrate 1 is covered with a mask is divided into the regions 2, 2,... by emitting the energy beam 8 such as a laser beam. In this case, the X- axis direction of an X-Y-Z stage 6 which moves in X-axis, Y-AXIS AND Z-axis directions for placing the substrate 1 is allowed to coincide with the direction of the edge line 7 on the surface of the substrate 1, and the beam 8 is emitted in the step of moving in the X-axis direction. After transparent conductive films 3, 3,... are patterned in parallel with the edge line 7 of the curved surface, it is moved to the step of covering an amorphous semiconductor film 4.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は太陽光等の光エネルギを直接電気j−不ルキに
変換する光起電力装置の製造ノコ法に関りる。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for manufacturing a photovoltaic device that directly converts light energy such as sunlight into electricity.

(ロ)従来技術 光エネルギを油接電気エネルギに変換4゛る光起電力装
置4、所謂太陽電池は無尽蔵な太陽光を」;たるエネル
ギ源としているために、コーネルギ資源の枯渇が問題と
なる中で脚光を浴びている。太陽は晴天時に約IKW/
m’のエネルギを地表に与え−しおり、家庭で斯るエネ
ルギを電気エネルギに変換する光起電力装置を電力源と
する場合、家屋の屋上或いは屋根上に敷設する+法が一
般的Cある。
(b) Conventional technology Photovoltaic devices that convert light energy into oil-immersed electrical energy4, so-called solar cells, use inexhaustible sunlight as their primary energy source, so the depletion of cornelium resources becomes a problem. It is in the spotlight inside. The sun is about IKW/ on a clear day
When the power source is a photovoltaic device that applies energy of m' to the earth's surface and converts this energy into electrical energy at home, there is a general method of installing it on the roof of the house or on the roof.

特開昭57−68454号公報、或いは実開昭58−1
1261号公報に開示された太陽電池を8えた屋根瓦、
即し瓦状光起電力装置は斯る家庭用電力源、として好適
である。
Japanese Unexamined Patent Publication No. 57-68454 or Utility Model Application No. 58-1
A roof tile equipped with solar cells disclosed in Publication No. 1261,
Therefore, the shingled photovoltaic device is suitable as such a household power source.

(ハ〉 発明の目的 本発明の目的は、斯る家庭用電力源として好適な太陽電
池を備えた屋根瓦の如き曲面状絶縁表面を基板とする光
起電力装置の製造方法を提供することにある。
(c) Purpose of the Invention The purpose of the present invention is to provide a method for manufacturing a photovoltaic device having a curved insulating surface such as a roof tile as a substrate and equipped with a solar cell suitable as a household power source. be.

(ニ)発明の構成 本発明光起電力装置の製造方法は、基板の非平面状絶縁
表面に直接被着される膜状の光hK換領領域、エネルギ
ビームの照射により上記曲面の稜線と平行にバターニン
グし、複数の光電変換領域に分割する構成にある。
(d) Structure of the Invention The method for manufacturing the photovoltaic device of the present invention is to provide a film-like light hK conversion region that is directly adhered to the non-planar insulating surface of the substrate, and a film-like light hK conversion region that is irradiated with an energy beam to form a film that is parallel to the ridgeline of the curved surface. It has a structure in which it is patterned and divided into a plurality of photoelectric conversion regions.

(ホ)実施例 第1図及び第2図は本発明製造方法により製造Jれイ、
光起電力装置を示し、第1区(J斜視図、第211A1
.4第1図に於(りるA−A’線断面図であって、(1
ンは強化ガラス・透明セラミ・/クス等の透光性1.1
.−;絶縁性の材料を瓦状に成型し波仄の絶縁表面か(
=1劉された基板、(2)(2> ・は]二二基基板1
)の絶縁表面に一定間隔を隔てて帖列配ICヱされた複
数の光電変換領域である。上記光電変換領域(2)(2
)・は、例えは基板(1)側から、酸化スス、酸化イン
ジウムスス等の透明導電膜(3)(3)と、その内部に
半導体接合を備えた非晶質ノリコ〉系の非晶質半導体膜
(4>(4)・−と、該半導1本膜(4)(4)・・と
オーミック接触するアルミ−ニウム等の裏面電極膜(5
,)、(5)・・と、が順次積Rされたミクロンオーダ
の膜状を呈する。
(E) Example Figures 1 and 2 are manufactured by the manufacturing method of the present invention.
The photovoltaic device is shown in section 1 (J perspective view, section 211A1).
.. 4 In Figure 1, it is a sectional view taken along line A-A' (1
Translucency 1.1 of tempered glass, transparent ceramic, /crystal, etc.
.. −: Is the insulating material molded into a tile shape with a wavy insulating surface?
=1 Liu board, (2) (2> ・ha]22 base board 1
) A plurality of photoelectric conversion regions are arranged in a grid array at regular intervals on the insulating surface of the semiconductor device. The photoelectric conversion area (2) (2)
)・For example, from the substrate (1) side, a transparent conductive film (3) (3) made of soot oxide, indium soot oxide, etc. The semiconductor film (4>(4)・- and the back electrode film (5
, ), (5), etc. are sequentially multiplied to form a film on the order of microns.

