JP2002299661A - THIN-FILM CRYSTALLINE Si SOLAR CELL - Google Patents

THIN-FILM CRYSTALLINE Si SOLAR CELL

Info

Publication number
JP2002299661A
JP2002299661A JP2001100389A JP2001100389A JP2002299661A JP 2002299661 A JP2002299661 A JP 2002299661A JP 2001100389 A JP2001100389 A JP 2001100389A JP 2001100389 A JP2001100389 A JP 2001100389A JP 2002299661 A JP2002299661 A JP 2002299661A
Authority
JP
Japan
Prior art keywords
light
layer
thin
film
crystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001100389A
Other languages
Japanese (ja)
Other versions
JP4903314B2 (en
Inventor
Kouichirou Shinraku
浩一郎 新楽
Hirofumi Senda
浩文 千田
Hiroki Okui
宏樹 奥井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001100389A priority Critical patent/JP4903314B2/en
Publication of JP2002299661A publication Critical patent/JP2002299661A/en
Application granted granted Critical
Publication of JP4903314B2 publication Critical patent/JP4903314B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To overcome the problem that the increase in a leakage current cannot be inhibited, and at the same time there are substantial restrictions in the characteristic length and an angle of inclination of uneven structure. SOLUTION: In the thin-film crystalline Si solar cell, a back transparent conductive layer that becomes a back electrode, a semiconductor layer having semiconductor junction where an photoactive layer section is formed by crystalline Si, a front transparent conductive layer that becomes a front electrode, and a front collector electrode are successively laminated on one main surface side of a translucent substrate. The uneven structure is provided in the thin-film crystalline Si solar cell. In the uneven structure, other main surface sides in the translucent substrate are made of a plurality of polygonal pyramids being at least a trigonal pyramid. The average distance between the vertexes of adjacent polygonal pyramids in the uneven structure is 100 nm or longer, and, additionally, a light reflection layer made of metal should be formed on the uneven structure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は薄膜結晶質Si太陽
電池等に代表される光電変換素子に関する。
The present invention relates to a photoelectric conversion element represented by a thin-film crystalline Si solar cell and the like.

【0002】[0002]

【従来技術とその課題】薄膜多結晶Si太陽電池に代表
される薄膜結晶質Si太陽電池は、次世代太陽電池とし
て注目されているが、結晶Siの光吸収係数が薄膜たる
膜厚に対して充分大きな値ではないため、充分な光電流
値を得るには光閉じ込め構造を導入して光利用効率の向
上を図ることが特に重要である。
2. Description of the Related Art Thin-film crystalline Si solar cells typified by thin-film polycrystalline Si solar cells have attracted attention as next-generation solar cells. Since it is not a sufficiently large value, it is particularly important to improve the light use efficiency by introducing a light confinement structure to obtain a sufficient photocurrent value.

【0003】光閉じ込め技術としては、従来から光入射
面側へ反射防止膜を形成することや凹凸構造を形成する
ことが知られており、太陽電池に応用実用化されて久し
い。
As a light confinement technique, it has been known to form an anti-reflection film on the light incident surface side or to form a concavo-convex structure, and has long been applied to solar cells and put to practical use.

【0004】しかし、薄膜結晶質Si太陽電池において
は、結晶Siの光吸収係数が長波長側で小さいため、数
μm程度以下の膜厚で光吸収を充分に生ぜしめて光電変
換をより効率的に行わせるためには、入射光が結晶質S
i膜内を多数回反射往復するようにして光をより有効に
閉じ込められる構造にすることが特に重要である。この
ため、薄膜結晶質Si太陽電池では、従来の半導体層の
光入射面側表面へ凹凸構造を形成することに加えて、半
導体層の光入射面とは反対側にも凹凸構造を形成して光
閉じ込めをより有効に行う検討が進められている。
However, in a thin-film crystalline Si solar cell, since the light absorption coefficient of crystalline Si is small on the long wavelength side, light absorption is sufficiently generated at a film thickness of about several μm or less to more efficiently perform photoelectric conversion. To do so, the incident light must be crystalline S
It is particularly important to form a structure in which light can be more effectively confined by reflecting and reciprocating a number of times in the i-film. For this reason, in the thin-film crystalline Si solar cell, in addition to forming the concavo-convex structure on the light incident surface side surface of the conventional semiconductor layer, the concavo-convex structure is also formed on the opposite side of the semiconductor layer from the light incident surface. Studies are underway to more effectively confine light.

【0005】これらの従来例は、例えば特許第2713
847号、特許第2771414号、特許第27848
41号、特許第3027669号、特許第302916
9号、特開平5−218469号、特開平6−1967
38号、特開平10−117006号、特開平11−2
33800号等の文献に述べられており、いずれにおい
ても光電流が増大して変換効率が向上する結果が得られ
ている。
[0005] These conventional examples are disclosed in, for example, Japanese Patent No. 2713.
No. 847, Japanese Patent No. 2771414, Japanese Patent No. 27848
No. 41, Japanese Patent No. 3027669, Japanese Patent No. 302916
9, JP-A-5-218469, JP-A-6-1967
No. 38, JP-A-10-117006, JP-A-11-2
No. 33800 and the like, and in each case, the result that the photocurrent is increased and the conversion efficiency is improved is obtained.

【0006】ここで代表的な素子構造を図3、図4、図
5に示す。図3、図4、図5中、31、41、51は基
板、32、42、52は裏電極層、33、43、53は
裏透明導電層、34、44、54は半導体層、35、4
5、55は表透明導電層、36、46、56は表集電極
である。
Here, typical element structures are shown in FIG. 3, FIG. 4, and FIG. 3, 4, and 5, 31, 41, and 51 are substrates, 32, 42, and 52 are back electrode layers, 33, 43, and 53 are back transparent conductive layers, 34, 44, and 54 are semiconductor layers, and 35, and 4
5, 55 are front transparent conductive layers, and 36, 46, 56 are front collecting electrodes.

【0007】しかしながら、図3、図4、図5で示した
半導体層両面を凹凸構造とする従来の両面凹凸構造で
は、半導体層34、44、54を既に凹凸構造が形成さ
れた面を堆積面として成長させることになる。これは電
気的に良質な半導体膜を成長させるためには本来は好ま
しくないものである。なぜならば、フラット面への薄膜
成長であれば、凹凸構造に起因した不要な核発生サイト
が少ないので結晶の大粒径化がはかりやすく、また、全
ての結晶がフラット面に対して垂直な方向に成長してい
くために成長した結晶粒どうしが衝突して結晶粒界を生
じさせたりすることがなく、また結晶配向も一方向にそ
ろいやすく望ましい結晶配向特性に制御しやすいという
利点があるのに対して、凹凸構造面上への薄膜成長では
これらの利点が失われてしまうからである。
However, in the conventional double-sided uneven structure in which both surfaces of the semiconductor layer shown in FIGS. 3, 4 and 5 are uneven, the semiconductor layers 34, 44 and 54 are formed by depositing the surface on which the uneven structure has already been formed on the deposition surface. Will grow as. This is originally undesirable for growing an electrically good semiconductor film. This is because, when a thin film is grown on a flat surface, the number of unnecessary nucleation sites due to the uneven structure is small, so that it is easy to increase the crystal grain size, and all crystals are oriented in a direction perpendicular to the flat surface. This has the advantage that the crystal grains grown do not collide with each other to form crystal grain boundaries, and that the crystal orientation is easily aligned in one direction and that the desired crystal orientation characteristics can be easily controlled. On the other hand, these advantages are lost when the thin film is grown on the uneven structure surface.

【0008】特に太陽電池においては、結晶粒径が小さ
いことによる結晶粒界の増加や、成長結晶粒どうしの衝
突による結晶粒界の生成は、結晶粒界部がリーク電流の
発生経路となるため半導体層34、44、54の電気的
特性が劣化し、開放電圧特性の低下や曲線因子特性の低
下を招く致命的なマイナス因子となる。
In particular, in a solar cell, an increase in crystal grain boundaries due to a small crystal grain size and generation of crystal grain boundaries due to collision between growing crystal grains are caused by the crystal grain boundary portions serving as a path for generating a leak current. The electrical characteristics of the semiconductor layers 34, 44, and 54 are deteriorated, which is a fatal negative factor that causes a decrease in open-circuit voltage characteristics and a decrease in fill factor characteristics.

