JPS6058789A - Steroescopic image pickup system - Google Patents

Steroescopic image pickup system

Info

Publication number
JPS6058789A
JPS6058789A JP58165965A JP16596583A JPS6058789A JP S6058789 A JPS6058789 A JP S6058789A JP 58165965 A JP58165965 A JP 58165965A JP 16596583 A JP16596583 A JP 16596583A JP S6058789 A JPS6058789 A JP S6058789A
Authority
JP
Japan
Prior art keywords
optical fiber
imaging
ground surface
fiber bundles
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58165965A
Other languages
Japanese (ja)
Other versions
JPH02918B2 (en
Inventor
Riichi Nakura
奈倉 理一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58165965A priority Critical patent/JPS6058789A/en
Priority to EP84305403A priority patent/EP0135345B1/en
Priority to DE8484305403T priority patent/DE3475000D1/en
Priority to US06/639,950 priority patent/US4613899A/en
Priority to CA000460724A priority patent/CA1243769A/en
Publication of JPS6058789A publication Critical patent/JPS6058789A/en
Publication of JPH02918B2 publication Critical patent/JPH02918B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/02Picture taking arrangements specially adapted for photogrammetry or photographic surveying, e.g. controlling overlapping of pictures
    • G01C11/025Picture taking arrangements specially adapted for photogrammetry or photographic surveying, e.g. controlling overlapping of pictures by scanning the object

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Stereoscopic And Panoramic Photography (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

PURPOSE:To make stereoscopic image pickup and multiband observation at point just under optical fiber bundles possible with a simple constitution by arranging all optical fiber bundles, which transmit plural pictures directly, one-dimensionally on the focal surface of an optical system and arranging their aperture ends one-dimensionally on a line, which is approximately orthogonal to the advance direction of an image pickup device, nearly in parallel with one another. CONSTITUTION:Aperture ends of optical fiber bundles 9, 10, and 11 are so arranged that images of the ground surface at points just under and at points W(m) distant from these point are picked up. In a position A, images of the ground surface at points P, O, and Q are focused to aperture ends of optical fiber bundles 9, 10, and 11, which are arranged in a focal surface 8 in parallel with one another, by an optical system 27 having a wide allowable incidence angle and are led to photodetectors through optical fiber bundles and are converted to electric signals. The pickup device continues image pickup while advancing in a speed (v), and the image of the ground surface at the point P is focused to the aperture end of the optical fiber bundle in a position B, and this image is combined with information of the ground surface at the point which is focused to the aperture end of the optical fiber bundle 9 in the position A to obtain stereoscopic information of the ground surface at the point P.

Description

【発明の詳細な説明】 本発明は、地球を周回する人工衛星等から地表面の起伏
状況等の立体情報を得る撮像方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an imaging method for obtaining three-dimensional information such as the ups and downs of the earth's surface from an artificial satellite or the like orbiting the earth.

人工衛星から地球表面の状況を観測する、いわゆるリモ
ート七ンクングにおいて、単に平面的情報のみでなく地
表の立体情報を得ることが、特に資源探査の分野におい
て要望されている。一般に対象物体の立体情報を得るた
めには、離れた2点からの観測像を合成することが必要
なことが良く知られている。人工衛星から地表面の立体
画像を得ようとする場合には、地表面との距離が大きい
ため、通常1個の衛星にて同一時刻の立体画像を得るこ
とは困難である。このため、衛星の立置移動を利用して
立体画像を得ることが提案されている。
BACKGROUND ART In so-called remote sensing, which observes conditions on the earth's surface from artificial satellites, it is desired to obtain not only two-dimensional information but also three-dimensional information on the earth's surface, especially in the field of resource exploration. It is generally well known that in order to obtain three-dimensional information about a target object, it is necessary to synthesize observation images from two distant points. When trying to obtain a stereoscopic image of the earth's surface from an artificial satellite, it is usually difficult to obtain a stereoscopic image at the same time using a single satellite because the distance to the earth's surface is large. For this reason, it has been proposed to obtain stereoscopic images using vertical movement of satellites.