各非晶質半導体膜(4□)(4)・・・は、その内部に
例えは膜面に平行なP’IN接合を形成?−へく受光面
側からJV−み50〜250人程度のP型層、4000
〜7000人程度のl型(真性)層及び300〜600
人程度のN型層が順次積層被着され、従って基板(1)
及び透明導電膜(3)(3)・・・を透過して光入射が
あると、主に工型層に於い−ご自由状態の重子及び止孔
かうと生じ、断る電子及び止孔は上記各層が形成i”、
、’)PIN接合電界に引かれて各透明導電膜(3)(
3)・及び裏面電極膜(5)(5) に集電きれ、隣接
する光電変換領域(2)(2)・・の透明導電膜(3)
(3)・と裏面電極膜(5)(5ン・とのff畳により
電気的に相加された電力が取り出される。
Does each amorphous semiconductor film (4□) (4)... form a P'IN junction parallel to the film surface inside it? - P-type layer of about 50 to 250 people, looking at JV from the light-receiving surface side, 4000
-L type (intrinsic) layer of about 7,000 people and 300 to 600 people
N-type layers of the order of magnitude are deposited in sequence, thus forming the substrate (1).
When light enters through the transparent conductive film (3) (3)..., electrons and holes are generated mainly in the mold layer in a free state, and electrons and holes are generated. Each of the above layers forms i'',
, ') Each transparent conductive film (3) (
Transparent conductive film (3) of the adjacent photoelectric conversion area (2) (2) and the back electrode film (5) (5).
The electric power electrically added is taken out by the FF combination of (3) and the back electrode film (5).

第3図乃至第1O図は本発明製造方法を説tlJi−t
l゛るための要部拡大断面図及び概略的斜視図てJっる
Figures 3 to 1O illustrate the manufacturing method of the present invention.
An enlarged sectional view and a schematic perspective view of the main parts are shown below.

第3図の工程では、基板(1〉の周縁部をマスクCMっ
だ状態で複数の光電変換領域(2)(2)・を含む曲面
状絶縁表面全域に、電イービーム然着により直接被着さ
れた厚み500人〜4000人の酸化インジウムスズ及
び酸化ススの積層構造から成る透IJ1+導電膜(3)
が、レーザビームの如きエネルギに−ムの照射により各
光電変換領域(2)(2) 毎に分割される。使用され
るレーザ゛は波長106.1+、 m、エネルギ密度7
 X lO’W / cm ’、バJL、 7.周波数
3 KHz’(’)Nd : YAGレーザが適当であ
り、対物レンズf50111m、走査速度5Qmm /
 s6cによりバターニングされる。このレーザバター
ニングにより除去された透明導電膜く3)の間隔(Ll
)は約50μmに設定寄れる。
In the process shown in Fig. 3, the entire curved insulating surface including a plurality of photoelectric conversion regions (2) (2) is directly coated by electric electron beam deposition with the peripheral edge of the substrate (1) covered with a mask CM. Transparent IJ1+ conductive film (3) consisting of a laminated structure of indium tin oxide and soot oxide with a thickness of 500 to 4000
is divided into photoelectric conversion regions (2) (2) by irradiation with energy such as a laser beam. The laser used has a wavelength of 106.1+ m and an energy density of 7.
X lO'W/cm', Ba JL, 7. Frequency 3 KHz'(')Nd: YAG laser is suitable, objective lens f50111m, scanning speed 5Qmm/
Buttering is performed by s6c. The interval (Ll) of the transparent conductive film 3) removed by this laser patterning
) can be set closer to about 50 μm.

斯るレーザバターニングで留意しなtノれはならないこ
とは被加工面である透明4電膜(3)との距1)1tか
大幅に変動してはならないことである。即し、対物レン
ズに入射したレーデビームは、該レンズによる収束作用
によりエネルギ畜度及び加工幅か制御されるために、上
述の如く被加工面との距離が大幅に変動すると、エネル
ギ也゛度及び加]1:幅も変動し所望の加工を施すこと
ができなくなるからである。
What must be kept in mind in such laser patterning is that the distance 1) 1t from the surface to be processed, ie, the transparent 4-electric film (3), must not vary significantly. In other words, the energy density and machining width of the Radhe beam incident on the objective lens are controlled by the convergence effect of the lens, so if the distance to the workpiece surface changes significantly as described above, the energy density and machining width will change. [addition] 1: This is because the width also changes, making it impossible to perform the desired processing.