【0009】実際、凹凸形状と開放電圧との関係につい
ては、第61回秋期応用物理学会予稿集6a−C−6,
p.829(2000)、同6a−C−7,p.830
(2000)で報告されており、凹凸形状の増大(凹凸
構造を形成する凹凸単位の平均サイズ(特性長)の増大
や、凹凸構造を形成する面の基板水平方向に対する傾斜
角度の増大)とともに光電流は増大するが、開放電圧は
低下してしまうことが述べられている。
[0009] In fact, regarding the relationship between the concavo-convex shape and the open-circuit voltage, the 61st Autumn Meeting of the Japan Society of Applied Physics 6a-C-6
p.829 (2000), 6a-C-7, p.830
(2000), which increases the unevenness (increases in the average size (characteristic length) of the unevenness units forming the uneven structure and the inclination angle of the surface on which the uneven structure is formed with respect to the horizontal direction of the substrate). It is stated that the current increases but the open-circuit voltage decreases.

【0010】このように、半導体層両面を凹凸構造とす
る従来の両面凹凸構造では、光学的に望ましい凹凸構造
を形成して光電流を増大させることはできても、リーク
電流の増大が抑えられず、本来期待される特性レベルに
までは到達できないという課題があった。
As described above, in the conventional double-sided uneven structure in which both surfaces of the semiconductor layer are uneven, even if an optically desirable uneven structure can be formed to increase the photocurrent, the increase in leak current can be suppressed. However, there is a problem that the characteristic level cannot be originally expected.

【0011】また光活性層部である結晶質Si層につい
ては、その結晶配向特性を(110)配向とすること
が、光閉じ込めに適した凹凸形状をその成長表面に自生
的に形成するためには重要であるが、半導体層34、4
4、54を形成する前に既に凹凸形状が形成されている
場合は、この配向の制御性が乱されてしまい、理想的な
強い(110)配向を得にくいという課題があった。
In the crystalline Si layer which is a photoactive layer portion, the crystal orientation characteristic is set to be (110) orientation in order to spontaneously form an uneven shape suitable for light confinement on the growth surface. Is important, but the semiconductor layers 34, 4
If the concavo-convex shape is already formed before forming 4, 54, the controllability of this orientation is disturbed, and there is a problem that it is difficult to obtain an ideal strong (110) orientation.

【0012】これに対して、本発明者らは、既に特願2
001−20623号で、前記従来例よりもリーク電流
量を少なくできる両面凹凸構造素子を開示しており、こ
れを図6、図7に示す。図6、図7中、61、71は基
板、62、72は裏電極層、63、73は裏透明導電
層、64、74半導体層、65、75は表透明導電層、
66、76は表集電極である。これらの素子構造では、
前記した図3、4、5で示した素子構造に対して、半導
体層64、74をより平坦化された面上に成長させるこ
とができるので、電気的により良質な半導体層64、7
4を得ることができる。
On the other hand, the present inventors have already filed Japanese Patent Application No.
No. 001-20623 discloses a double-sided concavo-convex structure element capable of reducing the amount of leak current as compared with the conventional example, which is shown in FIGS. 6 and 7. FIG. 6 and 7, 61 and 71 are substrates, 62 and 72 are back electrode layers, 63 and 73 are back transparent conductive layers, 64 and 74 semiconductor layers, 65 and 75 are front transparent conductive layers,
66 and 76 are surface collecting electrodes. In these element structures,
Since the semiconductor layers 64 and 74 can be grown on the flattened surface with respect to the element structure shown in FIGS.
4 can be obtained.

【0013】ところが、この場合でも、裏電極層62、
72の表面の凹凸構造の特性長と傾斜角度がある程度以
上の値になると、裏透明導電層63、73でこれを完全
に被覆して埋め込むためには裏透明導電層63、73を
かなり厚く成膜する必要があり、この成膜工程に時間が
かかるとともに、厚膜となるほど透明導電層の結晶構造
を反映した表面凹凸形状がより増大し、ある程度の平坦
化工程を必要とするという課題があった。このため、裏
電極層62、72の表面の凹凸形状をより増大させた方
が光学的には望ましいとわかっていても、その凹凸構造
の特性長と傾斜角度にはなお実質的な制約があった。
However, even in this case, the back electrode layer 62,
When the characteristic length and the inclination angle of the concave-convex structure on the surface of the surface 72 become a certain value or more, in order to completely cover and embed the back transparent conductive layers 63 and 73, the back transparent conductive layers 63 and 73 are formed to be considerably thick. It is necessary to form a film, and this film formation process takes a long time, and the thicker the film is, the more the unevenness of the surface reflecting the crystal structure of the transparent conductive layer is increased, so that a certain leveling process is required. Was. For this reason, even if it is known that it is optically desirable to increase the unevenness of the surface of the back electrode layers 62 and 72, the characteristic length and the inclination angle of the unevenness are still substantially restricted. Was.

【0014】本発明は、リーク電流の増大が抑えられな
いという従来の両面凹凸構造での問題点を解決しつつ、
さらには凹凸構造の特性長と傾斜角度にはなお実質的な
制約があるという他の従来の問題をも解決するものであ
る。
The present invention solves the problem of the conventional double-sided uneven structure that the increase in leakage current cannot be suppressed,
Further, the present invention solves another conventional problem that the characteristic length and the inclination angle of the uneven structure are still substantially restricted.

【0015】[0015]

【課題を解決するための手段】上記課題を解決するため
に、請求項1に係る薄膜結晶質Si太陽電池では、透光
性基板の一主面側に、裏電極となる裏透明導電層、光活
性層部を結晶質Siで形成した半導体接合を有する半導
体層、表電極となる表透明導電層および表集電極を順次
積層した薄膜結晶質Si太陽電池において、前記透光性
基板の他の主面側が3角錐以上の多数の多角錐からなる
凹凸構造を有し、この凹凸構造の隣接する多角錐の頂点
間の平均距離が100nm以上であり、さらにこの凹凸
構造上に金属からなる光反射層を形成したことを特徴と
する。
According to a first aspect of the present invention, there is provided a thin-film crystalline Si solar cell according to the first aspect, wherein a back transparent conductive layer serving as a back electrode is provided on one principal surface side of the translucent substrate. In a thin-film crystalline Si solar cell in which a semiconductor layer having a semiconductor junction in which a photoactive layer portion is formed of crystalline Si, a front transparent conductive layer serving as a front electrode, and a front electrode are sequentially stacked, The main surface side has an uneven structure composed of a large number of polygonal pyramids of three or more pyramids, the average distance between vertices of adjacent polygonal pyramids of the irregularity structure is 100 nm or more, and light reflection made of metal on the uneven structure A layer is formed.

【0016】また、請求項2に係る薄膜結晶質Si太陽
電池では、前記凹凸構造の凹部が曲面からなっていて、
この凹凸構造の隣接する凹部の最下点間の平均距離を1
00nm以上としたことを特徴とする。
Further, in the thin-film crystalline Si solar cell according to claim 2, the concave portion of the concave-convex structure has a curved surface,
The average distance between the lowest points of adjacent concave portions of the concave-convex structure is 1
It is characterized in that it is not less than 00 nm.

【0017】また、請求項3に係る薄膜結晶質Si太陽
電池では、基板の一主面側に、裏電極となる裏透明導電
層、光活性層部を結晶質Siで形成した半導体接合を有
する半導体層、表電極となる表透明導電層および表集電
極を順次積層した薄膜結晶質Si太陽電池において、前
記基板の一主面側が3角錐以上の多数の多角錐からなる
凹凸構造、または凹部が曲面からなる凹凸構造を有し、
この凹凸構造の隣接する多角錐の頂点間の平均距離、ま
たは同凹凸構造の隣接する凹部の最下点間の平均距離が
100nm以上であり、さらにこの凹凸構造上と前記裏
透明導電層との間に、表面が実質的に平坦な透光性薄膜
層を形成したことを特徴とする。
Further, in the thin film crystalline Si solar cell according to the third aspect, a back transparent conductive layer serving as a back electrode and a semiconductor junction having a photoactive layer formed of crystalline Si are provided on one principal surface side of the substrate. In a thin-film crystalline Si solar cell in which a semiconductor layer, a front transparent conductive layer serving as a front electrode, and a front electrode are sequentially laminated, one main surface side of the substrate has a concavo-convex structure or a concave portion formed of a number of polygonal pyramids of three or more pyramids. Has an uneven structure consisting of curved surfaces,
The average distance between the vertices of adjacent polygonal pyramids of the concavo-convex structure or the average distance between the lowest points of adjacent concave portions of the concavo-convex structure is 100 nm or more. A translucent thin film layer having a substantially flat surface is formed between the two.