従来提案されている立体撮像方式の一例を第1図に示す
。第1図において、1は人工衛星、2は立体撮像を行う
ための撮像装置を示す。撮像装置2は立体撮像を行うた
めの2個の光学系3及び4を有し、各光学系の焦点面に
は各々光電変換素子5,6が配置される。
An example of a stereoscopic imaging method that has been proposed in the past is shown in FIG. In FIG. 1, reference numeral 1 indicates an artificial satellite, and reference numeral 2 indicates an imaging device for performing stereoscopic imaging. The imaging device 2 has two optical systems 3 and 4 for performing stereoscopic imaging, and photoelectric conversion elements 5 and 6 are arranged at the focal plane of each optical system, respectively.

第1図において、人工衛星1は地表に対し速度Vにて進
行する。位置Aにおいて前方撮像用光学系3は地表面P
を撮像し、光電変換素子5に結像させる。同様に、後方
撮像用光学系4は地表面Qを撮像し、光電変換素子6に
結像させる。衛星1は進行中、撮像を続け、Bの位置に
進行した時点において、後方撮像用光学系4にょシ地表
面Pの撮像を行う。この画像データと、前述の位置Aか
ら光学系3により撮像した地表面Pの画像データにより
、通常人間の目で立体視を行う時と同様の原理で、地表
面Pの立体情報を得ることが出来る。
In FIG. 1, an artificial satellite 1 moves at a speed V relative to the earth's surface. At position A, the forward imaging optical system 3 is located at the ground surface P.
is imaged and focused on the photoelectric conversion element 5. Similarly, the rear imaging optical system 4 images the ground surface Q and forms the image on the photoelectric conversion element 6. The satellite 1 continues to take images while moving, and when it reaches position B, the rear imaging optical system 4 takes an image of the ground surface P. Using this image data and the image data of the ground surface P captured by the optical system 3 from the above-mentioned position A, it is possible to obtain three-dimensional information of the ground surface P using the same principle as when stereoscopic vision is normally performed with human eyes. I can do it.

この従来方式の欠点は、立体情報を得るために少なくと
も2個の光学系を必要とすることである。
A drawback of this conventional method is that it requires at least two optical systems to obtain stereoscopic information.

衛星の直下点のみを撮像し平面情報を得る場合に比較し
て、光学系の本数増加による重量及び寸法増加が大きく
、これらに対する制約の大きい衛星搭載用としては不利
な条件である。また、2個の光学系の間のアライメント
設定を精密に行うことが必要のため、光学系の取付に関
しても複雑な設定法が必要となる。
Compared to the case where plane information is obtained by imaging only the point directly below the satellite, the increase in the number of optical systems causes a large increase in weight and size, which is a disadvantage for use on a satellite with large restrictions. Furthermore, since it is necessary to precisely set the alignment between the two optical systems, a complicated setting method is also required for mounting the optical systems.

更に、通常この種の撮像装置は立体視を行うと共に、直
下点の撮像を行うことが要望されるため、この場合には
、第2図の如く、3本の光学系が必要となる。この図か
ら明らかな如く、との場合には前述の重量2寸法及びア
ライメントの条件は更に不利となる。
Further, since this type of imaging device is normally required to perform stereoscopic viewing and to image a point directly below, in this case, three optical systems are required as shown in FIG. As is clear from this figure, in the case of , the above-mentioned two weight dimensions and alignment conditions become even more disadvantageous.