従っ1本発明にあり一〇は、曲面状絶縁表面に直接被着
された透明導電膜(3)を各光i変換領域(2)(’2
)・毎に分割せしめる際に、第4図に示す如く基板(1
)を載置し)l、Y軸及びX軸方向に移動せしめるXY
Zステージ(6)の上記X軸方向と、基板(1〉表面に
於ける稜線(7)方向と、を一致せしめ、斯るX軸方向
に移動する過程に於いて上記レーザビーム(8)を照射
し対物レンズく9)と波力ロエ面との距離を一定に保つ
−〔いる。次いで、一つの隣接間隔gl(に位置する透
明導電膜(3)の除去が基板(1)のX軸方向の移動に
よる走査によって終rすると、XYZステージ(6)は
次に除去ずへき隣接間隔部に位置rる透明導電膜(3)
と対物レンズ(9)とが対向すへく基板(1)をY軸方
向に移動せしめる。この状態に於いて、上記対物レンズ
(9)と被加工面との距離は基板(1)の曲面状絶縁表
面がY*th方向に変化しているために先のレーザビー
ム照射時と異なっており、XYZスフ・−シ(6)を2
軸方向に上昇或いは下降けしめPめ定められた距離に補
正する。補正後、再ひX Y Zステージ(6)をX軸
方向に移動上しめ隣接間隔部に位置する不要な透明導電
膜く3)をレーザ5ビーム(9)の照射により除去する
。以後、斯る動作を繰返し行ない透明導電膜(3)(3
)・・を曲面の稜線(7)と平行にパターニングする。
Therefore, in the present invention, the transparent conductive film (3) directly adhered to the curved insulating surface is attached to each light i conversion region (2) ('2
). When dividing the board into parts (1
) and move it in the Y-axis and X-axis directions.
The above-mentioned X-axis direction of the Z stage (6) is made to coincide with the ridge line (7) direction on the surface of the substrate (1>), and in the process of moving in the X-axis direction, the above-mentioned laser beam (8) is Keep the distance between the irradiating objective lens (9) and the wave force Loe surface constant. Next, when the removal of the transparent conductive film (3) located at one adjacent interval gl is completed by scanning by moving the substrate (1) in the X-axis direction, the XYZ stage (6) moves to the next adjacent interval without removing Transparent conductive film (3) located in
The substrate (1) facing the objective lens (9) is moved in the Y-axis direction. In this state, the distance between the objective lens (9) and the surface to be processed is different from that during the previous laser beam irradiation because the curved insulating surface of the substrate (1) is changing in the Y*th direction. Then, XYZ Sufu-shi (6) 2
Correct the upward or downward movement P in the axial direction to a predetermined distance. After the correction, the XYZ stage (6) is again moved up in the X-axis direction and the unnecessary transparent conductive film 3) located at the adjacent interval is removed by irradiation with the laser beam (9). Thereafter, such operations are repeated to form transparent conductive films (3) (3).
)... is patterned parallel to the ridgeline (7) of the curved surface.

透明導電膜(3)(3)・・・のバター−−フグ後、非
晶質半導体膜く2)の被着工程に移る。第5図はセノシ
ラン(SiH4)、ジシラン(Si2H,)等のシリ−
lン化合物′み囲気中でグロー放電をl1ib起し、反
シロ:カスをプラズマ分解して基板(1)」−に非晶ダ
エンリコン(a −Si: H)、非晶質ノリロンカー
バイド(a−S i= C=x : H)、非晶質シリ
コン:: ス(a−8iy 5n1−y : H)等の
非晶質シリコン系の非晶質半導体膜く4ンを被着する工
程を模式的に示し1いる。ンリーフン化合物雰囲気中で
のグロー放電により非晶質シリコンの薄膜が得られるこ
とは例えは特公昭53−37718号公報に開示された
如く既に知られでいる。即ち、従来知られたグロー放電
による非晶質半導体膜の形成は、該半導体膜を被着1・
\きガラス、ステンレス等の基板を、相対向しグIJ−
放電を励起する手行電極間に位置Hし、めでいるために
、基板がプラズマの高速荷電粒その移動範囲に於いてそ
の移動方向と直交する結果、斯るプラズマ中の高速荷電
粒子が基板(1)の表面に衝突し、透明導電膜(3)(
3)・・・或いは形成されつつある非晶質半導体膜(4
)の特性が悪化する欠点を備えている。しかも、非晶質
半導体膜(4)が被着uしめられる基板(1)の表面は
従来平坦であったのに対し、本発明のそれは曲面状表面
でJ−、ip従って従来の如く平行平板電極間に曲面状
表面を備えた基板(1)を配置ゼしめたの−Cは斯gt
 1111111j状表面と対向するー−)5の平行平
板電極との対向距141しか不揃いとなるために、被着
せしめられる非晶負半導体膜〈4〉は非均−とならざる
を得ない。
After buttering the transparent conductive films (3) (3)..., the process moves to the step of depositing the amorphous semiconductor film (2). Figure 5 shows silanes such as senosilane (SiH4) and disilane (Si2H,).
A glow discharge is generated in the atmosphere surrounding the phosphor compound, and the anti-silicone residue is decomposed by plasma to form amorphous silicone (a-Si: H) and amorphous norilon carbide (a) on the substrate (1). -Si=C=x:H), amorphous silicon::S(a-8iy5n1-y:H), etc. It is shown schematically. It is already known, for example, as disclosed in Japanese Patent Publication No. 53-37718, that a thin film of amorphous silicon can be obtained by glow discharge in an atmosphere of an amorphous silicon compound. That is, the formation of an amorphous semiconductor film by conventionally known glow discharge involves depositing the semiconductor film on
Place the glass, stainless steel, etc. substrates facing each other.
As a result of the substrate being perpendicular to the direction of movement of the high-speed charged particles in the plasma in their moving range, the high-speed charged particles in the plasma are located between the hand electrodes that excite the discharge. It collides with the surface of transparent conductive film (3) (
3)...or an amorphous semiconductor film that is being formed (4)
) has the disadvantage of deteriorating its characteristics. Moreover, whereas the surface of the substrate (1) on which the amorphous semiconductor film (4) is deposited has conventionally been flat, the surface of the present invention has a curved surface. A substrate (1) with a curved surface is placed between the electrodes.
Since only the facing distance 141 between the parallel plate electrode 5 and the 1111111j-shaped surface is uneven, the deposited amorphous negative semiconductor film <4> must be non-uniform.

