JPS6039994A - Stereoscopic image pickup system - Google Patents

Stereoscopic image pickup system

Info

Publication number
JPS6039994A
JPS6039994A JP58147549A JP14754983A JPS6039994A JP S6039994 A JPS6039994 A JP S6039994A JP 58147549 A JP58147549 A JP 58147549A JP 14754983 A JP14754983 A JP 14754983A JP S6039994 A JPS6039994 A JP S6039994A
Authority
JP
Japan
Prior art keywords
imaging
image pickup
image
stereoscopic
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58147549A
Other languages
Japanese (ja)
Other versions
JPH02917B2 (en
Inventor
Tatsushi Kuwano
桑野 龍士
Riichi Nakura
奈倉 理一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58147549A priority Critical patent/JPS6039994A/en
Priority to DE8484305403T priority patent/DE3475000D1/en
Priority to EP84305403A priority patent/EP0135345B1/en
Priority to US06/639,950 priority patent/US4613899A/en
Priority to CA000460724A priority patent/CA1243769A/en
Publication of JPS6039994A publication Critical patent/JPS6039994A/en
Publication of JPH02917B2 publication Critical patent/JPH02917B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

PURPOSE:To attain stereoscopic image pickup and multi-band observation at a point directly under an image pickup device by providing plural photodetectors arranged in parallel with each other to the image forming plane of a wide angle optical system in the image pickup device. CONSTITUTION:An image of ground surfaces O, P and Q is formed respectively on photodetectors 11, 9 and 10 arranged in parallel with each other in the image forming plane 8 at a position A by an optical system 27 having a large permissible incident angle in the image pickup device 2'. A satellite 1 continues image pickup while being progressed in a velocity (v), the ground surface P is image picked up by a rear image pickup element 10 at a position B and the stereoscopic information of the ground surface P is obtained by the information image picked up by the photodetector 9 at the point A.

Description

【発明の詳細な説明】 本発明は、地球を周回する人工衛星等から地表面の起伏
状況等の立体情報を得る撮像方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an imaging method for obtaining three-dimensional information such as the ups and downs of the earth's surface from an artificial satellite or the like orbiting the earth.

人工衛星から地球表面の状況を観測する、いわゆるリモ
ートセンシングにおいて、単に平面的情報のみでなく地
表の立体情報を得ることが、特に資源探査の分野におい
て要望されている。一般に対象物体の立体情報を得るた
めには、離れた2点からの観測像を合成することが必要
なことが良く知られている。人工衛星から地表面の立体
画像を得ようとする場合には、地表面との距離が大きい
ため1通常1個の衛星にて同一時刻の立体画像を得るこ
とは困難である。このため、衛星の位置移動を利用して
立体画像を得ることが提案されている。
In so-called remote sensing, which observes conditions on the earth's surface from artificial satellites, it is desired to obtain not only two-dimensional information but also three-dimensional information on the earth's surface, especially in the field of resource exploration. It is generally well known that in order to obtain three-dimensional information about a target object, it is necessary to synthesize observation images from two distant points. When trying to obtain a three-dimensional image of the earth's surface from an artificial satellite, it is usually difficult to obtain a three-dimensional image at the same time using one satellite because the distance to the earth's surface is large. For this reason, it has been proposed to obtain stereoscopic images by utilizing the positional movement of satellites.

従来提案されている立体撮像方式の一例を第1図に示す
。第1図において、■は人工衛星、2は立体撮像を行う
ための撮像装置を示す。撮像装置2は立体撮像を行うだ
めの2ケの光学系3及び4を有し、各光学系の焦点面に
は各々光電変換素子5.6が配置される。
An example of a stereoscopic imaging method that has been proposed in the past is shown in FIG. In FIG. 1, ■ indicates an artificial satellite, and 2 indicates an imaging device for performing stereoscopic imaging. The imaging device 2 has two optical systems 3 and 4 for performing stereoscopic imaging, and a photoelectric conversion element 5.6 is arranged at the focal plane of each optical system.