光学系の数が少ない方法としては、第3図の如き構成に
よる立体視も可能である。これは光学系は1個とし、そ
の前面に図示の如く可動ミ、7−7を設けて、この角度
を切替えることによシ立体視を行わせるものである。こ
の方式は可動ミラー7の角度設定によ勺撮像場所を選択
出来る利点はあるが、大型可動機構を要すること、及び
同時に2ケ所の撮像が出来ず立体画像が不連続になる等
の欠点が有る。
As a method using a small number of optical systems, stereoscopic viewing using a configuration as shown in FIG. 3 is also possible. This system has one optical system, and a movable mirror 7-7 is provided on the front side of the optical system as shown in the figure, and stereoscopic viewing is achieved by switching the angle of the movable mirror 7-7. This method has the advantage of being able to select the imaging location by setting the angle of the movable mirror 7, but has the disadvantage that it requires a large movable mechanism and that two locations cannot be captured at the same time, resulting in discontinuous stereoscopic images. .

本発明の目的は、これら従来方式の欠点を除去し、漸潔
な構成によシ立体撮像及び直下点のマルチバンド観測を
行うことのできる撮像方式を提供することにある。
An object of the present invention is to provide an imaging method that eliminates the drawbacks of these conventional methods and can perform three-dimensional imaging and multiband observation of a direct point with a progressive structure.

以下図面により本発明の詳細な説明する。The present invention will be explained in detail below with reference to the drawings.

第4図は本発明による立体撮像方式の原理を示す説明図
、第5図は第4図に示した方式における結像面と受光素
子を接続する部分の部分拡大図である。図において、2
7は地表面を撮像するための広画角光学系、8はこの光
学系の結像面を示す。
FIG. 4 is an explanatory diagram showing the principle of the three-dimensional imaging method according to the present invention, and FIG. 5 is a partially enlarged view of a portion connecting the imaging plane and the light receiving element in the method shown in FIG. 4. In the figure, 2
Reference numeral 7 indicates a wide-angle optical system for imaging the ground surface, and reference numeral 8 indicates an imaging plane of this optical system.

9〜11は画像を直接伝送する光ファイバ束であり図に
示すように、いずれも光学系の結像面にそれぞれ一次元
状に配列された開口端を有する。この開口端は、更に撮
像装置の進行方向に対し、はぼ直角をなす線上に一次元
配列され、且つ相互にほぼ平行の関係に配置される。
Reference numerals 9 to 11 designate optical fiber bundles for directly transmitting images, and as shown in the figure, all of them have open ends arranged one-dimensionally on the imaging plane of the optical system. The opening ends are further arranged one-dimensionally on a line that is approximately perpendicular to the traveling direction of the imaging device, and are arranged substantially parallel to each other.

光ファイバ束9〜11の他方の開口端は第5図の実施例
に示すように受光素子12〜14に接続される。また、
光ファイバ束9〜11は各々が光信号伝達系として独立
した細い光7アイバの集まシから構成されている。この
ため、各々の光ファイバの入射開口端に入射された光信
号は、受光素子の光電変換を行う各画素迄他に漏えいせ
ずに伝達され5− る。更に、元ファイバ9〜11の出射開口端と受光素子
12〜14の光電変換部は極く近接するか、或いは密着
して配置することによシ周辺の画素への漏えいを防ぐこ
とが出来る。これKより開口端において結像された地表
面の像は忠実に受光素子へ伝達される。
The other open ends of the optical fiber bundles 9-11 are connected to light receiving elements 12-14 as shown in the embodiment of FIG. Also,
Each of the optical fiber bundles 9 to 11 is composed of a collection of seven independent thin optical fibers as an optical signal transmission system. Therefore, the optical signal incident on the entrance aperture end of each optical fiber is transmitted to each pixel that performs photoelectric conversion of the light receiving element without leaking to others. Further, by arranging the output aperture ends of the original fibers 9 to 11 and the photoelectric conversion parts of the light receiving elements 12 to 14 very close to each other or in close contact with each other, leakage to surrounding pixels can be prevented. The image of the ground surface formed at the aperture end from this K is faithfully transmitted to the light receiving element.