そこで本発明に用いられる曲面状絶縁表ぼl I= f
+iiiえた基板(1)は相対向する平行平板電極間に
配置されるのではなく、断る平行平板電極の外−C且つ
電極の対向面に対し基板(1〉の被着表面を実父′4的
に垂直方向に配置せしめると共に、該基板(1)を図中
矢印で示す如き表面の曲面方向、即ら稜線(7)に対し
て垂直づ5向に移動させなから非晶質半導体膜(4〉を
形成せしめている。即し、第5121の実施例にあって
は、上記平行平板電極はアース電極(10)<10)(
10)と、高周波電源(11)に連なる高周波電極(1
2)(12>とを交互に相対向せしめたマルチ電極構造
を構成L、ツレ等電ai(10><12)(10)の並
設方向に基板〈1)を移動せしめている。
Therefore, the curved insulating surface used in the present invention I=f
+iii The substrate (1) which has been obtained is not placed between the parallel plate electrodes facing each other, but by placing the adhesion surface of the substrate (1) on the outside of the parallel plate electrodes and the opposing surface of the electrodes. At the same time, the substrate (1) is moved in the direction of the curved surface of the surface as shown by the arrow in the figure, that is, in five directions perpendicular to the ridge line (7). >.That is, in the 5121st embodiment, the parallel plate electrodes form a ground electrode (10)<10) (
10) and a high frequency electrode (1) connected to the high frequency power source (11).
2) A multi-electrode structure in which (12>) and (12>) are made to face each other alternately is constructed, and the substrate (1) is moved in the direction in which the deflection isoelectric ai (10><12) (10) is arranged side by side.

しかし、上記マルチ電極構造に関し、基本的には互いに
対向する一つのアース電極(10)と、一つの高、2周
波電極(12)との間に於いてグロー放電が励起され両
電極間にプラズマか発生し、反応カスを分解して得られ
た例えばシリコン原子が該内電極の外に近接配置された
基板(1)の曲面状表面にイ・]若することによっ−C
1序々に非晶質半導体膜(4)が形成されるので、必ず
しもマルチ電極構造を採用する必要はない。
However, regarding the above multi-electrode structure, basically, a glow discharge is excited between one earth electrode (10) and one high-frequency, two-frequency electrode (12), which face each other, and plasma is generated between the two electrodes. For example, the silicon atoms obtained by decomposing the reaction residue generated and decomposed are applied to the curved surface of the substrate (1) disposed close to the outside of the inner electrode.
1. Since the amorphous semiconductor film (4) is formed one after the other, it is not necessarily necessary to adopt a multi-electrode structure.

この様に基板(1)を、互いに相対向するアース電極(
10)(10)(10)と、高周波電極(12)(12
)の外に配置1−ることによって、基板(1)の被着表
面はプラズマ中での高速荷電粒子の移動領域から外れ、
斯る荷電粒子の衝突が大幅に軽減きれる結果、非晶質半
導体膜(4)へのダメージが低減され、次いで非晶質半
導体膜(4)の形成(被着)上程を、基板(1)をその
表面の曲面方向(電極の並設ツノ向)に移動する過程に
施すことによって、第6凶の示す如く均一性の高い非晶
質半導体膜(4)が得られる。
In this way, the substrate (1) is connected to the ground electrodes (
10) (10) (10) and high frequency electrodes (12) (12
), the adhesion surface of the substrate (1) is removed from the region of movement of high-speed charged particles in the plasma,
As a result of the collision of such charged particles being significantly reduced, damage to the amorphous semiconductor film (4) is reduced, and the formation (deposition) of the amorphous semiconductor film (4) is then performed on the substrate (1). By applying this in the process of moving in the curved direction of the surface (toward the edges of the electrodes), a highly uniform amorphous semiconductor film (4) can be obtained as shown in the sixth example.

しかも、非晶質半導体膜形成時に於ける高速荷電粒子に
よるダメージを低減すべく抑えられていた高周波出力を
、商めることかでき膜の成長速度を上昇せしめることも
可能となる。
Moreover, the high frequency output, which has been suppressed in order to reduce damage caused by high-speed charged particles during the formation of an amorphous semiconductor film, can be used to increase the growth rate of the film.

尚、斯る第5図の実施例にあ−)では、基板(1)は互
いに相対向配置されたアース電極(101(10)(1
0)及び高周波電極(12)(12>を挾むように2枚
よりられており、従って同時に2枚の基板(1)(1)
に対し、非晶質半導体膜(4)の形成が実1iされる。
In the embodiment shown in FIG. 5, the substrate (1) has ground electrodes (101 (10) (1
0) and high frequency electrodes (12) (12>), and therefore two substrates (1) (1) are connected at the same time.
On the other hand, the formation of the amorphous semiconductor film (4) is actually carried out 1i.

この時基板(1)(1)を加熱ずへきヒータはし」示し
ていない反応室の側壁の凹所に埋設保J、j 、すれ、
該基板(1)(1)の各々をその被着面背後から均一に
加熱している。
At this time, the substrate (1) (1) is not heated, but the heater is buried in a recess in the side wall of the reaction chamber (not shown).
Each of the substrates (1) (1) is uniformly heated from behind the surface to which it is attached.