【0018】また、上記薄膜結晶質Si太陽電池におい
て、前記基板が透光性基板である場合は、この透光性基
板と前記透光性薄膜層との間に金属からなる光反射層を
設けたことを特徴とする。
In the thin-film crystalline Si solar cell, when the substrate is a light-transmitting substrate, a light-reflecting layer made of metal is provided between the light-transmitting substrate and the light-transmitting thin film layer. It is characterized by having.

【0019】[0019]

【発明の実施の形態】以下、図1を用いて請求項1に係
る発明の実施の形態を説明する。図中、11は透光性基
板、12は光反射層、13は裏透明導電層、14は光活
性層部を結晶質Siで形成した半導体接合を有する半導
体層、15は表透明導電層、16は表集電極である。な
お、図1は請求項1を説明するためのものであるが、請
求項2を説明する際にも凹凸構造を請求項2で述べた形
状のものと解釈することと約して流用することにする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of the present invention will be described with reference to FIG. In the figure, 11 is a translucent substrate, 12 is a light reflecting layer, 13 is a back transparent conductive layer, 14 is a semiconductor layer having a semiconductor junction in which a photoactive layer portion is formed of crystalline Si, 15 is a front transparent conductive layer, Reference numeral 16 denotes a surface collecting electrode. FIG. 1 is for describing claim 1. However, in describing claim 2, it should be understood that the uneven structure is interpreted as having the shape described in claim 2. To

【0020】透光性基板11の一主面側に、裏電極とな
る裏透明導電層13、光活性層部を結晶質Siで形成し
た半導体接合を有する半導体層14、表電極となる表透
明導電層15および表集電極16を順次積層する。透光
性基板の他の主面側は、3角錐以上の多数の多角錘から
なる凹凸構造を有し、この凹凸構造の隣接する多角錐の
頂点間の平均距離が100nm以上であり、さらにこの
凹凸構造上に金属からなる光反射層12を形成してい
る。
On one main surface side of the light-transmitting substrate 11, a back transparent conductive layer 13 serving as a back electrode, a semiconductor layer 14 having a semiconductor junction in which a photoactive layer portion is formed of crystalline Si, and a front transparent electrode serving as a front electrode. The conductive layer 15 and the surface electrode 16 are sequentially laminated. The other main surface side of the light-transmitting substrate has an uneven structure composed of a large number of polygonal pyramids of three or more pyramids, and the average distance between vertices of adjacent polygonal pyramids of the uneven structure is 100 nm or more. The light reflection layer 12 made of metal is formed on the uneven structure.

【0021】この素子構造によれば、両面凹凸構造のう
ち光入射面とは反対側に位置する裏面側凹凸構造は、半
導体形成面側とは反対側の透光性基板11の裏面に形成
されるので、半導体層14は実質的にフラットな面に形
成されることになり、半導体層14が凹凸形状表面に形
成されることによって生ずるリーク電流の増大を回避す
ることができるとともに、裏透明導電層13の表面の平
坦化工程も省くことができる。また、凹凸構造の特性長
と傾斜角度の上限についての実質的制約も完全になくす
ことができる。よって、素子の電気特性(リーク特性)
とのトレードオフを全く考慮する必要がなく、独立に光
学的な最適構造化をはかれる素子構造を実現することが
できる。
According to this element structure, of the two-sided uneven structure, the back-side uneven structure located on the side opposite to the light incident surface is formed on the back surface of the light-transmitting substrate 11 on the opposite side to the semiconductor forming surface side. Therefore, the semiconductor layer 14 is formed on a substantially flat surface, so that it is possible to avoid an increase in leakage current caused by the semiconductor layer 14 being formed on the uneven surface, and to make the transparent conductive film The step of planarizing the surface of the layer 13 can also be omitted. In addition, substantial restrictions on the characteristic length of the concavo-convex structure and the upper limit of the inclination angle can be completely eliminated. Therefore, the electrical characteristics (leakage characteristics) of the device
There is no need to consider the trade-off at all, and it is possible to realize an element structure that can be optically optimized independently.

【0022】なお、素子表面から入射した光のうち半導
体層14と裏透明導電層13との界面にまで達したもの
は、一部は半導体層14側へ反射され、残りは裏透明導
電層13と透光性基板11との界面にまで達し、後者の
一部は半導体層14側へ反射され、残りは透光性基板1
1中を透過して光反射層12に達する。光反射層12に
達した光は、裏面側凹凸構造の傾斜角度に応じて半導体
層14側へ向けて斜めに反射される。この反射した光の
うち素子表面にまで達したものは素子表面に形成された
結晶質Siの自生的凹凸構造を反映した凹凸面において
その傾斜角度に応じて半導体層14へ向けて斜めに反射
される。このように凹凸構造導入素子では、入射光が素
子中をある傾斜角をもって多数回反射することによって
光電変換がなされるが、半導体層中を斜めに進む光に対
しては、表透明導電層15と半導体層14との界面、お
よび半導体層14と裏透明導電層13との界面は全反射
条件がより成立しやすくなっているので、非常に高い光
閉じ込め効果が得られる。
The part of the light incident from the element surface which reaches the interface between the semiconductor layer 14 and the back transparent conductive layer 13 is partially reflected toward the semiconductor layer 14, and the rest is reflected on the back transparent conductive layer 13. To the interface between the light-transmitting substrate 11 and a part of the latter, which is reflected toward the semiconductor layer 14, and the rest of the light-transmitting substrate 1.
1 and reaches the light reflection layer 12. The light that reaches the light reflecting layer 12 is obliquely reflected toward the semiconductor layer 14 according to the inclination angle of the back-side uneven structure. Of the reflected light, the light reaching the element surface is obliquely reflected toward the semiconductor layer 14 in accordance with the inclination angle on the uneven surface reflecting the spontaneous uneven structure of crystalline Si formed on the element surface. You. As described above, in the concavo-convex structure introducing device, photoelectric conversion is performed by reflecting the incident light many times in the device at a certain inclination angle, but the light traveling obliquely in the semiconductor layer is not reflected on the front transparent conductive layer 15. Since the interface between the semiconductor layer 14 and the semiconductor layer 14 and the interface between the semiconductor layer 14 and the back transparent conductive layer 13 are more likely to satisfy the condition of total reflection, a very high light confinement effect can be obtained.

【0023】この素子構造においては、裏面側凹凸構造
における傾斜角度には上限がないので、例えば45°を
超えるようなかなり急角度な傾斜面を形成することも可
能となり、光反射層12で反射した光をより水平な方向
に進ませることができる。より水平な方向に進む光は半
導体層14中を次に反射するまでにより長い距離を進む
ことができるので、半導体層14中の光の走行距離に対
する反射回数を減らすことができ、反射時にわずかに生
ずる光吸収の累積ロスがより低く抑えられたより効率的
な光電変換を実現することができる。
In this element structure, there is no upper limit to the inclination angle of the back-side uneven structure, so that it is possible to form a very steep inclined surface exceeding, for example, 45 °. The emitted light can travel in a more horizontal direction. Light traveling in a more horizontal direction can travel a longer distance before being next reflected in the semiconductor layer 14, so that the number of times of reflection of light in the semiconductor layer 14 with respect to the traveling distance can be reduced, and the light can be slightly reflected. It is possible to realize more efficient photoelectric conversion in which the resulting cumulative loss of light absorption is kept lower.

【0024】また、基板11裏面の凹凸構造における隣
接する任意の多角錐の頂点間の平均距離(以後、凹凸構
造単位の平均サイズと表現したり、特性長と表現したり
する)を100nm以上としたのは、それ以下では光学
的にフラットとみなされてしまい、期待する光散乱効果
が得られないからである。
The average distance between the vertices of adjacent arbitrary pyramids in the concavo-convex structure on the back surface of the substrate 11 (hereinafter referred to as the average size of the concavo-convex structure unit or the characteristic length) is set to 100 nm or more. The reason for this is that below this, it is regarded as optically flat, and the expected light scattering effect cannot be obtained.