受光素子としては多素子のC0D(電荷結合デバイス)
等の光電変換素子が使用でき、ファイバ束の入力端に供
給された光信号は、このCOD等の受光素子に供給され
、高速ファクシミリ等と同様に電子走査によシ時系列信
号として出力される。
A multi-element C0D (charge-coupled device) is used as a light receiving element.
The optical signal supplied to the input end of the fiber bundle is supplied to the light receiving element such as COD, and is output as a time series signal by electronic scanning, similar to high-speed facsimile etc. .

受光素子12〜14の光電変換部の寸法は非常に小さい
が、これを収容するパッケージは第5図の如く大きくな
シ、これに更に両側に取出電極、及びこれに信号を供給
するプリント回路部の面積が必要である。したがって、
受光素子12〜14を直接結像面内へ配置することはか
なシ困難さが伴い、本発明の如く光ファイバ束を使用す
る必要性が生ずる。特に、最近では高分解能化の要求に
伴い、走査線内に一個の一次元受光素子の画素数の数倍
6− の画素数が必要となって来ている。この場合には、例え
ば第6図の如く、光ファイバ束9〜11の出射端を分岐
して各受光素子に接続することによシ本発明による方式
の特徴を生かし、立体撮像を行うことが出来る。
Although the dimensions of the photoelectric conversion parts of the light receiving elements 12 to 14 are very small, the package that accommodates them is large as shown in Figure 5, and there are also extraction electrodes on both sides and a printed circuit part that supplies signals to them. area is required. therefore,
It is very difficult to arrange the light receiving elements 12 to 14 directly within the image plane, which necessitates the use of an optical fiber bundle as in the present invention. In particular, with the recent demand for higher resolution, it has become necessary to have a number of pixels in a scanning line that is several times the number of pixels of one one-dimensional light receiving element. In this case, for example, as shown in FIG. 6, it is possible to take advantage of the characteristics of the system according to the present invention and perform stereoscopic imaging by branching the output ends of the optical fiber bundles 9 to 11 and connecting them to each light receiving element. I can do it.

更に、光ファイバ束を使用することによシ、第7図(a
)及び(b)に示すように、受光素子を直接結像面に配
置する方式では達成出来なかった効果を得ることが出来
る。即ち、第7図(a)はファイバ束の入射端を研磨等
により湾曲させることによシ、光学系にて生ずる像面湾
曲の問題を取シ除くことが出来る。また、第7図(bl
は同じく光学系によ)生ずる歪曲収差に合せてファイバ
束を配列することによシ歪曲収差の影響を除くことが可
能となる。
Furthermore, by using an optical fiber bundle, FIG.
) and (b), it is possible to obtain effects that could not be achieved with the method of arranging the light receiving element directly on the imaging plane. That is, as shown in FIG. 7(a), by curving the input end of the fiber bundle by polishing or the like, it is possible to eliminate the problem of field curvature occurring in the optical system. Also, Fig. 7 (bl
By arranging the fiber bundles in accordance with the distortion aberration caused by the optical system, it is possible to eliminate the influence of the distortion aberration.

光ファイバ束9の開口端は、第4図に示すように、直下
点よJW(rr11前方の地表面を撮像する如く配置さ
れる。ファイバ束10及び11の開口端も同様に、それ
ぞれ直下点及びW(ホ)後方の地表面を撮像するように
配置される。
As shown in FIG. 4, the open ends of the optical fiber bundles 9 are arranged so as to image the ground surface in front of the JW (rr11) from the point directly below them. Similarly, the open ends of the fiber bundles 10 and 11 are also located directly below the points directly below them. and W (E) are arranged so as to image the ground surface behind them.

図示の如く許容入射角の大きい光学系27によシ位置A
において、地表面P、0.Qの像は結像面8内に互に平
行に配置された上記光ファイバ束9゜10.11の開口
端に各々結像され、光ファイバ束により受光素子に導び
かれて電気信号に変換される。撮像装置は速度Vにて進
行しなから撮像を続け、位置Bにおいて光ファイバ束1
1の開口端に地表面Pの像が結像され、前述の位置Aに
て光7アイパ束9の開口端に結像した地表面Pの情報と
合わせて地表面Pの立体情報が得られる。
As shown in the figure, the optical system 27 has a large allowable angle of incidence.
, the ground surface P, 0. The images of Q are respectively formed on the open ends of the optical fiber bundles 9, 10 and 11 arranged parallel to each other in the image forming plane 8, and guided by the optical fiber bundles to a light receiving element where they are converted into electrical signals. be done. The imaging device continues imaging while moving at a speed V, and at position B, the optical fiber bundle 1
An image of the ground surface P is formed at the aperture end of 1, and three-dimensional information of the ground surface P is obtained together with the information of the ground surface P imaged at the aperture end of the light 7 eyeper bundle 9 at the aforementioned position A. .

光ファイバ束に接続された受光素子12〜14の出力信
号は、第6図の信号処理回路15.送信部16、アンテ
ナ17を介して地上局へ送出される。
The output signals of the light receiving elements 12 to 14 connected to the optical fiber bundle are processed by the signal processing circuit 15. The signal is sent to the ground station via the transmitter 16 and antenna 17.

第8図に本発明による方式を使用した場合の地上局装置
の系統図の一例を示す。図において、18は受信アンテ
ナ、19は受信復調部、20は分配回路である。分配回
路20の出力信号21,22゜23は、各々送信側の1
2113.14の出力信号と対応する。
FIG. 8 shows an example of a system diagram of a ground station device when the system according to the present invention is used. In the figure, 18 is a receiving antenna, 19 is a receiving demodulator, and 20 is a distribution circuit. The output signals 21, 22 and 23 of the distribution circuit 20 are respectively
It corresponds to the output signal of 2113.14.

第4図に示す如く、衛星直下の撮像位置と前方、後方の
撮像位置との距離を各々W(mlとすると、衛星が位置
Aから位置Bに移動する時間はW 2τ= −(sec) ■ である。即ち、光ファイバ束9の開口端に地表面Pの像
が結像されてから、2τ秒後に光ファイバ束11の開口
端に同一地表面の像が結像される。
As shown in Figure 4, if the distances between the imaging position directly below the satellite and the front and rear imaging positions are each W (ml), the time it takes for the satellite to move from position A to position B is W 2τ = - (sec) That is, after an image of the ground surface P is formed on the open end of the optical fiber bundle 9, an image of the same ground surface is formed on the open end of the optical fiber bundle 11 2τ seconds later.

したがって、第8図に示す如く、受光素子12に対応す
る復調出力21に対し、相対的に2τ(sec)の時間
遅延を与えれば、遅延回路24の出力は受光素子14に
対応する復調出力23と同一の地表面を異なる角度から
撮像した信号となシ、画像処理記録部25において立体
画像情報を得ることが出来る。
Therefore, as shown in FIG. 8, if a relative time delay of 2τ (sec) is given to the demodulated output 21 corresponding to the light receiving element 12, the output of the delay circuit 24 becomes the demodulated output 23 corresponding to the light receiving element 14. The image processing and recording section 25 can obtain stereoscopic image information using signals obtained by imaging the same ground surface from different angles.

同様に、直下点を撮像した信号出力22に対しても、τ
(sec)の時間遅延を与えることによシ、同一地表面
の情報を画像処理記録部に入力することが出来る。
Similarly, τ
By providing a time delay of (sec), information on the same ground surface can be input to the image processing recording section.

第8図に示した遅延回路はディジタルメモリ回路等によ
多構成することも可能であシ、また、第4図の送信側に
おいて、受光素子12.13の出力9− に各々2τ、τの時間遅延を与えることによシ、受信部
での遅延回路を除くことも可能である。
The delay circuit shown in FIG. 8 can be configured with a digital memory circuit or the like, and on the transmitting side of FIG. By providing a time delay, it is also possible to eliminate the delay circuit in the receiving section.