第7図は非晶質半導体膜(4)の他の被着(形成ン]−
程を模式的に示し、先の実施例、即し第1の実施例とは
、アース電極(10)(10)及び、犠周波′i[極(
12)(12)と、基板(1)との対向状態と、更には
反応ガスを吐出するガス供給体(13)の具体的構造に
於いて相違する。即ち、基板(1)と対向する各アー 
スTJt、! (10)(10)及び高周波電極(12
>(12>(J)対同面(10a )(12a )・・
・は基板(1)表面の曲面とv行に対向すべく同形状の
曲面を呈している。従っ−〔、同形状の曲面を各電極(
10)(12) の対向面(10a )(12a ) 
に付与4ることにより、該対向1fiJ (10a )
(12a L ・ と基板(5〉表面とのス、j同距離
は等しくなる結果、均一な非晶質半導体膜(4)の形成
を、基板(1)が停止した状態でもイJなつことかでき
るが、より均一な非晶質半導体膜(4)を街・ようとし
た場合、やはり図中矢印で、Jりず如\第1の実施例と
同様に基板く1)をアース電極<10)(10)及び高
周波電極(12)(12>の並設)j向、(基板(1)
の稜線方向)への移動過程中に実fTLk方が好ましい
Figure 7 shows another deposition (formation) of the amorphous semiconductor film (4).
In the previous embodiment, that is, the first embodiment, the earth electrode (10) (10) and the sacrificial frequency ′i [pole (
12) The difference is in the state of facing the substrate (1) and the specific structure of the gas supply body (13) that discharges the reaction gas. That is, each arc facing the substrate (1)
SuTJt,! (10) (10) and high frequency electrode (12
>(12>(J) vs. same side (10a)(12a)...
* represents a curved surface of the same shape as the curved surface of the surface of the substrate (1) so as to face the v-row. Therefore, curved surfaces of the same shape are connected to each electrode (
10) (12) Opposing surfaces (10a) (12a)
By adding 4 to the opposite 1fiJ (10a)
(12a) Since the distances between L and the surface of the substrate (5) are equal, it is possible to form a uniform amorphous semiconductor film (4) even when the substrate (1) is stopped. However, when trying to form a more uniform amorphous semiconductor film (4), as shown by the arrow in the figure, the substrate 1) is connected to the ground electrode <10) as in the first embodiment. (10) and high frequency electrode (12) (parallel arrangement of 12>) j direction, (substrate (1)
The actual fTLk is more preferable during the movement process (in the direction of the ridge line).

一方、ガス供給体(13)は多数の吐出孔(14)(1
4)が穿たれたガス吐出面(15)e、アース電極(1
0)(10)及び高周波電極(12)<12)を挾んで
基板(1)の曲面状表面と対向すへく配置し、l1li
るガス吐出面〈15)と曲面状表面との対向距離を等し
くずべくガス吐出面(15)も基板(1〉表面と同形状
の曲面状を呈している。吐出上しめられる反応ガスは形
成すべき非晶質半導体により異なるが、例えは非晶質シ
リコンの場合、モノシラン(SiH,>及びまたはシン
ラン(Si2H6)をヘーメに、P型決定不純物を含む
ンホラン(B2H,、)、名しくは8里す決定不純物を
含むボスフィン(PH:t)か適宜1:1に加される。
On the other hand, the gas supply body (13) has a large number of discharge holes (14) (1
4) perforated gas discharge surface (15) e, earth electrode (1
0) (10) and the high frequency electrode (12) < 12) are placed in between and facing the curved surface of the substrate (1),
The gas discharge surface (15) also has the same curved shape as the surface of the substrate (1) in order to equalize the facing distance between the gas discharge surface (15) and the curved surface. It varies depending on the amorphous semiconductor to be used, but for example, in the case of amorphous silicon, monosilane (SiH, > and or silane (Si2H6) is used, and silane (B2H, ), which contains P-type determining impurities, is used. 8. Bosphin (PH:t) containing 8-risu-determined impurities is added at a ratio of 1:1 as appropriate.

尚、断るガス供給体(13)!こ代つ−c、!I!扱(
1)をもう一枚装置しても良い。
In addition, the gas supply body (13) refuses! Koyotsu-c,! I! Handling (
1) may be used as an additional device.

上記第1・第2の実施例ともほぼ同一の反応条件により
非晶質半導体膜(4)を形成することか(きる。
The amorphous semiconductor film (4) can be formed under substantially the same reaction conditions as in the first and second embodiments.

以下にP I N接合型非晶質ソリコンを形成°りる場
合の基本的反応条件を記す。
The basic reaction conditions for forming a PIN junction type amorphous solicon are described below.