【0025】すなわち、一般に、光波長の1/4程度の
特性長を有する凹凸構造は光学的にフラットとみなされ
るので、期待する光散乱効果を有する凹凸構造とするに
は、その特性長を少なくとも問題とする光の波長の1/
4以上、望ましくは1/2以上とする必要がある。
That is, in general, an uneven structure having a characteristic length of about 1/4 of the light wavelength is regarded as optically flat. Therefore, in order to obtain an uneven structure having an expected light scattering effect, the characteristic length must be at least. 1/1 of the wavelength of the light in question
It is necessary to be 4 or more, preferably 1 / or more.

【0026】本発明の場合、光活性層たる半導体膜は結
晶質Siで構成されているので、利用できる最長光波長
は約1200nmである。つまり本件で問題にすべき光
の波長は1200nmまでであるが、このとき本件の透
光性基板11または透光性薄膜層22(後述)の代表的
材料としてガラスを例にとると、その屈折率は約1.5
であるため、この材料媒質中での光波長は800nmと
みなせる。つまり、波長1200nmの光を素子裏面側
の光反射層部で斜め反射させて素子内部に有効に閉じ込
めるにはその凹凸構造の特性長は、少なくとも800n
mの1/4の200nm以上、望ましくは1/2の40
0nm以上とする必要があることになる。実際には波長
800nm前後までの光に対して光閉じ込め効果が得ら
れるだけでもかなりの実質的特性向上効果があるので、
この場合の最小特性長は少なくとも133nm前後以
上、望ましくは267nm前後以上とすればよく、これ
が前記した特性長を100nm以上とするとした理由で
ある。
In the case of the present invention, since the semiconductor film as the photoactive layer is composed of crystalline Si, the longest light wavelength that can be used is about 1200 nm. In other words, the wavelength of light to be considered in the present case is up to 1200 nm. At this time, if glass is taken as an example of a typical material of the translucent substrate 11 or the translucent thin film layer 22 (described later), its refractive The rate is about 1.5
Therefore, the light wavelength in this material medium can be regarded as 800 nm. In other words, the characteristic length of the concavo-convex structure is at least 800 n so that light having a wavelength of 1200 nm is obliquely reflected by the light reflection layer on the back surface side of the element and is effectively confined inside the element.
m, 200 nm or more, preferably 1/2, 40
It is necessary to be 0 nm or more. Actually, even if only the light confinement effect is obtained for light up to a wavelength of about 800 nm, there is a substantial substantial characteristic improvement effect.
In this case, the minimum characteristic length may be at least about 133 nm or more, desirably about 267 nm or more, which is the reason that the characteristic length is set to 100 nm or more.

【0027】なお、前記透光性基板12や後記する透光
性薄膜層22としてガラスの他にプラスチックや樹脂を
使っても屈折率はやはり1.5程度なので、前述した数
値はやはり有効である。
Even if plastic or resin is used other than glass for the light-transmitting substrate 12 and the light-transmitting thin film layer 22 described later, the refractive index is still about 1.5, so the above-mentioned numerical values are still effective. .

【0028】前記透光性基板11の裏面の凹凸構造の凹
部は曲面からなっていてもよい。
The concave portion of the concave-convex structure on the back surface of the light-transmitting substrate 11 may have a curved surface.

【0029】次に、上述した薄膜結晶質Si太陽電池の
製造方法を説明する。まず、透光性基板11として、ガ
ラス、プラスチック、樹脂などを材料とした板材あるい
はフィルム材などを用意し、基板11の裏面を凹凸形状
に加工する。
Next, a method for manufacturing the above-mentioned thin-film crystalline Si solar cell will be described. First, a plate material or a film material made of glass, plastic, resin, or the like is prepared as the translucent substrate 11, and the back surface of the substrate 11 is processed into an uneven shape.

【0030】ここで、基板11の裏面の凹凸構造とし
て、請求項1に述べられている3角錐以上の多数の多角
錐からなる凹凸構造を形成したい場合には、予めこのネ
ガ構造を有した金型等のネガレプリカを用意しておき、
これによって基板11の表面を適当な温度条件でプレス
加工すれば比較的低コストで容易に実現できる。ここ
で、この凹凸構造における隣接する任意の多角錐の頂点
間の平均距離は100nm以上、より好ましくは200
nm以上とする。なお、ネガレプリカを作製するための
オリジナル凹凸構造としては、例えば結晶Si基板を所
定のウェットエッチング条件やドライエッチング条件で
エッチングすることによって形成されるSi結晶の面方
位を反映した凹凸構造を利用することができるし、Sn
2等の透明導電膜を所定の条件で製膜することによっ
て得られる自生的表面凹凸構造などを利用することもで
き、得たい凹凸構造に応じて様々な材料を利用すること
ができる。
Here, when it is desired to form a concave-convex structure composed of a large number of triangular pyramids or more as described in claim 1, as the concave-convex structure on the back surface of the substrate 11, gold having a negative structure in advance is used. Prepare a negative replica such as a mold,
Accordingly, if the surface of the substrate 11 is pressed under an appropriate temperature condition, it can be easily realized at a relatively low cost. Here, the average distance between the vertices of adjacent arbitrary polygonal pyramids in the concavo-convex structure is 100 nm or more, more preferably 200 nm or more.
nm or more. In addition, as an original concavo-convex structure for producing a negative replica, for example, a concavo-convex structure that reflects a plane orientation of a Si crystal formed by etching a crystalline Si substrate under predetermined wet etching conditions or dry etching conditions is used. Can be
A spontaneous surface unevenness structure obtained by forming a transparent conductive film such as O 2 under predetermined conditions can be used, and various materials can be used according to the unevenness structure to be obtained.

【0031】また、基板11の裏面の凹凸構造として、
請求項2に述べられている凹部が曲面の凹凸構造を形成
する場合には、ドライエッチング法やウエットエッチン
グ法を用いて加工すれば比較的低コストで実現すること
ができる。特にドライエッチング法の一種であるRIE
法を用いれば、ガス種、ガス圧、プラズマパワー等のエ
ッチング条件によって所望の凹凸形状が得られること
が、例えば特願2000−301419号に述べられて
いる。この凹凸構造における凹部の曲面の最下点間の平
均距離は100nm以上、より好ましくは200nm以
上とする。なお、この凹凸構造の形成にあたっても前述
したネガレプリカによるプレス加工法を利用することが
できる。
As the uneven structure on the back surface of the substrate 11,
In the case where the concave portion described in claim 2 forms a concave-convex structure having a curved surface, it can be realized at relatively low cost by processing using a dry etching method or a wet etching method. In particular, RIE, a type of dry etching method
It is described in Japanese Patent Application No. 2000-301419, for example, that a desired concavo-convex shape can be obtained depending on etching conditions such as a gas type, a gas pressure, and a plasma power. The average distance between the lowest points of the curved surfaces of the concave portions in the concave-convex structure is 100 nm or more, more preferably 200 nm or more. It is to be noted that the above-described press working method using a negative replica can be used for forming the uneven structure.

【0032】次に、光反射層12となる金属膜を前記凹
凸構造が形成された透光性基板11の裏面側に成膜す
る。金属材料としては、光反射特性に優れるAl、Ag
などを用いるのが望ましい。製膜方法としては、蒸着
法、スパッタリング法、イオンプレーティング法などの
公知の技術を使用できる。このとき膜厚は、0.01μ
m程度以上とする。なお、光反射層12と透光性基板1
1との接着強度が弱い場合は、Tiなどの酸化しやすい
金属薄膜を厚さ1〜10nm程度で光反射層12と透光
性基板11との間に挿入させるとよい。
Next, a metal film to be the light reflection layer 12 is formed on the back surface side of the light transmitting substrate 11 on which the above-mentioned uneven structure is formed. Al and Ag which are excellent in light reflection characteristics as metal materials
It is desirable to use such as. Known techniques such as a vapor deposition method, a sputtering method, and an ion plating method can be used as a film forming method. At this time, the film thickness is 0.01 μm.
m or more. The light reflecting layer 12 and the light transmitting substrate 1
When the bonding strength with the substrate 1 is low, a thin metal film, such as Ti, which is easily oxidized may be inserted between the light reflecting layer 12 and the light transmitting substrate 11 with a thickness of about 1 to 10 nm.