第1図において1人工衛星lは地表に対し速度Vにて進
行する。位置Aにおいて前方撮像用光学系3は地表面P
を撮像し、光電変換素子5に結像させる。同様に、後方
撮像用光学系4は地表面Qを撮像し、光電変換素子6に
結像させる。衛星lは進行中、撮像を続け、Bの位置に
進行した時点において、後方撮像用光学系4により地表
面Pの撮像を行う。この画像データと、前述の位置Aか
ら光学系3により撮像した地表面Pの画像データによシ
1通常人間の目で立体視を行う時と同様の原理で、地表
面Pの立体情報を得ることが出来る。
In FIG. 1, one artificial satellite l moves at a speed V relative to the earth's surface. At position A, the forward imaging optical system 3 is located at the ground surface P.
is imaged and focused on the photoelectric conversion element 5. Similarly, the rear imaging optical system 4 images the ground surface Q and forms the image on the photoelectric conversion element 6. The satellite l continues to take images while it is moving, and when it reaches the position B, the rear imaging optical system 4 takes an image of the ground surface P. Based on this image data and the image data of the ground surface P captured by the optical system 3 from the above-mentioned position A, 1. Obtain stereoscopic information of the ground surface P using the same principle as when stereoscopic viewing is performed with normal human eyes. I can do it.

この従来方式の欠点は、立体情報を得るために少なくと
も2個の光学系を必要とすることである。
A drawback of this conventional method is that it requires at least two optical systems to obtain stereoscopic information.

衛星の直下点のみを撮像し平面情報を得る場合に比較し
て、光学系の本数増加による重量及び寸法増加が大きく
、これらに対する制約の大きい衛星搭載用としては不利
な条件である。また% 2個の光学系の間のアライメン
ト設定を精密に行うことが必要のため、光学系の取付に
関しても複雑な設定法が必要となる。
Compared to the case where plane information is obtained by imaging only the point directly below the satellite, the increase in the number of optical systems causes a large increase in weight and size, which is a disadvantage for use on a satellite with large restrictions. Furthermore, since it is necessary to precisely set the alignment between the two optical systems, a complicated setting method is required for mounting the optical systems.

更に1通常この種の撮像装置は立体視を行うと共に、直
下点の撮像を行うことが要望されるため。
Furthermore, 1. Usually, this type of imaging device is required to perform stereoscopic viewing and also to perform imaging of a point directly below.

この場合には、第2図の如く、3本の光学系が必要とな
る。この図から明らかな如く、この場合には前述の重量
2寸法及びアライメントの条件は更に不利となる。
In this case, three optical systems are required as shown in FIG. As is clear from this figure, in this case, the aforementioned two weight dimensions and alignment conditions become even more disadvantageous.

光学系の数が少ない方法としては、第3図の如き構成に
よる立体視も可能である。これは)YS学系は1個とし
、その前面に図示の如く可動ミラー7を設けて、この角
度を切替えることにょシ立体視を行わせるものである。
As a method using a small number of optical systems, stereoscopic viewing using a configuration as shown in FIG. 3 is also possible. In this system, there is only one YS system, and a movable mirror 7 is provided in front of it as shown in the figure, and stereoscopic viewing is achieved by changing the angle of the movable mirror 7.

この方式は可動ミラ−70角度設定によシ撮像場所を選
択出来る利点はあるが、大型町動機措を要すること、及
び同時に2ケ所の撮像が出来ず立体画像が不連続になる
こと等の欠点が有る。
This method has the advantage of being able to select the imaging location by setting the movable mirror 70 angle, but has the disadvantages of requiring measures for large towns and the inability to capture images at two locations at the same time, resulting in discontinuous stereoscopic images. There is.

本発明の目的は、これら従来方式の欠点を除去し、簡潔
な構成によシ立体撮像及び直下点のマルチバンド観測を
行うことのできる撮像方式を提供することにある。
It is an object of the present invention to provide an imaging method that eliminates the drawbacks of these conventional methods and can perform stereoscopic imaging and multiband observation of a direct point with a simple configuration.

以下図面によシ本発明の詳細な説明する。The present invention will be explained in detail below with reference to the drawings.

第4図は本発明による立体撮像方式の原理を示す説明図
、第5図は本方式を使用した衛星送信部の系統図例を示
す。図において、27は地表面を撮像するための広画角
光学系、8はこの光学系の結像面、9〜t’iはいずれ
もこの光学系の結像面内に配置された受光素子であシ、
9は前方撮像用。
FIG. 4 is an explanatory diagram showing the principle of the stereoscopic imaging method according to the present invention, and FIG. 5 shows an example of a system diagram of a satellite transmitter using this method. In the figure, 27 is a wide-angle optical system for imaging the ground surface, 8 is an imaging plane of this optical system, and 9 to t'i are all light receiving elements arranged within the imaging plane of this optical system. Adashi,
9 is for front imaging.

10は後方撮像用、tiは直下点撮像用の受光素子であ
る。
Reference numeral 10 denotes a light-receiving element for rear imaging, and ti represents a light-receiving element for directly below-point imaging.

第4図に示すように、許容入射角の大きい光学系7によ
り、位置Aにおいて地表面0.P、Qの像は結像面8内
に互に平行に配置された受光素子11゜9、toに各々
結像される。衛星は速度Vにて進行しなから撮像を続け
1位置計において後方撮像素子lOによシ地表面Pが撮
像され、前述の位置Aから受光素子9によシ撮像した情
報によシ地表面Pの立体情報が得られる。
As shown in FIG. 4, the optical system 7 with a large permissible angle of incidence allows the ground surface to be 0.05 m at position A. The images P and Q are respectively formed on light-receiving elements 11°9 and to arranged in parallel to each other within the image plane 8. The satellite continues to take images while moving at a speed V, and at the position meter 1, the rear image sensor 1O takes an image of the ground surface P, and based on the information taken from the above-mentioned position A by the light receiving element 9, the ground surface P is taken. Stereoscopic information of P can be obtained.

受光素子としては多素子−次元COD (電荷結合デバ
イス)等の光電変換素子が使用され、高速ファクシミリ
と同様に電子走査によシ時系列信号が出力される。これ
らの受光素子9,10.11の出力信号は、第5図の信
号処理回路12.送信部13、アンテナ14を介して地
上局へ送出される。
A photoelectric conversion element such as a multi-dimensional COD (charge-coupled device) is used as the light-receiving element, and a time-series signal is outputted by electronic scanning, similar to a high-speed facsimile. The output signals of these light receiving elements 9, 10.11 are processed by the signal processing circuit 12.1 in FIG. The signal is sent to the ground station via the transmitter 13 and antenna 14.

第6図に本発明による方式を使用した場合の地上局装置
の系統図の一例を示す。図において、15は受信アンテ
ナ% 16は受信復調部、17は分配回路である。分配
回路17の出力信号18,20゜19は、各々送信部の
9.11 、toの出力信号と対応する。
FIG. 6 shows an example of a system diagram of a ground station device when the system according to the present invention is used. In the figure, 15 is a receiving antenna, 16 is a receiving demodulator, and 17 is a distribution circuit. The output signals 18 and 20°19 of the distribution circuit 17 correspond to the output signals 9.11 and to of the transmitting section, respectively.

第4図に示す如く、衛星直下の撮像位置と前方。As shown in Figure 4, the imaging position directly below the satellite and the front.

後方の撮像位置との距離を各々VVtnlとすると、τ
?j星が位置へから位置Bに移動する時間はW 2τ=−(式) である。即ち、前方撮像用受光素子9が地表面Pの撮像
を行りてから、2τ秒後に後方撮像用受光素子lOによ
シ同−地表面の撮像が行われる。したがって、第6図に
示す如く、受光素子9に対応する復調出力18に対し、
相対的に2τ(東)の時間遅延を与えれば、遅延回路2
1の出力は受光素子lOに対応する復調出力19と同一
の地表面を異なる角度から撮像した信号となシ1画像処
理記録部22において立体画像情報を得ることが出来る
Letting the distance to the rear imaging position be VVtnl, τ
? The time it takes for star j to move from position to position B is W 2τ=-(formula). That is, after the front imaging light-receiving element 9 images the ground surface P, the rear imaging light-receiving element 1O images the same ground surface 2τ seconds later. Therefore, as shown in FIG. 6, for the demodulated output 18 corresponding to the light receiving element 9,
If a relative time delay of 2τ (east) is given, delay circuit 2
The output 1 is a signal obtained by imaging the same ground surface from a different angle as the demodulated output 19 corresponding to the light receiving element 10. The 1 image processing and recording section 22 can obtain stereoscopic image information.

同様に、直下点を撮像した信号出力20に対しても、τ
(%)の時間遅延を与えることにより、同一地表面の情
報を画像処理記録部に入力することが出来る。
Similarly, τ
By providing a time delay of (%), information on the same ground surface can be input to the image processing recording section.

第6図に示した遅延回路はディジタルメモリ回路等によ
シ構成することも可能であり、また、第4図送信部にお
いて、受光素子9.11の出力に各々2τ、τの時間遅
延を与えることにより、受信部での遅延回路を除くこと
も可能である。
The delay circuit shown in FIG. 6 can also be configured with a digital memory circuit, etc. Also, in the transmitter section of FIG. By doing so, it is also possible to eliminate the delay circuit in the receiving section.

本発明による撮像方式は1以上の説明からも明らかなよ
うに、以下に示すような多様の応用構成をとることが出
来る。
As is clear from one or more of the explanations, the imaging method according to the present invention can have various applied configurations as shown below.

1、 受光素子9.toによシ立体視、受)し素子11
として複数の受光素子によシマルテバンド観測を行うこ
と。
1. Light receiving element 9. For stereoscopic viewing, receiving element 11
simultane band observation using multiple photodetectors.

2、上記の構成において地上からの指令(コマンド)等
により立体視のみ、マルチバンド観測のみ等の切替受信
を行うこと。
2. In the above configuration, reception can be switched between stereoscopic viewing only, multiband observation only, etc. based on commands from the ground.

3、受光素子9〜xiの波長域を同一にし、9゜10間
、to、tt間及び9,10間の各々によシ立体情報を
得ること。或いは、このうち1個を冗長系とし予備とし
て使用すること。
3. The wavelength ranges of the light-receiving elements 9 to xi are made the same, and three-dimensional information is obtained between 9° and 10, between to and tt, and between 9 and 10. Alternatively, one of them can be made redundant and used as a spare.

なお、本方式は航空機等の飛行物体からの立体観測にも
適用出来ることは1以上の説明からも明らかであろう。
It should be noted that it is clear from the above explanation that this method can also be applied to three-dimensional observation from a flying object such as an aircraft.

以上述べた如く、本発明によシ極めて簡潔な構成にて小
型、軽量及び信頼性の高い立体撮像方式を得ることが出
来る。
As described above, according to the present invention, a compact, lightweight, and highly reliable stereoscopic imaging system can be obtained with an extremely simple configuration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の立体撮像方式の一例を示す概念図、第2
図は第1図の方式で直下点を撮像する場合の概念図、第
3図は従来の立体撮像方式の他の例を示す概念図、第4
図は本発明による立体撮像方式の実施例を示す概念図、
第5図は第4図に示した方式を採用した衛星送信部のブ
ロック図、第6図は同じく地上局装置のブロック図であ
る。 図において、l・・・・・・衛星、2.2′・・・・・
・撮像装置。 3.4・・・・・・光学系、5,6・・・・・・光電変
換素子、7・・・・・・可動ミ7−,27・・・・・・
広画角光学系、8・・・・・・)を学系27の結像面、
9〜11・・・・・・受光素子、12・・・・・・信号
処理回路、13・・・・・−送信部、14・・・・・・
送信アンテナ、15・・・・・・受信アンテナ、16・
・・・・・受信後円部、17・・・・・・分配回路、1
8〜20・・・・・・分配回路17の出力信号、21.
23・・・・・・遅延回路、22・・・・・・画像処理
記録部である。 代理人 弁理士 内 原 晋 −七 力4図 /U 576− /ゾ 刀6閉
Figure 1 is a conceptual diagram showing an example of a conventional stereoscopic imaging system;
The figure is a conceptual diagram when imaging a direct point using the method in Figure 1, Figure 3 is a conceptual diagram showing another example of the conventional stereoscopic imaging method, and Figure 4 is a conceptual diagram showing another example of the conventional stereoscopic imaging method.
The figure is a conceptual diagram showing an embodiment of the stereoscopic imaging method according to the present invention.
FIG. 5 is a block diagram of a satellite transmitter employing the system shown in FIG. 4, and FIG. 6 is a block diagram of a ground station device. In the figure, l...Satellite, 2.2'...
・Imaging device. 3.4... Optical system, 5, 6... Photoelectric conversion element, 7... Movable Mi7-, 27...
wide-angle optical system, 8...) as the imaging plane of system 27,
9-11... Light receiving element, 12... Signal processing circuit, 13...- Transmitting section, 14...
Transmitting antenna, 15...Receiving antenna, 16.
...Receiving circular part, 17...Distribution circuit, 1
8-20... Output signal of distribution circuit 17, 21.
23... Delay circuit, 22... Image processing recording section. Agent Patent Attorney Susumu Uchihara - Shichiriki 4 Figure / U 576 - / Zoto 6 Close

Claims (1)