また、以上述べた実施例においては、受光素子として一
次元状に画素配列された、例えば−次元CODを使用す
る例について説明したが、本発明による方式は光ファイ
バ束を使用するため、第9図に示す如く平面状に画素配
列された二次元CODを使用出来ることも明らかである
。この場合1図に示すように光ファイバ束の結像面側の
開口端の配列は第5図及び第6図の場合と同様であるが
、受光素子側の出射端は二次元CODの画素数に相当す
る本数毎に分岐され、対応する画素位置に接続される。
Further, in the embodiments described above, an example was explained in which a one-dimensional pixel arrangement, for example, a -dimensional COD, was used as a light receiving element, but since the method according to the present invention uses an optical fiber bundle, It is also clear that a two-dimensional COD in which pixels are arranged in a plane as shown in the figure can be used. In this case, as shown in Figure 1, the arrangement of the aperture ends on the imaging plane side of the optical fiber bundle is the same as in Figures 5 and 6, but the output end on the light receiving element side is It is branched into a number corresponding to , and connected to the corresponding pixel position.

この方式により二次元CODの有する非常に多くの画素
数を有効に生かすことが出来、高分解能の立体撮像を行
うことが可能となる。
This method makes it possible to effectively utilize the extremely large number of pixels that the two-dimensional COD has, making it possible to perform high-resolution stereoscopic imaging.

本発明による撮像方式は、以上の説明からも明らかなよ
うに、以下に示すような多様な応用構成をとることが出
来る。
As is clear from the above description, the imaging method according to the present invention can have various applied configurations as shown below.

■)ファイバ束9,11に接続された受光素子によ)立
体視、ファイバ束10に接続された受光素10− 子によりマルチバンド観測を行うこと。
(2) Stereoscopic viewing using the light receiving elements connected to the fiber bundles 9 and 11, and multiband observation using the light receiving element 10 connected to the fiber bundle 10.

2)上記の構成において地上からの指令(コマンド)等
によシ立体視のみ、マルチバンド観測のみ等の切替受信
を行うこと。
2) In the above configuration, switching reception such as stereoscopic viewing only, multiband observation only, etc. is to be performed by commands from the ground.

3)ファイバ束9,10.11の観測波長域を同一にし
、9.11間、10,1.1間及び9,10間の各々に
よ立体悄@jを得ること。或いは、このうち1個を冗長
系とし予備として使用すること。
3) Make the observation wavelength ranges of fiber bundles 9 and 10.11 the same, and obtain stereoscopic tremors @j between 9.11, 10, 1.1, and 9, 10, respectively. Alternatively, one of them can be made redundant and used as a spare.

なお、本発明の方式は航空機等の飛行物体からの立体観
測にも適用出来ることは、以上の説明からも明らかであ
ろう。
It should be noted that it is clear from the above description that the method of the present invention can also be applied to three-dimensional observation from a flying object such as an aircraft.