【0033】次に、裏透明導電層13を透光性基板11
の表面側に形成する。透明導電膜材料としては、SnO
2、ITO、ZnOなど公知の材料を用いることができ
るが、この後に堆積するSi膜形成時にSiH4とH2
使用することに起因して水素ガス雰囲気に曝されること
になるので、耐還元性に優れるZnO膜を少なくとも最
終表面として形成するのが望ましい。製膜方法として
は、CVD法、蒸着法、イオンプレーティング法、スパ
ッタリング法など公知の技術を用いることができる。こ
のとき、膜厚は、裏透明導電層13が裏電極を兼ねるこ
とを考慮して、そのシート抵抗値を充分低くするため
に、10nm以上、より好ましくは20nm以上とす
る。なお、透明導電層は膜厚増大とともにその結晶構造
に起因した凹凸形状が増大していく傾向があるので、条
件によっては期待する実質的に平坦な表面形状が得られ
ない場合があるが、この場合は透明導電層13をまず非
晶質状態で成膜しておき、その後熱アニール処理などに
よって結晶化させれば実質的に平坦な表面形状を得るこ
とができる。
Next, the back transparent conductive layer 13 is
Formed on the surface side of As the transparent conductive film material, SnO
2 , known materials such as ITO and ZnO can be used. However, when a Si film to be subsequently deposited is used, the film is exposed to a hydrogen gas atmosphere due to the use of SiH 4 and H 2. It is desirable to form a ZnO film having excellent reducibility at least as a final surface. As a film forming method, a known technique such as a CVD method, an evaporation method, an ion plating method, and a sputtering method can be used. At this time, the film thickness is set to 10 nm or more, more preferably 20 nm or more, in consideration of the fact that the back transparent conductive layer 13 also serves as the back electrode, in order to sufficiently reduce the sheet resistance value. In addition, since the transparent conductive layer tends to have an uneven shape due to its crystal structure as the film thickness increases, an expected substantially flat surface shape may not be obtained depending on conditions. In this case, a substantially flat surface shape can be obtained by first forming the transparent conductive layer 13 in an amorphous state and then crystallizing it by a thermal annealing treatment or the like.

【0034】次に、光活性層部を結晶質Siで形成した
半導体接合を有する半導体層14を形成する。プロセス
は大別して下地層の形成、光活性層の形成、接合の形成
となる(それぞれ不図示)。なお、これらの半導体層の
形成においては、前述したように既に半導体堆積面が実
質的に平坦化されているので不要な核形成が抑えられて
半導体結晶粒の大粒径化を行いやすく、また結晶粒は共
に基板に垂直な方向に平行して柱状成長していくので結
晶粒どうしの衝突による結晶粒界発生を抑えることがで
き、結晶粒界に起因した半導体膜の品質低下が極力抑制
された半導体層形成を行うことができる。また比較的容
易に強い(110)配向特性を得ることができるので、
半導体層14表面に光閉じ込めに適した理想的な自生的
凹凸構造を形成することができる。
Next, a semiconductor layer 14 having a semiconductor junction in which the photoactive layer is formed of crystalline Si is formed. The process is roughly divided into formation of a base layer, formation of a photoactive layer, and formation of a junction (each not shown). In the formation of these semiconductor layers, unnecessary nucleation is suppressed because the semiconductor deposition surface is already substantially flat as described above, so that the semiconductor crystal grains can be easily increased in size. Since both crystal grains grow in a columnar shape in parallel with the direction perpendicular to the substrate, generation of crystal grain boundaries due to collision between crystal grains can be suppressed, and deterioration of the quality of the semiconductor film due to crystal grain boundaries is suppressed as much as possible. Semiconductor layer formation can be performed. In addition, since strong (110) orientation characteristics can be obtained relatively easily,
An ideal spontaneous uneven structure suitable for confining light can be formed on the surface of the semiconductor layer 14.

【0035】まず、下地層として非単結晶Si膜を触媒
CVD法やプラズマCVD法などの方法で形成する。膜
厚は、10〜500nm程度とする。ドーピング元素濃
度については1×1E18〜1E21/cm3程度とし
てp+型(またはn+型)とする。
First, a non-single-crystal Si film is formed as a base layer by a method such as a catalytic CVD method or a plasma CVD method. The film thickness is about 10 to 500 nm. The concentration of the doping element is about 1 × 1E18 to 1E21 / cm 3 , and the p + type (or n + type) is used.

【0036】次に、光活性層として結晶質Si膜を触媒
CVD法やプラズマCVD法などの方法で形成する。膜
厚は、0.5〜10μm程度とする。なお、導電型は、
上記下地層よりはドーピング濃度が低い同導電型とする
か、あるいは実質的なi型とする。
Next, a crystalline Si film is formed as a photoactive layer by a method such as catalytic CVD or plasma CVD. The thickness is about 0.5 to 10 μm. The conductivity type is
It is of the same conductivity type with a lower doping concentration than that of the underlayer, or is substantially i-type.

【0037】次に、半導体接合を形成するべく、非単結
晶Si膜を触媒CVD法やプラズマCVD法などの方法
で形成する。膜厚は5〜500nm程度とする。ドーピ
ング元素濃度は1×1E18〜1E21/cm3程度と
し、前述した下地層とは反対導電型であるn+(または
+型)とする。なお、接合特性をより改善するために
光活性層と接合層との間に実質的にi型の非単結晶Si
層を挿入してもよい。このとき挿入層の厚さは結晶質S
i層の場合は10〜500nm程度、非晶質Siの場合
は1〜20nm程度とする。
Next, in order to form a semiconductor junction, a non-single-crystal Si film is formed by a method such as a catalytic CVD method or a plasma CVD method. The thickness is about 5 to 500 nm. The doping element concentration is set to about 1 × 1E18 to 1E21 / cm 3, and is set to n + (or p + type) having a conductivity type opposite to that of the above-described underlayer. In order to further improve the bonding characteristics, substantially non-single-crystal silicon of i-type is provided between the photoactive layer and the bonding layer.
Layers may be inserted. At this time, the thickness of the insertion layer is crystalline S
The thickness is about 10 to 500 nm in the case of an i layer, and about 1 to 20 nm in the case of amorphous Si.

【0038】次に、表透明導電層15を形成する。透明
導電膜材料としては、SnO2、ITO、ZnOなど公
知の材料を用いることができる。製膜方法としては、C
VD法、蒸着法、イオンプレーティング法、スパッタリ
ング法など公知の技術を用いることができる。このと
き、膜厚は光学的干渉効果を考慮して60〜300nm
程度にする。
Next, the front transparent conductive layer 15 is formed. Known materials such as SnO 2 , ITO, and ZnO can be used as the transparent conductive film material. As the film forming method, C
Known techniques such as a VD method, an evaporation method, an ion plating method, and a sputtering method can be used. At this time, the film thickness is 60 to 300 nm in consideration of the optical interference effect.
About.

【0039】最後に、表集電極16となる金属膜を形成
する。金属膜材料としては、導電性に優れるAl、Ag
などを用いるのが望ましい。製膜方法としては、蒸着
法、スパッタリング法、イオンプレーティング法、スク
リーン印刷法などの公知の技術を使用できる。電極パタ
ーンについては、マスキング法、リフトオフ法などを用
いて所望のパターンに形成することができる。なお、表
透明導電層15との接着強度強化のためには、表透明導
電層15と表集電極16との間に、Ti等の酸化物材料
との接着強度に優れる金属材料を挿入すると効果的であ
る。
Finally, a metal film to be the front electrode 16 is formed. Al and Ag which have excellent conductivity as metal film materials
It is desirable to use such as. As the film forming method, known techniques such as a vapor deposition method, a sputtering method, an ion plating method, and a screen printing method can be used. The electrode pattern can be formed into a desired pattern by using a masking method, a lift-off method, or the like. In order to enhance the adhesive strength with the front transparent conductive layer 15, it is effective to insert a metal material having excellent adhesive strength with an oxide material such as Ti between the front transparent conductive layer 15 and the surface electrode 16. It is a target.

【0040】以上によって、リーク電流を増大させるこ
とのない両面凹凸光閉じ込め構造を有した高効率な薄膜
結晶質Si太陽電池を得ることができる。
As described above, a highly efficient thin-film crystalline Si solar cell having a double-sided concavo-convex optical confinement structure that does not increase the leakage current can be obtained.