0基板塩度 250〜300℃ O高周波電fA13.56M Hz O高周波出力 100W O反応ガス (組成比) P型f@ B2 H6/ S 1H4= 0.1%I 
型(ノント′−ブ)層 S 1H4=100%N型層 
PH3/5iH4=1% 0ガスJ五 0.3−ITorr Oガス流量 1O−40cc/mit この様にして基板(1)の曲面状表面に均一に被着形成
された非晶質シリコンの如き非晶對半導(+膜(4)は
第4図に示したようにXYZスナーシ(6)に載置され
、第8図の工程でその隣接間隔部かレーデビーム(8)
の照射により除去さtして各光電変換領域<2)<2>
・・毎に分離形成されると共に、該除去された非晶質半
導体膜(4)(4) に覆われていた透明導電膜(3〉
(3) の−B1;がレーザビーム(8)の走査方向全
長に且って露出ゼしめられる。使用されるレーザは波長
1.06,11m、−1−不ルギ密度5 X 10’W
 / cm 2、パルス周波数3KHzのNd:YAG
レーザであり、除去された非晶質半導体膜(4)・の間
隔(B2)は約200μmに設定きれる。
0 Substrate salinity 250-300℃ O high frequency electric fA 13.56 MHz O high frequency output 100 W O reaction gas (composition ratio) P type f@ B2 H6/ S 1H4 = 0.1%I
Type (non-type) layer S 1H4 = 100% N-type layer
PH3/5iH4=1% 0 gas J5 0.3-ITorr O gas flow rate 10-40cc/mit Non-crystalline silicon such as amorphous silicon is uniformly deposited on the curved surface of the substrate (1) in this way. The crystal semiconductor (+ film (4) is placed on the XYZ scanner (6) as shown in Figure 4, and in the process shown in Figure 8, the adjacent gap or the radar beam (8)
Each photoelectric conversion region <2) <2> is removed by irradiation with
The transparent conductive film (3) that was separately formed and covered with the removed amorphous semiconductor film (4) (4)
(3) -B1; is exposed over the entire length of the laser beam (8) in the scanning direction. The laser used has a wavelength of 1.06, 11 m, and a -1-ulgi density of 5 x 10'W.
/ cm2, Nd:YAG with pulse frequency 3KHz
The distance (B2) between the removed amorphous semiconductor films (4) can be set to about 200 μm.

斯るレーザビーム(8〉の走査づj向は透明4電膜(3
)(3)・・のそれと同様に、対物レンス(9)と被加
工面との距離を一定に保つべく xyzスフーーン(6
)のX軸と一致した基板(1)の曲面状表面に於ける稜
線(7)方向であり、上記XYZスデージく6)のxs
方向の移動により50mwn / secの速度で上記
レーザビーム(8)は走査される。一つの隣接間隔部の
レーザビーム(8)の走査が終了すると、XYZステー
ジ(6)をYIIII方向1.コ移動l:!′L、 I
sつ”C次に除去すべき非晶質半導体膜(4) と対物
【−ンス(9〉とを対向させ、然る後両者の対向距離を
予め定められた一定値に補正すべくz軸方向に移動せし
める。そして再びX軸−)5向の移動によりレーザビー
ム〈8)を走査する動作を繰返し実行し、非晶質半導体
膜(4)(4)・ を透明導電膜(3)(3)・の一部
を露出せしめた状態で基板(1)表面のv〉二線(7)
と平行にパターニングする。
The scanning direction of such a laser beam (8) is a transparent four-electrode film (3).
)(3)..., in order to keep the distance between the objective lens (9) and the surface to be processed constant,
) is the direction of the ridge line (7) on the curved surface of the substrate (1) that coincides with the X axis of
The laser beam (8) is scanned by the directional movement at a speed of 50 mwn/sec. When scanning of one adjacent interval section with the laser beam (8) is completed, the XYZ stage (6) is moved in the YIII direction 1. Move l:! 'L, I
Next, the amorphous semiconductor film (4) to be removed and the object (9) are made to face each other, and then the z-axis is adjusted to correct the facing distance between the two to a predetermined constant value. Then, the operation of scanning the laser beam (8) is repeated by moving in the X-axis (-) direction again, and the amorphous semiconductor film (4) (4) is transferred to the transparent conductive film (3) ( 3) v〉 double wire (7) on the surface of the substrate (1) with a part of
pattern parallel to the

第9図の工程では、裏面電極膜(5)か非晶負半導体膜
<4)(4>・・及び透明4電膜(3>(3) の露出
部(3a)(3a)・・の表面を含ん−C全光電変換領
域<2 )<2 )・・に跨って連続的に被着uしのら
れる。
In the process shown in FIG. 9, the exposed portions (3a) (3a) of the back electrode film (5) or the amorphous negative semiconductor film <4) (4>... and the transparent 4-electrode film (3>(3))... -C is continuously deposited over the entire photoelectric conversion area <2)<2) including the surface.

斯る裏面電極膜(5)の隣接間隔部は、続く?Δ10図
の工程で、一つの光電変換領域(2’>(2)・から延
在した裏面電極膜(5)(5)の延艮部(5a)(5a
)・・が隣接せる光電変換領域<2>(2) の透明導
電膜<3)(3)・・・の露出部(3a >(3a’ 
)・・と結合寸へくレー→ノ゛ビーム(8)の照射によ
り除去され、その間隔(L3〉は50pmに設ボされる
。使用されるレーザ゛は透明導電膜(3)(3m、−用
晶質゛1′:導体膜<4>(4) と同様波! 1.0
6 /A mのNd:YAGレーザであり、x y z
スT−ノ(6)Q)X軸方向の移動により5Qmm /
 5eco′)速度で走査される。
Does the adjacent spaced portion of the back electrode film (5) continue? In the process shown in Δ10, the extended portions (5a) (5a
)... are adjacent photoelectric conversion regions <2> (2) exposed portions (3a >(3a') of the transparent conductive film <3) (3)...
)... and the bonding distance is removed by irradiation with a laser beam (8), and the interval (L3) is set at 50 pm.The laser used is a transparent conductive film (3) (3 m, -Crystalline ゛1': Same wave as conductor film <4> (4)! 1.0
6/A m Nd:YAG laser, x y z
(6) Q) 5Qmm / by moving in the X-axis direction
5eco') speed.