以上述べた如く、本発明により極めて簡潔な構成にて小
型、軽量及び信頼性の高い立体撮像方式を得ることが出
来る。
As described above, according to the present invention, a compact, lightweight, and highly reliable stereoscopic imaging system can be obtained with an extremely simple configuration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の立体撮像方式の一例を示す概念図、第2
図は第1図の方式で直下点を撮像する場合の概念図、第
3図は従来の立体撮像方式の他の例を示す概念図、第4
図は本発明による立体撮像11一 方式の実施例を示す概念図、第5図は第4図におけるフ
ァイバ束及び受光素子部の構成例を示す拡大斜視図、第
6図は第4図に示した方式を採用した衛星送信部のブロ
ック図、第7図(al及び(blはファイバ開口端の形
状の一実施例を示す図、第8図は同じく地上局装置のブ
ロック図、第9図は本発明の方式に二次元CCD1使用
した場合のファイバ束及び受光素子部の構成を示す部分
拡大斜視図である。 図において、1・・・・・・衛星、2.2’・・・・・
・撮像装置、3.4・・・・・・光学系、5,6・・・
・・・光電変換素子、7・・・・・・可動ミラー、27
・・・・・・広画角光学系、8・・・・・・光学系27
の結像面、9〜11・・・・・・ファイバ束、12〜1
4・・・・・・受光素子、15・・・・・・信号処理回
路、16・・・・・・送信部、17・・・・・・送信ア
ンテナ、18・・・・・・受信アンテナ、19・・・・
・・受信復調部、20・・・・・・分配回路、21〜2
3・・・・・・分配回路、20の出力信号、24.26
・・・・・・遅延回路、25・・・・・・画像処理記録
部である。 0t 爲4図 第7図 4 第8図
Figure 1 is a conceptual diagram showing an example of a conventional stereoscopic imaging system;
The figure is a conceptual diagram when imaging a direct point using the method in Figure 1, Figure 3 is a conceptual diagram showing another example of the conventional stereoscopic imaging method, and Figure 4 is a conceptual diagram showing another example of the conventional stereoscopic imaging method.
5 is an enlarged perspective view showing an example of the configuration of the fiber bundle and light receiving element section in FIG. 4, and FIG. FIG. 7 is a block diagram of a satellite transmitting unit that adopts the above method. It is a partially enlarged perspective view showing the configuration of a fiber bundle and a light receiving element section when a two-dimensional CCD 1 is used in the system of the present invention. In the figure, 1...satellite, 2.2'...
・Imaging device, 3.4...Optical system, 5,6...
...Photoelectric conversion element, 7...Movable mirror, 27
...Wide angle optical system, 8...Optical system 27
Image plane, 9-11...Fiber bundle, 12-1
4... Light receiving element, 15... Signal processing circuit, 16... Transmitting unit, 17... Transmitting antenna, 18... Receiving antenna , 19...
...Reception demodulation section, 20...Distribution circuit, 21-2
3...Distribution circuit, output signal of 20, 24.26
. . . Delay circuit, 25 . . . Image processing recording section. 0t 爲4Figure 7Figure 4 Figure 8

Claims (1)

【特許請求の範囲】[Claims] 撮像対象物の立体面像を得る立体撮像方式において、前
記撮像対象物に対し相対的に移動する撮像装置内に撮像
用光学系の同一結像面内に一方の開口端を配列し、他方
の開口端を多素子光電変換素子の光電変換部に結合した
光ファイバ束を含み、前記結像面内の開口端を少なくと
も2組の一次元配列構成とし、かつこの少なくとも2組
の開口端配列を前記撮像装置の移動方向に対しほぼ直角
で、かつ互いに平行に配置して、前記撮像装置移動方向
の少なくとも前方及び後方を撮像し前記多素子光電変換
素子からこれら前方及び後方の撮像データを抽出し、こ
のデータに基づき前記立体画像を得ることを特徴とする
立体撮像方式。
In a three-dimensional imaging method that obtains a three-dimensional image of an object to be imaged, one aperture end is arranged within the same imaging plane of an imaging optical system in an imaging device that moves relative to the object to be imaged, and the other an optical fiber bundle whose aperture ends are coupled to a photoelectric conversion section of a multi-element photoelectric conversion element, the aperture ends in the imaging plane having a one-dimensional array configuration of at least two sets, and the at least two sets of aperture end arrays The imaging device is arranged substantially perpendicularly to the moving direction of the imaging device and parallel to each other, and images at least the front and rear of the imaging device in the moving direction, and extracts imaging data of the front and rear from the multi-element photoelectric conversion element. , a stereoscopic imaging method characterized in that the stereoscopic image is obtained based on this data.
JP58165965A 1983-08-12 1983-09-09 Steroescopic image pickup system Granted JPS6058789A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP58165965A JPS6058789A (en) 1983-09-09 1983-09-09 Steroescopic image pickup system
EP84305403A EP0135345B1 (en) 1983-08-12 1984-08-08 Image pickup system capable of reproducing a stereo and/or a nonstereo image by the use of a single optical system
DE8484305403T DE3475000D1 (en) 1983-08-12 1984-08-08 Image pickup system capable of reproducing a stereo and/or a nonstereo image by the use of a single optical system
US06/639,950 US4613899A (en) 1983-08-12 1984-08-10 Image pickup system capable of reproducing a stereo and/or a nonstereo image by the use of a single optical system
CA000460724A CA1243769A (en) 1983-08-12 1984-08-10 Image pickup system capable of reproducing a stereo and/or a nonstereo image by the use of a single optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58165965A JPS6058789A (en) 1983-09-09 1983-09-09 Steroescopic image pickup system

Publications (2)

Publication Number Publication Date
JPS6058789A true JPS6058789A (en) 1985-04-04
JPH02918B2 JPH02918B2 (en) 1990-01-09

Family

ID=15822370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58165965A Granted JPS6058789A (en) 1983-08-12 1983-09-09 Steroescopic image pickup system

Country Status (1)

Country Link
JP (1) JPS6058789A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03276151A (en) * 1990-03-27 1991-12-06 Nec Corp Image pickup device for satellite
JPH0594514A (en) * 1991-10-01 1993-04-16 Mitsubishi Electric Corp Optical image pickup device and image processing method for the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5875933A (en) * 1981-10-31 1983-05-07 Omron Tateisi Electronics Co Communication system to vehicle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5875933A (en) * 1981-10-31 1983-05-07 Omron Tateisi Electronics Co Communication system to vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03276151A (en) * 1990-03-27 1991-12-06 Nec Corp Image pickup device for satellite
JPH0594514A (en) * 1991-10-01 1993-04-16 Mitsubishi Electric Corp Optical image pickup device and image processing method for the same

Also Published As

Publication number Publication date
JPH02918B2 (en) 1990-01-09

Similar Documents

Publication Publication Date Title
US8743176B2 (en) 3-dimensional hybrid camera and production system
CN101311819A (en) Image pickup device
US5109158A (en) Staring array imaging systems and imaging array devices
US20140168434A1 (en) Dual-q imaging system
JP2004007413A (en) Image input device and its method
US6346965B1 (en) High resolution imaging system for simultaneous acquisition of two high aspect ratio object fields
US20020020806A1 (en) Method and a system for multi-pixel imaging
JPS6058789A (en) Steroescopic image pickup system
US7087886B2 (en) Method and a system for multi-pixel ranging of a scene
JPS62137037A (en) X-ray photographing apparatus
JPS6039994A (en) Stereoscopic image pickup system
CN214177434U (en) Visible-infrared integrated camera system
EP0510267A1 (en) Imaging array devices and staring array imaging systems
WO2024051214A1 (en) Three-dimensional image collection apparatus and method, and related device
CA1073715A (en) Optical system for multiple imaging of a linear object
JP2752913B2 (en) 3D image capturing device
RU2709459C1 (en) Panoramic television surveillance computer system device
CN112770065A (en) Visible-infrared integrated camera system and imaging method thereof
JPH01160268A (en) Wide range high resolution image pickup system
EP1406435A1 (en) Optical fiber array camera
JPH05145952A (en) Image pickup data signal transmitting system
CN116132825A (en) CCD driving system supporting multi-degree-of-freedom image motion compensation function
JPH05145951A (en) Image pickup data transmitting system
JPS63254884A (en) Image pickup, transmitting, reproducing device for picture
JPH0634341A (en) Three-dimensional image pickup device