【0041】次に、図2を用いて請求項3及び請求項4
に係る発明の実施の形態を説明する。図中、20は基
板、21は金属からなる光反射層、22は透光性薄膜
層、23は裏電極となる裏透明導電層、24は光活性層
部を結晶質Siで形成した半導体接合を有する半導体
層、25は表電極となる表透明導電層、26は表集電極
である。
Next, claim 3 and claim 4 will be described with reference to FIG.
An embodiment according to the present invention will be described. In the figure, 20 is a substrate, 21 is a light reflection layer made of metal, 22 is a light-transmitting thin film layer, 23 is a back transparent conductive layer serving as a back electrode, and 24 is a semiconductor junction in which a photoactive layer is formed of crystalline Si. , 25 is a front transparent conductive layer serving as a front electrode, and 26 is a front collecting electrode.

【0042】まず、基板20として、ガラス、プラスチ
ック、ステンレス等の金属などを材料とした板材あるい
はフィルム材などを用意し、該基板の一主面側を凹凸形
状に加工する。このとき、基板20の一主面側は、実施
例1で述べた方法を用いれば、3角錐以上の多数の多角
錐からなる凹凸構造を有し、この凹凸構造の隣接する多
角錐の頂点間の平均距離が100nm以上、より好まし
くは200nm以上であるような凹凸構造とすることも
できるし、凹部が曲面からなる凹凸構造を有し、この凹
凸構造の隣接する凹部の最下点間の平均距離が100n
m以上、より好ましくは200nm以上であるような凹
凸構造とすることもできる。次に金属からなる光反射層
21を形成する。この金属材料としては、光反射特性に
優れるAl、Agなどを用いるのが望ましい。製膜方法
としては、蒸着法、スパッタリング法、イオンプレーテ
ィング法などの公知の技術を使用できる。このとき膜厚
は、0.01〜1μm程度とする。なお、光反射層21
と基板20との接着強度が弱い場合は、Tiなどの酸化
しやすい金属薄膜を厚さ1〜10nm程度で光反射層2
1と基板20との間に挿入させるとよい。なお、基板2
0がステンレス材などの光反射性を有する金属などから
成っている場合はこの基板20自体が光反射層の機能を
兼ねることができるので光反射層21を省略することが
できる。次に、透光性薄膜層22として、ガラス層、プ
ラスチック層、あるいは樹脂層などを堆積する。このと
き、これらの材料を適当な条件下で流動性のある状態と
して、これを前記光反射層21上に適量堆積すれば、該
透光性薄膜層22の表面は前記流動性の効果で自然と凹
凸形状が低減された実質的に平坦な面を得ることができ
る。なお、この流動化による平坦化処理は前記材料を堆
積した後に行ってもよい。さらに、必要な場合は平坦化
加工を追加してもよい。なお、透光性薄膜層22と光反
射層21との接着強度が弱い場合は、Tiなどの酸化し
やすい金属薄膜を厚さ1〜10nm程度で透光性薄膜層
22と光反射層21との間に挿入させるとよい。以下、
裏透明導電層23、光活性層部を結晶質Siで形成した
半導体接合を有する半導体層24、表透明導電層25、
表集電極26を順次形成していくが、実施内容は実施例
1で述べたものと同一であるため以下は省略する。
First, a plate or film made of glass, plastic, metal such as stainless steel or the like is prepared as the substrate 20, and one main surface of the substrate is processed into an uneven shape. At this time, one principal surface of the substrate 20 has an uneven structure composed of a large number of triangular pyramids or more by using the method described in the first embodiment. May be an uneven structure such that the average distance is 100 nm or more, more preferably 200 nm or more, or the recess has an uneven structure having a curved surface, and the average between the lowest points of adjacent recesses of the uneven structure. Distance is 100n
m or more, more preferably 200 nm or more. Next, the light reflection layer 21 made of metal is formed. As this metal material, it is desirable to use Al, Ag, or the like which has excellent light reflection characteristics. Known techniques such as a vapor deposition method, a sputtering method, and an ion plating method can be used as a film forming method. At this time, the film thickness is about 0.01 to 1 μm. The light reflecting layer 21
When the adhesive strength between the substrate and the substrate 20 is weak, a thin metal film, such as Ti, which is easily oxidized and has a thickness of about 1 to 10 nm
1 and the substrate 20. In addition, the substrate 2
When 0 is made of a light-reflective metal such as stainless steel, the light-reflective layer 21 can be omitted because the substrate 20 itself can also function as a light-reflective layer. Next, a glass layer, a plastic layer, a resin layer, or the like is deposited as the light-transmitting thin film layer 22. At this time, if these materials are made to be in a fluid state under appropriate conditions and are deposited in an appropriate amount on the light reflection layer 21, the surface of the light-transmitting thin film layer 22 is naturally formed by the fluidity effect. And a substantially flat surface with reduced irregularities can be obtained. The flattening treatment by fluidization may be performed after the material is deposited. Further, if necessary, a flattening process may be added. When the adhesive strength between the light-transmitting thin film layer 22 and the light reflecting layer 21 is weak, a thin metal film, such as Ti, which is easily oxidized and has a thickness of about 1 to 10 nm is formed on the light-transmitting thin film layer 22 and the light reflecting layer 21. It is good to be inserted between. Less than,
A back transparent conductive layer 23, a semiconductor layer 24 having a semiconductor junction in which the photoactive layer portion is formed of crystalline Si, a front transparent conductive layer 25,
The surface collecting electrodes 26 are sequentially formed, but the details thereof are omitted since they are the same as those described in the first embodiment.

【0043】この素子構造によれば、実施例1のところ
で述べたのと同様に、半導体層24が実質的に平坦な面
上に形成できるようになるので、素子の電気特性(リー
ク特性)とのトレードオフを考慮する必要が全くなく、
完全に独立に光学的な最適構造化をはかれる素子構造を
実現することができる。また、この実施例2での素子構
造では、実施例1でいう透光性基板が透光性薄膜層とな
っているので、透光性材料中での光走行距離を短くする
ことができ、この透光性材料中でも生じているわずかな
光吸収ロスを減らすことができる。さらに、基板として
金属材料を用いれば光反射層の形成を省略することもで
き低コスト化をはかれる。
According to this device structure, the semiconductor layer 24 can be formed on a substantially flat surface, as described in the first embodiment, so that the electrical characteristics (leakage characteristics) of the device can be improved. There is no need to consider the trade-off of
It is possible to realize an element structure that can achieve optically optimal structuring completely independently. Further, in the element structure of the second embodiment, since the light-transmitting substrate in the first embodiment is a light-transmitting thin film layer, the light traveling distance in the light-transmitting material can be shortened. It is possible to reduce a slight loss of light absorption occurring in this translucent material. Furthermore, if a metal material is used as the substrate, the formation of the light reflection layer can be omitted, and the cost can be reduced.

【0044】[0044]

【発明の効果】以上のように、請求項1及び請求項2に
係る発明によれば、薄膜結晶質Si太陽電池において、
リーク電流を増大させることのない両面凹凸光閉じ込め
構造を実現できるので、従来よりも高効率な薄膜結晶質
Si太陽電池を製造することが可能となる。
As described above, according to the first and second aspects of the present invention, in a thin film crystalline Si solar cell,
Since a two-sided concavo-convex optical confinement structure without increasing the leak current can be realized, it is possible to manufacture a thin-film crystalline Si solar cell with higher efficiency than before.

【0045】また、請求項3及び請求項4に係る発明に
よれば、透光性薄膜層を用いているので、この材料中で
の光吸収ロスを減らすことができ、また、基板として金
属材料を用いれば光反射層の形成を省略することもでき
るのでさらなる低コスト化をはかれる。
According to the third and fourth aspects of the present invention, since a light-transmitting thin film layer is used, light absorption loss in this material can be reduced, and a metal material can be used as a substrate. By using, the formation of the light reflection layer can be omitted, so that the cost can be further reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の請求項1及び請求項2に係る薄膜結晶
質Si太陽電池の一実施形態を示す断面図である。
FIG. 1 is a sectional view showing an embodiment of a thin-film crystalline Si solar cell according to claims 1 and 2 of the present invention.

【図2】本発明の請求項3及び請求項4に係る薄膜結晶
質Si太陽電池の一実施形態を示す断面図である。
FIG. 2 is a cross-sectional view showing one embodiment of a thin-film crystalline Si solar cell according to claims 3 and 4 of the present invention.