【特許請求の範囲】[Claims] 撮像対象物に対し相対的に移動する撮像装置で前記撮像
対象物の立体画像を得る立体撮像方式において、前記撮
像装置内の撮像用光学系の同一結像面に互いに平行で且
つ前記撮像装置の移動に対しほぼ直角に配置され、前記
移動方向の少なくとも前方及び後方を撮像する多素子光
電変換素子を有し、この多素子光電変換素子から得られ
る前記前方及び後方の画像データから前記立体画像を得
ることを特徴とする立体撮像方式。
In a three-dimensional imaging method in which a three-dimensional image of the object is obtained using an imaging device that moves relative to the object, two or more images are parallel to each other and parallel to the same imaging plane of the imaging optical system in the imaging device. It has a multi-element photoelectric conversion element that is arranged substantially perpendicular to the movement and captures images at least in front and back in the movement direction, and the three-dimensional image is obtained from the front and rear image data obtained from the multi-element photoelectric conversion element. A three-dimensional imaging method that is characterized by the following:
JP58147549A 1983-08-12 1983-08-12 Stereoscopic image pickup system Granted JPS6039994A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP58147549A JPS6039994A (en) 1983-08-12 1983-08-12 Stereoscopic image pickup system
DE8484305403T DE3475000D1 (en) 1983-08-12 1984-08-08 Image pickup system capable of reproducing a stereo and/or a nonstereo image by the use of a single optical system
EP84305403A EP0135345B1 (en) 1983-08-12 1984-08-08 Image pickup system capable of reproducing a stereo and/or a nonstereo image by the use of a single optical system
US06/639,950 US4613899A (en) 1983-08-12 1984-08-10 Image pickup system capable of reproducing a stereo and/or a nonstereo image by the use of a single optical system
CA000460724A CA1243769A (en) 1983-08-12 1984-08-10 Image pickup system capable of reproducing a stereo and/or a nonstereo image by the use of a single optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58147549A JPS6039994A (en) 1983-08-12 1983-08-12 Stereoscopic image pickup system

Publications (2)

Publication Number Publication Date
JPS6039994A true JPS6039994A (en) 1985-03-02
JPH02917B2 JPH02917B2 (en) 1990-01-09

Family

ID=15432832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58147549A Granted JPS6039994A (en) 1983-08-12 1983-08-12 Stereoscopic image pickup system

Country Status (1)

Country Link
JP (1) JPS6039994A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5875933A (en) * 1981-10-31 1983-05-07 Omron Tateisi Electronics Co Communication system to vehicle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5875933A (en) * 1981-10-31 1983-05-07 Omron Tateisi Electronics Co Communication system to vehicle

Also Published As

Publication number Publication date
JPH02917B2 (en) 1990-01-09

Similar Documents

Publication Publication Date Title
US8743176B2 (en) 3-dimensional hybrid camera and production system
EP2630802B1 (en) Camera imaging systems and methods
US4527055A (en) Apparatus for selectively viewing either of two scenes of interest
US11815587B2 (en) Object targeting
US7738733B2 (en) Systems and methods for 3-D imaging
CN109842750B (en) Image pickup apparatus system
EP3758354A1 (en) Camera module and super resolution image processing method thereof
EP2932327A1 (en) Dual-q imaging system
CN106643689A (en) Multi-mode common-optical path pose measuring apparatus
CN113790676A (en) Three-dimensional space spectral imaging method and device based on coded aperture and light field distribution
US7999922B1 (en) Coherent imaging system and method for producing high resolution images
JPS6039994A (en) Stereoscopic image pickup system
CN112067125A (en) Dual-channel hyperspectral detection system based on underwater robot
US8928750B2 (en) Method for reducing the number of scanning steps in an airborne reconnaissance system, and a reconnaissance system operating according to said method
WO2018160989A1 (en) Multi-camera system for tracking one or more objects through a scene
JPS6058789A (en) Steroescopic image pickup system
JPS62137037A (en) X-ray photographing apparatus
JP2752913B2 (en) 3D image capturing device
CN114402226A (en) Optical sensor
RU2709459C1 (en) Panoramic television surveillance computer system device
JPH07294279A (en) Image pickup position detector
JP2803638B2 (en) Alignment displacement detector
JPH0683405B2 (en) Wide area high resolution imaging method
CN112770065A (en) Visible-infrared integrated camera system and imaging method thereof
JP2646981B2 (en) Observation method by satellite