X軸)j向の走査後の動作、即ち対物し・ス(9〉と被
加工面との対向距離の補正等に一ついCは先のレーリー
バターニング(除去)工程と同しに一つき説明を割愛す
る。
One C is used for the operation after scanning in the X-axis (X-axis) j direction, i.e., for correction of the opposing distance between the objective lens (9) and the workpiece surface. I will omit the explanation.

レーザビーム(8)の照J]、Iによる除去に際し、留
、はずへきは除去せんとする膜部分の下に他の膜か存在
しておれば、それに損傷を与えないことである。非晶質
シリコン系の非晶質半導体膜(4)のレーザビーム(8
)の加工しきい値密度は、約4×107W/ci′11
2と透明導電膜(3)ノア X 10’W / crn
 2よ゛ り小さいために、非晶質半導体膜(4)の除
去工程に於いてレーザビーム(8〉が透明導電膜(3)
を直撃したとしても損傷を与えない。
When removing the film using the laser beam (8), if there is another film under the film to be removed, it is important not to damage it. Laser beam (8) of amorphous silicon-based amorphous semiconductor film (4)
) processing threshold density is approximately 4×107W/ci'11
2 and transparent conductive film (3) Noah X 10'W/crn
Because it is smaller than 2, the laser beam (8) is applied to the transparent conductive film (3) during the removal process of the amorphous semiconductor film (4).
Even if it hits directly, it will not cause any damage.

然し乍ら、裏面電極膜(5)を形成可能な材料、即ち非
晶質半導体膜(・1)とオーミ/り接触する金属は加工
しきい値エネルギ密度か透明導電膜(3)のそれより高
いのが一般的である。例えはアルミニウムにあっては、
該アルミニウムはレーザビーl、の吸収率が低く、熱伝
導が優れているため(コシ・−ザビームの照射熱が散逸
する結果、膜厚にも左右きれるが5000人に於いて約
8 X 107W / cITI ’と透明導電膜く3
)のそれに比して僅かながら高い値を示す。
However, the material that can form the back electrode film (5), that is, the metal that is in ohmic contact with the amorphous semiconductor film (1), has a processing threshold energy density higher than that of the transparent conductive film (3). is common. For example, in the case of aluminum,
Since the aluminum has a low absorption rate for laser beams and excellent thermal conductivity (as a result of the dissipation of the irradiated heat of the laser beam, it has a power consumption of about 8 ' and transparent conductive film 3
) shows a slightly higher value than that of .

そこで本発明にあっては裏面電極膜(5)をアルミニウ
ム単体で構成するのではなく、照射熱の散逸を少なくす
へくアルミニウムの膜厚を約数100人と肉薄にすると
共に、厚み5000人程度0吸収率の高い材料、例えば
チタン或いはチタン銀合金を表面に積層するこ七によっ
て加工しきい値」−不ルギ密度を2 X 10’W/印
2と低減上しめている。よた裏面電極膜(5)を上記チ
タン或いはチタンζ1(合金単独で構成・しても良い。
Therefore, in the present invention, the back electrode film (5) is not made of aluminum alone, but the thickness of the aluminum film is reduced to about 100 to reduce the dissipation of irradiated heat, and the thickness is reduced to about 5,000. By layering a material with a high degree of absorption on the surface, such as titanium or a titanium-silver alloy, the processing threshold density is reduced to 2 x 10'W/mark 2. The back electrode film (5) may be made of titanium or titanium ζ1 (alloy) alone.

(へ) 発明の効果 本発明は以上の説明から明らかな如く、基板の非平面状
絶縁表面に直接被着される膜状の光電変換領域に対し、
上記曲面の稜線と平行にJ−ネルレキれ等の隣接間隔を
極めて減縮した状態で複数の領域に曲面に沿って分割す
ることができ、発電に寄5−する有力面積の上昇が図れ
る。
(f) Effects of the Invention As is clear from the above description, the present invention provides a film-like photoelectric conversion region that is directly adhered to a non-planar insulating surface of a substrate.
It is possible to divide the area into a plurality of areas along the curved surface while keeping the adjacent spacing between the J-shaped grooves parallel to the ridgeline of the curved surface extremely small, thereby increasing the effective area contributing to power generation.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の実施例を示し、第1図は本発明製造方法に
より製造される光起電力装置の斜視図、第2図は第1図
に於けるA−A’線断面図、第3図、第6図、及び第8
図乃至第10図番Jv造上程を順次説明するための要部
拡大断面図、第4図はレーザパターニング(除去)工程
の概略的斜視図、第5図は非晶質半導体の被着(形成)
工程の第1実施例を示す概略的斜視図、第7図は非晶質
半導体の被着(形成)工程の第2実施例を示す概略的斜
視図である。 5 (1) ・基板、(2)・・光電変換領域、(4)・ 
非晶質半導体膜、(6)・・・XYzステージ、(8)
・・レーザ5ビーム、(10)・・・アース電極、(1
2)・・高周波電極。
The figures show embodiments of the present invention; FIG. 1 is a perspective view of a photovoltaic device manufactured by the manufacturing method of the present invention, FIG. 2 is a cross-sectional view taken along line A-A' in FIG. Figures 6 and 8
Figures 10 to 10 are enlarged sectional views of important parts for sequentially explaining the Jv fabrication process, Figure 4 is a schematic perspective view of the laser patterning (removal) process, and Figure 5 is amorphous semiconductor deposition (formation). )
FIG. 7 is a schematic perspective view showing a first embodiment of the process, and FIG. 7 is a schematic perspective view showing a second embodiment of the amorphous semiconductor deposition (formation) process. 5 (1) ・Substrate, (2) ・Photoelectric conversion region, (4) ・
Amorphous semiconductor film, (6)...XYz stage, (8)
... Laser 5 beam, (10) ... Earth electrode, (1
2)...High frequency electrode.

Claims (1)

【特許請求の範囲】[Claims] (1);ISi板の非平面状絶縁表面に直接被着される
膜状の光電変換領域を、エネルギビームの照射により上
記曲面の稜線と平行にバター−ングし、複数の光IF変
換領域に分割することを特徴とした光起電力装置の製造
方法。
(1); A film-like photoelectric conversion region directly adhered to the non-planar insulating surface of the ISi plate is buttered parallel to the ridgeline of the curved surface by irradiation with an energy beam to form a plurality of optical IF conversion regions. A method for manufacturing a photovoltaic device characterized by dividing it.
JP58168762A 1983-07-29 1983-09-12 Manufacture of photovoltaic device Granted JPS6059786A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP58168762A JPS6059786A (en) 1983-09-12 1983-09-12 Manufacture of photovoltaic device
FR8412006A FR2550007A1 (en) 1983-07-29 1984-07-27 Method for producing a semiconducting film and photovoltaic device obtained by the method
US06/899,789 US4670293A (en) 1983-07-29 1986-08-22 Method of making semiconductor film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58168762A JPS6059786A (en) 1983-09-12 1983-09-12 Manufacture of photovoltaic device

Publications (2)

Publication Number Publication Date
JPS6059786A true JPS6059786A (en) 1985-04-06
JPH0548633B2 JPH0548633B2 (en) 1993-07-22

Family

ID=15873966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58168762A Granted JPS6059786A (en) 1983-07-29 1983-09-12 Manufacture of photovoltaic device

Country Status (1)

Country Link
JP (1) JPS6059786A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55115376A (en) * 1979-02-26 1980-09-05 Shunpei Yamazaki Semiconductor device and manufacturing thereof
JPS5712568A (en) * 1980-06-02 1982-01-22 Rca Corp Method of producing solar battery
JPS57176778A (en) * 1981-03-31 1982-10-30 Rca Corp Solar battery array
JPS5811261U (en) * 1981-07-14 1983-01-25 長島 正彦 tile

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811261B2 (en) * 1980-04-11 1983-03-02 新日本製鐵株式会社 Method for forming thermal spray coating containing solid lubricant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55115376A (en) * 1979-02-26 1980-09-05 Shunpei Yamazaki Semiconductor device and manufacturing thereof
JPS5712568A (en) * 1980-06-02 1982-01-22 Rca Corp Method of producing solar battery
JPS57176778A (en) * 1981-03-31 1982-10-30 Rca Corp Solar battery array
JPS5811261U (en) * 1981-07-14 1983-01-25 長島 正彦 tile

Also Published As

Publication number Publication date
JPH0548633B2 (en) 1993-07-22

Similar Documents

Publication Publication Date Title
US4670293A (en) Method of making semiconductor film
CN100533750C (en) Thin film solar module and method of fabricating the same
TWI423462B (en) Method of manufacturing back electrode of silicon bulk solar cell
JP2002057359A (en) Laminated solar battery
JP2006332453A (en) Thin film solar battery and method for manufacturing the same
AU2008224148A1 (en) Method for the production of a solar cell and solar cell produced using said method
JP2008235604A (en) Solar cell manufacturing method and the solar cell
KR20030093900A (en) A solar battery apparatus, a manufacturing method thereof, a metal plate therefor, and a plant for generation of electric power
KR20110040791A (en) Thin film solar cell and manufacturing method thereof
JP2002299661A (en) THIN-FILM CRYSTALLINE Si SOLAR CELL
JPH1079522A (en) Thin-film photoelectric conversion device and its manufacturing method
KR20100115193A (en) Method of fabricating the same
JPH0750793B2 (en) Thin film photoelectric conversion element
TWI499073B (en) Method of manufacturing back electrode of silicon bulk solar cell
JPS6059786A (en) Manufacture of photovoltaic device
CN116504868A (en) Manufacturing method of silicon solar cell
JPS6059728A (en) Preparation of semiconductor film
JPH0528513B2 (en)
JP3609147B2 (en) Photoelectric conversion device
JPS6317221B2 (en)
JPS6059729A (en) Preparation of semiconductor film
KR100537439B1 (en) A method to fabricate a high/low junction solar cell by using a optical heating system
WO2017113299A1 (en) Back-contact heterojunction solar cell and preparation method therefor
JP3172365B2 (en) Photovoltaic device and manufacturing method thereof
JP4721557B2 (en) Surface roughening method for solar cell substrates