【図3】従来の両面凹凸構造を有した薄膜結晶質Si太
陽電池の一例を示す断面図である。
FIG. 3 is a cross-sectional view showing an example of a conventional thin-film crystalline Si solar cell having a double-sided uneven structure.

【図4】従来の両面凹凸構造を有した薄膜結晶質Si太
陽電池の他の例を示す断面図である。
FIG. 4 is a cross-sectional view showing another example of a conventional thin-film crystalline Si solar cell having a double-sided uneven structure.

【図5】従来の両面凹凸構造を有した薄膜結晶質Si太
陽電池のその他の例を示す断面図である。
FIG. 5 is a cross-sectional view showing another example of a conventional thin-film crystalline Si solar cell having a double-sided uneven structure.

【図6】従来の両面凹凸構造薄膜結晶質Si太陽電池の
有する課題を解決するためになされた先行技術の一例を
示す断面図である。
FIG. 6 is a cross-sectional view showing an example of the prior art made to solve the problem of the conventional double-sided uneven structure thin film crystalline Si solar cell.

【図7】従来の両面凹凸構造薄膜結晶質Si太陽電池の
有する課題を解決するためになされた先行技術の他の例
を示す断面図である。
FIG. 7 is a cross-sectional view showing another example of the prior art made to solve the problem of the conventional double-sided uneven structure thin film crystalline Si solar cell.

【符号の説明】[Explanation of symbols]

11;透光性基板、12;光反射層、13;裏透明導電
層、14;光活性層部を結晶質Siで形成した半導体接
合を有する半導体層、15;表透明導電層、16;表集
電極
11; translucent substrate; 12; light reflecting layer; 13; back transparent conductive layer; 14; semiconductor layer having a semiconductor junction in which the photoactive layer is formed of crystalline Si; 15; front transparent conductive layer; Collector electrode

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5F051 AA03 CA15 CB15 CB21 CB24 DA04 FA03 FA04 FA14 GA02 GA03 GA06 GA14 GA20  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5F051 AA03 CA15 CB15 CB21 CB24 DA04 FA03 FA04 FA14 GA02 GA03 GA06 GA14 GA20

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 透光性基板の一主面側に、裏電極となる
裏透明導電層、光活性層部を結晶質Siで形成した半導
体接合を有する半導体層、表電極となる表透明導電層お
よび表集電極を順次積層した薄膜結晶質Si太陽電池に
おいて、前記透光性基板の他の主面側が3角錐以上の多
数の多角錐からなる凹凸構造を有し、この凹凸構造の隣
接する多角錐の頂点間の平均距離が100nm以上であ
り、さらにこの凹凸構造上に金属からなる光反射層を形
成したことを特徴とする薄膜結晶質Si太陽電池。
1. A back transparent conductive layer serving as a back electrode, a semiconductor layer having a semiconductor junction in which a photoactive layer portion is formed of crystalline Si, and a front transparent conductive serving as a front electrode are provided on one main surface side of a light transmitting substrate. In the thin-film crystalline Si solar cell in which the layers and the collecting electrodes are sequentially stacked, the other main surface side of the light-transmitting substrate has a concavo-convex structure composed of a large number of pyramids of three or more pyramids, and is adjacent to the concavo-convex structure. An average distance between vertices of a polygonal pyramid is 100 nm or more, and a light reflecting layer made of metal is formed on the uneven structure.
【請求項2】 前記凹凸構造の凹部が曲面からなってい
て、この凹凸構造の隣接する凹部の最下点間の平均距離
を100nm以上としたことを特徴とする請求項1に記
載の薄膜結晶質Si太陽電池。
2. The thin film crystal according to claim 1, wherein the concave portion of the concave-convex structure has a curved surface, and the average distance between the lowest points of adjacent concave portions of the concave-convex structure is 100 nm or more. Quality Si solar cell.
【請求項3】 基板の一主面側に、裏電極となる裏透明
導電層、光活性層部を結晶質Siで形成した半導体接合
を有する半導体層、表電極となる表透明導電層および表
集電極を順次積層した薄膜結晶質Si太陽電池におい
て、前記基板の一主面側が3角錐以上の多数の多角錐か
らなる凹凸構造、または凹部が曲面からなる凹凸構造を
有し、この凹凸構造の隣接する多角錐の頂点間の平均距
離、または凹凸構造の隣接する凹部の最下点間の平均距
離が100nm以上であり、さらにこの凹凸構造上と前
記裏透明導電層との間に、表面が実質的に平坦な透光性
薄膜層を形成したことを特徴とする薄膜結晶質Si太陽
電池。
3. A back transparent conductive layer serving as a back electrode, a semiconductor layer having a semiconductor junction in which a photoactive layer portion is formed of crystalline Si, a front transparent conductive layer serving as a front electrode, and a surface on one principal surface side of the substrate. In a thin-film crystalline Si solar cell in which collector electrodes are sequentially stacked, one main surface side of the substrate has a concavo-convex structure composed of a large number of polygonal pyramids of three or more pyramids, or a concave-convex structure in which a concave portion has a curved surface. The average distance between the vertices of adjacent polygonal pyramids or the average distance between the lowest points of adjacent concave portions of the concavo-convex structure is 100 nm or more, and the surface between the concavo-convex structure and the back transparent conductive layer has a surface. A thin-film crystalline Si solar cell, wherein a substantially flat translucent thin-film layer is formed.
【請求項4】 前記基板が透光性基板であり、この透光
性基板と前記透光性薄膜層との間に、金属からなる光反
射層を設けたことを特徴とする請求項3に記載の薄膜結
晶質Si太陽電池。
4. The light-transmitting substrate according to claim 3, wherein a light-reflecting layer made of metal is provided between the light-transmitting substrate and the light-transmitting thin film layer. A thin-film crystalline Si solar cell as described.
JP2001100389A 2001-03-30 2001-03-30 Thin film crystalline Si solar cell Expired - Fee Related JP4903314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001100389A JP4903314B2 (en) 2001-03-30 2001-03-30 Thin film crystalline Si solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001100389A JP4903314B2 (en) 2001-03-30 2001-03-30 Thin film crystalline Si solar cell

Publications (2)

Publication Number Publication Date
JP2002299661A true JP2002299661A (en) 2002-10-11
JP4903314B2 JP4903314B2 (en) 2012-03-28

Family

ID=18953832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001100389A Expired - Fee Related JP4903314B2 (en) 2001-03-30 2001-03-30 Thin film crystalline Si solar cell

Country Status (1)

Country Link
JP (1) JP4903314B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100364116C (en) * 2003-11-29 2008-01-23 鸿富锦精密工业(深圳)有限公司 Solar battery and battery pack thereof
WO2008057687A3 (en) * 2006-10-09 2008-07-31 Solexel Inc Pyramidal three-dimensional thin-film solar cells
JP2010140991A (en) * 2008-12-10 2010-06-24 Fuji Electric Holdings Co Ltd Thin-film solar battery
CN101820004A (en) * 2010-04-28 2010-09-01 中国科学院半导体研究所 Photo-electro separated solar cell back reflector
US8035027B2 (en) 2006-10-09 2011-10-11 Solexel, Inc. Solar module structures and assembly methods for pyramidal three-dimensional thin-film solar cells
US8168465B2 (en) 2008-11-13 2012-05-01 Solexel, Inc. Three-dimensional semiconductor template for making high efficiency thin-film solar cells
JP5007894B1 (en) * 2011-08-31 2012-08-22 ウーギョン イーエヌジー カンパニー リミテッド Concentrating solar cell module
JP2012532447A (en) * 2009-06-30 2012-12-13 ピルキントン グループ リミテッド Double-sided photovoltaic module having a reflective element and method for manufacturing the same
US8399331B2 (en) 2007-10-06 2013-03-19 Solexel Laser processing for high-efficiency thin crystalline silicon solar cell fabrication
JP2013115294A (en) * 2011-11-30 2013-06-10 Kyocera Corp Solar cell panel
US8906218B2 (en) 2010-05-05 2014-12-09 Solexel, Inc. Apparatus and methods for uniformly forming porous semiconductor on a substrate
US8946547B2 (en) 2010-08-05 2015-02-03 Solexel, Inc. Backplane reinforcement and interconnects for solar cells
US9076642B2 (en) 2009-01-15 2015-07-07 Solexel, Inc. High-Throughput batch porous silicon manufacturing equipment design and processing methods
US9397250B2 (en) 2006-10-09 2016-07-19 Solexel, Inc. Releasing apparatus for separating a semiconductor substrate from a semiconductor template
US9401276B2 (en) 2010-02-12 2016-07-26 Solexel, Inc. Apparatus for forming porous silicon layers on at least two surfaces of a plurality of silicon templates
US9508886B2 (en) 2007-10-06 2016-11-29 Solexel, Inc. Method for making a crystalline silicon solar cell substrate utilizing flat top laser beam
US9748414B2 (en) 2011-05-20 2017-08-29 Arthur R. Zingher Self-activated front surface bias for a solar cell
CN107819047A (en) * 2016-05-13 2018-03-20 广东大粤新能源科技股份有限公司 A kind of solar energy photovoltaic component
CN109390429A (en) * 2018-12-04 2019-02-26 厦门乾照半导体科技有限公司 A kind of solar battery and preparation method thereof
KR20190100400A (en) 2017-01-10 2019-08-28 고쿠리츠다이가쿠호진 도호쿠다이가쿠 Solar cell

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6334980A (en) * 1986-07-29 1988-02-15 Mitsubishi Electric Corp Photovoltaic generating element
JPH01154570A (en) * 1987-12-10 1989-06-16 Mitsubishi Electric Corp Photovoltaic element
JPH0410351A (en) * 1990-04-26 1992-01-14 Nippon Sheet Glass Co Ltd Separator for storage battery
JPH07131040A (en) * 1993-10-30 1995-05-19 Sanyo Electric Co Ltd Photovoltaic device
JPH11214728A (en) * 1998-01-28 1999-08-06 Kanegafuchi Chem Ind Co Ltd Tandem type silicon thin-film photoelectric conversion device
JP2001007356A (en) * 1999-06-22 2001-01-12 Sharp Corp Thin-film solar cell
JP2002222975A (en) * 2001-01-29 2002-08-09 Kyocera Corp THIN FILM CRYSTALLINE Si SOLAR BATTERY AND ITS MANUFACTURING METHOD

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6334980A (en) * 1986-07-29 1988-02-15 Mitsubishi Electric Corp Photovoltaic generating element
JPH01154570A (en) * 1987-12-10 1989-06-16 Mitsubishi Electric Corp Photovoltaic element
JPH0410351A (en) * 1990-04-26 1992-01-14 Nippon Sheet Glass Co Ltd Separator for storage battery
JPH07131040A (en) * 1993-10-30 1995-05-19 Sanyo Electric Co Ltd Photovoltaic device
JPH11214728A (en) * 1998-01-28 1999-08-06 Kanegafuchi Chem Ind Co Ltd Tandem type silicon thin-film photoelectric conversion device
JP2001007356A (en) * 1999-06-22 2001-01-12 Sharp Corp Thin-film solar cell
JP2002222975A (en) * 2001-01-29 2002-08-09 Kyocera Corp THIN FILM CRYSTALLINE Si SOLAR BATTERY AND ITS MANUFACTURING METHOD

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100364116C (en) * 2003-11-29 2008-01-23 鸿富锦精密工业(深圳)有限公司 Solar battery and battery pack thereof
WO2008057687A3 (en) * 2006-10-09 2008-07-31 Solexel Inc Pyramidal three-dimensional thin-film solar cells
US9397250B2 (en) 2006-10-09 2016-07-19 Solexel, Inc. Releasing apparatus for separating a semiconductor substrate from a semiconductor template
US8035027B2 (en) 2006-10-09 2011-10-11 Solexel, Inc. Solar module structures and assembly methods for pyramidal three-dimensional thin-film solar cells
US8035028B2 (en) 2006-10-09 2011-10-11 Solexel, Inc. Pyramidal three-dimensional thin-film solar cells
US9349887B2 (en) 2006-10-09 2016-05-24 Solexel, Inc. Three-dimensional thin-film solar cells
US8399331B2 (en) 2007-10-06 2013-03-19 Solexel Laser processing for high-efficiency thin crystalline silicon solar cell fabrication
US9508886B2 (en) 2007-10-06 2016-11-29 Solexel, Inc. Method for making a crystalline silicon solar cell substrate utilizing flat top laser beam
US8168465B2 (en) 2008-11-13 2012-05-01 Solexel, Inc. Three-dimensional semiconductor template for making high efficiency thin-film solar cells
US8664737B2 (en) 2008-11-13 2014-03-04 Selexel, Inc. Three-dimensional semiconductor template for making high efficiency thin-film solar cells
JP2010140991A (en) * 2008-12-10 2010-06-24 Fuji Electric Holdings Co Ltd Thin-film solar battery
US10829864B2 (en) 2009-01-15 2020-11-10 Trutag Technologies, Inc. Apparatus and methods for uniformly forming porous semiconductor on a substrate
US9076642B2 (en) 2009-01-15 2015-07-07 Solexel, Inc. High-Throughput batch porous silicon manufacturing equipment design and processing methods
JP2012532447A (en) * 2009-06-30 2012-12-13 ピルキントン グループ リミテッド Double-sided photovoltaic module having a reflective element and method for manufacturing the same
US9401276B2 (en) 2010-02-12 2016-07-26 Solexel, Inc. Apparatus for forming porous silicon layers on at least two surfaces of a plurality of silicon templates
CN101820004A (en) * 2010-04-28 2010-09-01 中国科学院半导体研究所 Photo-electro separated solar cell back reflector
US8906218B2 (en) 2010-05-05 2014-12-09 Solexel, Inc. Apparatus and methods for uniformly forming porous semiconductor on a substrate
US8946547B2 (en) 2010-08-05 2015-02-03 Solexel, Inc. Backplane reinforcement and interconnects for solar cells
US9748414B2 (en) 2011-05-20 2017-08-29 Arthur R. Zingher Self-activated front surface bias for a solar cell
JP5007894B1 (en) * 2011-08-31 2012-08-22 ウーギョン イーエヌジー カンパニー リミテッド Concentrating solar cell module
JP2013115294A (en) * 2011-11-30 2013-06-10 Kyocera Corp Solar cell panel
CN107819047A (en) * 2016-05-13 2018-03-20 广东大粤新能源科技股份有限公司 A kind of solar energy photovoltaic component
KR20190100400A (en) 2017-01-10 2019-08-28 고쿠리츠다이가쿠호진 도호쿠다이가쿠 Solar cell
CN109390429A (en) * 2018-12-04 2019-02-26 厦门乾照半导体科技有限公司 A kind of solar battery and preparation method thereof

Also Published As

Publication number Publication date
JP4903314B2 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
JP2002299661A (en) THIN-FILM CRYSTALLINE Si SOLAR CELL
JP4634129B2 (en) Light scattering film and optical device using the same
JP2002057359A (en) Laminated solar battery
JP2003179241A (en) Thin film solar cell
JPS59104185A (en) Photovoltaic semiconductor device spaced with reflector
JP2012522403A (en) Photovoltaic cell and method for enhancing light capture in a semiconductor layer stack
WO2003065462A1 (en) Tandem thin-film photoelectric transducer and its manufacturing method
WO2011001735A1 (en) Thin-film solar battery and method for producing the same
JPH0680837B2 (en) Photoelectric conversion element with extended optical path
JP2000252500A (en) Silicon thin-film photoelectric conversion device
JP4193961B2 (en) Multi-junction thin film solar cell
JP2002222975A (en) THIN FILM CRYSTALLINE Si SOLAR BATTERY AND ITS MANUFACTURING METHOD
JP2002141525A (en) Substrate for solar cell and thin film solar cell
JP2006295060A (en) Non-monocrystal semiconductor material, method for manufacturing the same, photoelectric transfer element, and light emitting element
JP2000058892A (en) Silicon based thin film photoelectric converter
JPH0793447B2 (en) Photoelectric conversion element
JP2003282902A (en) Thin film solar cell
WO2010134360A1 (en) Thin film solar cell and method for manufacturing same
JP2012019128A (en) Thin film photoelectric conversion device
JPH09307130A (en) Thin film photoelectric material and thin film type photoelectric converter containing the same
JP2004031648A (en) Photoelectric conversion element having optical confinement layer, photoelectric conversion device and solar battery having the device
JP5036663B2 (en) Thin film solar cell and manufacturing method thereof
JPH0766435A (en) Photovoltaic device
JP3241234B2 (en) Thin film solar cell and method of manufacturing the same
JP2000312014A (en) Thin-film photoelectric conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120105

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees