JPH02918B2 - - Google Patents

Info

Publication number
JPH02918B2
JPH02918B2 JP58165965A JP16596583A JPH02918B2 JP H02918 B2 JPH02918 B2 JP H02918B2 JP 58165965 A JP58165965 A JP 58165965A JP 16596583 A JP16596583 A JP 16596583A JP H02918 B2 JPH02918 B2 JP H02918B2
Authority
JP
Japan
Prior art keywords
imaging
image
dimensional
photoelectric conversion
stereoscopic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58165965A
Other languages
Japanese (ja)
Other versions
JPS6058789A (en
Inventor
Riichi Nakura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP58165965A priority Critical patent/JPS6058789A/en
Priority to DE8484305403T priority patent/DE3475000D1/en
Priority to EP84305403A priority patent/EP0135345B1/en
Priority to US06/639,950 priority patent/US4613899A/en
Priority to CA000460724A priority patent/CA1243769A/en
Publication of JPS6058789A publication Critical patent/JPS6058789A/en
Publication of JPH02918B2 publication Critical patent/JPH02918B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/02Picture taking arrangements specially adapted for photogrammetry or photographic surveying, e.g. controlling overlapping of pictures
    • G01C11/025Picture taking arrangements specially adapted for photogrammetry or photographic surveying, e.g. controlling overlapping of pictures by scanning the object

Description

【発明の詳細な説明】 本発明は、地球を周回する人工衛星等から地表
面の起伏状況等の立体情報を得る撮像方式に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an imaging method for obtaining three-dimensional information such as the ups and downs of the earth's surface from an artificial satellite or the like orbiting the earth.

人工衛星から地球表面の状況を観測する、いわ
ゆるリモートセンシングにおいて、単に平面的情
報のみでなく地表の立体情報を得ることが、特に
資源探査の分野において要望されている。一般に
対象物体の立体情報を得るためには、離れた2点
からの観測像を合成することが必要なことが良く
知られている。人工衛星から地表面の立体画像を
得ようとする場合には、地表面との距離が大きい
ため、通常1個の衛星にて同一時刻の立体画像を
得ることは困難である。このため、衛星の立置移
動を利用して立体画像を得ることが提案されてい
る。
In so-called remote sensing, which observes conditions on the earth's surface from artificial satellites, it is desired to obtain not only two-dimensional information but also three-dimensional information on the earth's surface, especially in the field of resource exploration. It is generally well known that in order to obtain three-dimensional information about a target object, it is necessary to synthesize observation images from two distant points. When trying to obtain a stereoscopic image of the earth's surface from an artificial satellite, it is usually difficult to obtain a stereoscopic image at the same time using a single satellite because the distance to the earth's surface is large. For this reason, it has been proposed to obtain stereoscopic images using vertical movement of satellites.

従来提案されている立体撮像方式の一例を第1
図に示す。第1図において、1は人工衛星、2は
立体撮像を行うための撮像装置を示す。撮像装置
2は立体撮像を行うための2個の光学系3及び4
を有し、各光学系の焦点面には各々光電変換素子
5,6が配置される。
The first example is an example of a three-dimensional imaging method that has been proposed so far.
As shown in the figure. In FIG. 1, reference numeral 1 indicates an artificial satellite, and reference numeral 2 indicates an imaging device for performing stereoscopic imaging. The imaging device 2 includes two optical systems 3 and 4 for performing stereoscopic imaging.
, and photoelectric conversion elements 5 and 6 are arranged at the focal plane of each optical system.

第1図において、人工衛星1は地表に対し速度
vにて進行する。位置Aにおいて前方撮像用光学
系3は地表面Pを撮像し、光電変換素子5に結像
させる。同様に、後方撮像用光学系4は地表面Q
を撮像し、光電変換素子6に結像させる。衛星1
は進行中、撮像を続け、Bの位置に進行した時点
において、後方撮像用光学系4により地表面Pの
撮像を行う。この画像データと、前述の位置Aか
ら光学系3により撮像した地表面Pの画像データ
により、通常人間の目で立体視を行う時と同様の
原理で、地表面Pの立体情報を得ることが出来
る。
In FIG. 1, an artificial satellite 1 moves at a speed v relative to the earth's surface. At position A, the forward imaging optical system 3 images the ground surface P and forms the image on the photoelectric conversion element 5. Similarly, the rear imaging optical system 4 is connected to the ground surface Q.
is imaged and focused on the photoelectric conversion element 6. Satellite 1
continues to take images while traveling, and at the time when it advances to position B, the rear imaging optical system 4 takes an image of the ground surface P. Using this image data and the image data of the ground surface P captured by the optical system 3 from the above-mentioned position A, it is possible to obtain three-dimensional information of the ground surface P using the same principle as when stereoscopic vision is normally performed with human eyes. I can do it.

この従来方式の欠点は、立体情報を得るために
少なくとも2個の光学系を必要とすることであ
る。衛星の直下点のみを撮像し平面情報を得る場
合に比較して、光学系の本数増加による重量及び
寸法増加が大きく、これらに対する制約の大きい
衛星搭載用としては不利な条件である。また、2
個の光学系の間のアライメント設定を精密に行う
ことが必要のため、光学系の取付に関しても複雑
な設定法が必要となる。
A drawback of this conventional method is that it requires at least two optical systems to obtain stereoscopic information. Compared to the case where plane information is obtained by imaging only the point directly below the satellite, the increase in the number of optical systems causes a large increase in weight and size, which is a disadvantage for use on a satellite with large restrictions. Also, 2
Since it is necessary to precisely set the alignment between the individual optical systems, a complicated setting method is also required for mounting the optical systems.

更に、通常この種の撮像装置は立体視を行うと
共に、直下点の撮像を行うことが要望されるた
め、この場合には、第2図の如く、3本の光学系
が必要となる。この図から明らかな如く、この場
合には前述の重量、寸法及びアライメントの条件
は更に不利となる。
Further, since this type of imaging device is normally required to perform stereoscopic viewing and to image a point directly below, in this case, three optical systems are required as shown in FIG. As is clear from this figure, the aforementioned weight, size and alignment conditions are even more disadvantageous in this case.

光学系の数が少ない方法としては、第3図の如
き構成による立体視も可能である。これは光学系
は1個とし、その前面に図示の如く可動ミラー7
を設けて、この角度を切替えることにより立体視
を行わせるものである。この方式は可動ミラー7
の角度設定により撮像場所を選択出来る利点はあ
るが、大型可動機構を要すること、及び同時に2
ケ所の撮像が出来ず立体画像が不連続になること
等の欠点が有る。
As a method using a small number of optical systems, stereoscopic viewing using a configuration as shown in FIG. 3 is also possible. This has one optical system, and a movable mirror 7 is placed in front of it as shown in the figure.
is provided, and by switching this angle, stereoscopic viewing is performed. This method uses movable mirror 7
Although there is an advantage that the imaging location can be selected by setting the angle of the
This method has disadvantages such as not being able to image certain areas, resulting in discontinuous stereoscopic images.

本発明の目的は、これら従来方式の欠点を除去
し、簡潔な構成により立体撮像及び直下点のマル
チバンド観測を行うことのできる撮像方式を提供
することにある。
An object of the present invention is to provide an imaging method that eliminates the drawbacks of these conventional methods and can perform stereoscopic imaging and multi-band observation of a direct point with a simple configuration.

以下図面により本発明を詳細に説明する。 The present invention will be explained in detail below with reference to the drawings.

第4図は本発明による立体撮像方式の原理を示
す説明図、第5図は第4図に示した方式における
結像面と受光素子を接続する部分の部分拡大図で
ある。図において、27は地表面を撮像するため
の広画角光学系、8はこの光学系の結像面を示
す。9〜11は画像を直接伝送する光フアイバ束
であり図に示すように、いずれも光学系の結像面
にそれぞれ一次元状に配列された開口端を有す
る。この開口端は、更に撮像装置の進行方向に対
し、ほぼ直角をなす線上に一次元配列され、且つ
相互にほぼ平行の関係に配置される。
FIG. 4 is an explanatory diagram showing the principle of the three-dimensional imaging method according to the present invention, and FIG. 5 is a partially enlarged view of a portion connecting the imaging plane and the light receiving element in the method shown in FIG. 4. In the figure, reference numeral 27 indicates a wide-angle optical system for imaging the ground surface, and reference numeral 8 indicates an imaging plane of this optical system. Reference numerals 9 to 11 denote optical fiber bundles for directly transmitting images, and as shown in the figure, each of them has aperture ends arranged one-dimensionally on the imaging plane of the optical system. The opening ends are further arranged one-dimensionally on a line that is substantially perpendicular to the direction in which the imaging device travels, and are arranged substantially parallel to each other.

光フアイバ束9〜11の他方の開口端は第5図
の実施例に実示すように受光素子12〜14に接
続される。また、光フアイバ束9〜11は各々が
光信号伝達系として独立した細い光フアイバの集
まりから構成されている。このため、各々の光フ
アイバの入射開口端に入射された光信号は、受光
素子の光電変換を行う各画素迄他に漏えいせずに
伝達される。更に、光フアイバ束9〜11の出射
開口端と受光素子12〜14の光電変換部は極く
近接するか、或いは密着して配置することにより
周辺の画素への漏えいを防ぐことが出来る。これ
により開口端において結像された地表面の像は忠
実に受光素子へ伝達される。
The other open ends of the optical fiber bundles 9-11 are connected to light-receiving elements 12-14, as illustrated in the embodiment of FIG. Further, each of the optical fiber bundles 9 to 11 is composed of a collection of independent thin optical fibers as an optical signal transmission system. Therefore, the optical signal incident on the entrance aperture end of each optical fiber is transmitted to each pixel that performs photoelectric conversion of the light receiving element without leaking to others. Further, by arranging the output aperture ends of the optical fiber bundles 9 to 11 and the photoelectric conversion parts of the light receiving elements 12 to 14 very close to each other or in close contact with each other, leakage to surrounding pixels can be prevented. As a result, the image of the ground surface formed at the aperture end is faithfully transmitted to the light receiving element.

受光素子としては多素子のCCD(電荷結合デバ
イス)等の光電変換素子が使用でき、フアイバ束
の入力端に供給された光信号は、このCCD等の
受光素子に供給され、高速フアクシミリ等と同様
に電子走査により時系列信号として出力される。
A photoelectric conversion element such as a multi-element CCD (charge-coupled device) can be used as the light receiving element, and the optical signal supplied to the input end of the fiber bundle is supplied to the light receiving element such as the CCD, similar to a high-speed facsimile etc. It is output as a time series signal by electronic scanning.

受光素子12〜14の光電変換部の寸法は非常
に小さいが、これを収容するパツケージは第5図
の如く大きくなり、これに更に両側に取出電極、
及びこれに信号を供給するプリント回路部の面積
が必要である。したがつて、受光素子12〜14
を直接結像面内へ配置することはかなり困難さが
伴い、本発明の如く光フアイバ束を使用する必要
性が生ずる。特に最近では高分解能化の要求に伴
い、走査線内に一個の一次元受光素子の画素数の
数倍の画素数が必要となつて来ている。この場合
には、例えば第6図の如く、光フアイバ束9〜1
1の出射端を分岐して各受光素子に接続すること
により本発明による方式の特徴を生かし、立体撮
像を行うことが出来る。
Although the dimensions of the photoelectric conversion parts of the light receiving elements 12 to 14 are very small, the package that accommodates them is large as shown in Figure 5, and there are also lead-out electrodes on both sides.
In addition, an area of a printed circuit section for supplying signals thereto is required. Therefore, the light receiving elements 12 to 14
Placing the optical fiber directly into the image plane presents considerable difficulties, necessitating the use of a fiber optic bundle as in the present invention. In particular, with the recent demand for higher resolution, it has become necessary to have several times the number of pixels in a single one-dimensional light-receiving element within a scanning line. In this case, for example, as shown in FIG.
By branching one output end and connecting it to each light receiving element, it is possible to take advantage of the features of the system according to the present invention and perform stereoscopic imaging.

更に、光フアイバ束を使用することにより、第
7図a及びbに示すように、受光素子を直接結像
面に配置する方式では達成できなかつた効果を得
ることが出来る。即ち、第7図aはフアイバ束の
入射端を研磨等により湾曲させることにより、光
学系にて生ずる像面湾曲の問題を取り除くことが
出来る。また、第7図bは同じく光学系により生
ずる歪曲収差に合せてフアイバ束を配列すること
により歪曲収差の影響を除くことが可能となる。
Furthermore, by using an optical fiber bundle, as shown in FIGS. 7a and 7b, it is possible to obtain effects that could not be achieved with a system in which the light-receiving element is placed directly on the imaging plane. That is, in FIG. 7a, the problem of field curvature occurring in the optical system can be eliminated by curving the input end of the fiber bundle by polishing or the like. Furthermore, as shown in FIG. 7B, by arranging the fiber bundles in accordance with the distortion aberration caused by the optical system, it is possible to eliminate the influence of the distortion aberration.

光フアイバ束9の開口端は、第4図に示すよう
に、直下点よりW(m)前方の地表面を撮像する
如く配置される。フアイバ束10及び11の開口
端も同様に、それぞれ直下点及びW(m)後方の
地表面を撮像するように配置される。
As shown in FIG. 4, the open end of the optical fiber bundle 9 is arranged so as to image the ground surface W (m) ahead of the point directly below. The open ends of the fiber bundles 10 and 11 are similarly arranged so as to image the point immediately below and the ground surface behind W(m), respectively.

図示の如く許容入射角の大きい光学系27によ
り位置Aにおいて、地表面P,O,Qの像は結像
面8内に互に平行に配置された上記光フアイバ束
9,10,11の開口端に各々結像され、光フア
イバ束により受光素子に導びかれて電気信号に変
換される。撮像装置は速度vにて進行しながら撮
像を続け、位置Bにおいて光フアイバ束11の開
口端に地表面Pの像が結像され、前述の位置Aに
て光フアイバ束9の開口端に結像した地表面Pの
情報と合わせて地表面Pの立体情報が得られる。
As shown in the figure, images of the earth's surface P, O, and Q are formed at a position A by an optical system 27 having a large allowable angle of incidence. An image is formed at each end, guided by an optical fiber bundle to a light receiving element, and converted into an electrical signal. The imaging device continues imaging while moving at a speed v, and an image of the ground surface P is formed on the open end of the optical fiber bundle 11 at position B, and an image of the ground surface P is focused on the open end of the optical fiber bundle 9 at the aforementioned position A. Together with the imaged information on the ground surface P, three-dimensional information on the ground surface P can be obtained.

光フアイバ束に接続された受光素子12〜14
の出力信号は、第6図の信号処理回路15、送信
部16、アンテナ17を介して送出される。
Light receiving elements 12 to 14 connected to the optical fiber bundle
The output signal is sent out via the signal processing circuit 15, the transmitter 16, and the antenna 17 shown in FIG.

第8図に本発明による方式を使用した場合の地
上局装置の系統図の一例を示す。図において、1
8は受信アンテナ、19は受信復調部、20は分
配回路である。分配回路20の出力信号21,2
2,23は、各々送信側の12,13,14の出
力信号と対応する。
FIG. 8 shows an example of a system diagram of a ground station device when the system according to the present invention is used. In the figure, 1
8 is a receiving antenna, 19 is a receiving demodulator, and 20 is a distribution circuit. Output signals 21, 2 of the distribution circuit 20
2 and 23 correspond to output signals 12, 13, and 14 on the transmitting side, respectively.

第4図に示す如く、衛星直下の撮像位置と前
方、後方の撮像位置との距離を各々W(m)とす
ると、衛星が位置Aから位置Bに移動する時間は 2τ=2W/v(sec) である。即ち、光フアイバ束9の開口端に地表面
Pの像が結像されてから、2τ秒後に光フアイバ束
11の開口端に同一地表面の像が結像される。し
たがつて、第8図に示す如く、受光素子12に対
応する復調出力21に対し、相対的に2τ(sec)の
時間遅延を与えれば、遅延回路24の出力は受光
素子14に対応する復調出力23と同一の地表面
を異なる角度から撮像した信号となり、画像処理
記録部25において立体画像情報を得ることが出
来る。
As shown in Figure 4, if the distances between the imaging position directly below the satellite and the front and rear imaging positions are each W (m), the time it takes for the satellite to move from position A to position B is 2τ = 2W/v (sec ). That is, after an image of the ground surface P is formed on the open end of the optical fiber bundle 9, an image of the same ground surface is formed on the open end of the optical fiber bundle 11 2τ seconds later. Therefore, as shown in FIG. 8, if a relative time delay of 2τ (sec) is given to the demodulated output 21 corresponding to the light receiving element 12, the output of the delay circuit 24 becomes the demodulated output 21 corresponding to the light receiving element 14. The output 23 is a signal obtained by imaging the same ground surface from different angles, and the image processing recording unit 25 can obtain stereoscopic image information.

同様に、直下点を撮像した信号出力22に対し
ても、τ(sec)の時間遅延を与えることにより、
同一地表面の情報を画像処理記録部に入力するこ
とが出来る。
Similarly, by giving a time delay of τ (sec) to the signal output 22 that captures the image of the direct point,
Information about the same ground surface can be input to the image processing recording section.

第8図に示した遅延回路はデイジタルメモリ回
路等により構成することも可能であり、また、第
4図の送信部において、受光素子12,13の出
力に各々2τ、τの時間遅延を与えることにより、
受信部での遅延回路を除くことも可能である。
The delay circuit shown in FIG. 8 can also be configured with a digital memory circuit, etc. Also, in the transmitting section of FIG. According to
It is also possible to eliminate the delay circuit in the receiving section.

また、以上述べた実施例においては、受光素子
として一次元状に画素配列された、例えば一次元
CCDを使用する例について説明したが、本発明
による方式は光フアイバ束を使用するため、第9
図に示す如く平面状に画素配列された二次元
CCDを使用出来ることも明らかである。この場
合、図に示すように光フアイバ束の結像面側の開
口端の配列は第5図及び第6図の場合と同様であ
るが、受光素子側の出射端は二次元CCDの画素
数に相当する本数毎に分岐され、対応する画素位
置に接続される。この方式により二次元CCDの
有する非常に多くの画素数を有効に生かすことが
出来、高分解能の立体撮像を行うことが可能とな
る。
Furthermore, in the embodiments described above, the light-receiving element includes a one-dimensional pixel array, for example, a one-dimensional pixel array.
Although an example using a CCD has been described, the method according to the present invention uses an optical fiber bundle, so
Two-dimensional pixel arrangement in a plane as shown in the figure
It is also clear that CCDs can be used. In this case, as shown in the figure, the arrangement of the aperture ends on the imaging plane side of the optical fiber bundle is the same as in Figures 5 and 6, but the output end on the light receiving element side is It is branched into a number corresponding to , and connected to the corresponding pixel position. This method makes it possible to effectively utilize the extremely large number of pixels that a two-dimensional CCD has, making it possible to perform high-resolution stereoscopic imaging.

本発明による撮像方式は、以上の説明からも明
らかなように、以下に示すような多様の応用構成
をとることが出来る。
As is clear from the above description, the imaging method according to the present invention can have various applied configurations as shown below.

(1) フアイバ束9,11に接続された受光素子に
より立体視、フアイバ束10に接続された受光
素子によりマルチバンド観測を行うこと。
(1) Stereoscopic viewing is performed using the light receiving elements connected to the fiber bundles 9 and 11, and multiband observation is performed using the light receiving element connected to the fiber bundle 10.

(2) 上記の構成において地上からの指令(コマン
ド)等により立体視のみ、マルチバンド観測の
み等の切替受信を行うこと。
(2) In the above configuration, switching reception such as stereoscopic viewing only, multiband observation only, etc. shall be performed by commands from the ground.

(3) フアイバ束9,10,11の観測波長域を同
一にし、9,11間、10,11間及び9,1
0間の各々によ立体情報を得ること。或いは、
このうち1個を冗長系とし予備として使用する
こと。
(3) The observation wavelength ranges of fiber bundles 9, 10, and 11 are the same, and between 9 and 11, between 10 and 11, and between 9 and 1
Obtain stereoscopic information by each between 0 and 0. Or,
One of these should be used as a redundant system and as a spare.

なお、本発明の方式は航空機等の飛行物体から
の立体観測にも適用出来ることは、以上の説明か
らも明らかであろう。
It should be noted that it is clear from the above description that the method of the present invention can also be applied to three-dimensional observation from a flying object such as an aircraft.

以上述べた如く、本発明により極めて簡潔な構
成にて小型、軽量及び信頼性の高い立体撮像方式
を得ることが出来る。
As described above, according to the present invention, a compact, lightweight, and highly reliable stereoscopic imaging system can be obtained with an extremely simple configuration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の立体撮像方式の一例を示す概念
図、第2図は第1図の方式で直下点を撮像する場
合の概念図、第3図は従来の立体撮像方式の他の
例を示す概念図、第4図は本発明による立体撮像
方式の実施例を示す概念図、第5図は第4図にお
けるフアイバ束及び受光素子部の構成例を示す拡
大斜視図、第6図は第4図に示した方式を採用し
た衛星送信部のブロツク図、第7図a及びbはフ
アイバ開口端の形状の一実施例を示す図、第8図
は同じく地上局装置のブロツク図、第9図は本発
明の方式に二次元CCDを使用した場合のフアイ
バ束及び受光素子部の構成を示す部分拡大斜視図
である。 図において、1……衛星、2,2′……撮像装
置、3,4……光学系、5,6……光電変換素
子、7……可動ミラー、27……広画角光学系、
8……光学系27の結像面、9〜11……フアイ
バ束、12〜14……受光素子、15……信号処
理回路、16……送信部、17……送信アンテ
ナ、18……受信アンテナ、19……受信復調
部、20……分配回路、21〜23……分配回
路、20の出力信号、24,26……遅延回路、
25……画像処理記録部である。
Fig. 1 is a conceptual diagram showing an example of a conventional stereoscopic imaging method, Fig. 2 is a conceptual diagram when a point directly below is imaged using the method shown in Fig. 1, and Fig. 3 is a conceptual diagram showing another example of the conventional stereoscopic imaging method. 4 is a conceptual diagram showing an embodiment of the stereoscopic imaging system according to the present invention, FIG. 5 is an enlarged perspective view showing an example of the configuration of the fiber bundle and light receiving element section in FIG. 4, and FIG. FIG. 4 is a block diagram of a satellite transmitter adopting the method shown in FIG. The figure is a partially enlarged perspective view showing the configuration of a fiber bundle and a light receiving element section when a two-dimensional CCD is used in the method of the present invention. In the figure, 1... Satellite, 2, 2'... Imaging device, 3, 4... Optical system, 5, 6... Photoelectric conversion element, 7... Movable mirror, 27... Wide angle optical system,
8... Image forming plane of optical system 27, 9-11... Fiber bundle, 12-14... Light receiving element, 15... Signal processing circuit, 16... Transmitting unit, 17... Transmitting antenna, 18... Receiving Antenna, 19... Reception demodulation unit, 20... Distribution circuit, 21 to 23... Distribution circuit, output signal of 20, 24, 26... Delay circuit,
25... Image processing recording section.

Claims (1)

【特許請求の範囲】[Claims] 1 撮像対象物の立体面像を得る立体撮像方式に
おいて、前記撮像対象物に対し相対的に移動する
撮像装置内に撮像用光学系の同一結像面内に一方
の開口端を配列し、他方の開口端を多素子光電変
換素子の光電変換部に結合した光フアイバ束を含
み、前記結像面内の開口端を少なくとも2組の一
次元配列構成とし、かつこの少なくとも2組の開
口端配列を前記撮像装置の移動方向に対しほぼ直
角で、かつ互いに平行に配置して、前記撮像装置
移動方向の少なくとも前方及び後方を撮像し前記
多素子光電変換素子からこれら前方及び後方の撮
像データを抽出し、このデータに基づき前記立体
画像を得ることを特徴とする立体撮像方式。
1 In a three-dimensional imaging method that obtains a three-dimensional image of an object to be imaged, one aperture end is arranged within the same imaging plane of an imaging optical system in an imaging device that moves relative to the object to be imaged, and the other an optical fiber bundle whose aperture ends are coupled to a photoelectric conversion section of a multi-element photoelectric conversion element, at least two sets of aperture ends in the imaging plane are arranged in a one-dimensional arrangement, and the at least two sets of aperture end arrangements are arranged. are arranged substantially perpendicularly to the moving direction of the imaging device and parallel to each other to image at least the front and rear of the moving direction of the imaging device, and extract the captured data of these front and rear from the multi-element photoelectric conversion element. and obtaining the stereoscopic image based on this data.
JP58165965A 1983-08-12 1983-09-09 Steroescopic image pickup system Granted JPS6058789A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP58165965A JPS6058789A (en) 1983-09-09 1983-09-09 Steroescopic image pickup system
DE8484305403T DE3475000D1 (en) 1983-08-12 1984-08-08 Image pickup system capable of reproducing a stereo and/or a nonstereo image by the use of a single optical system
EP84305403A EP0135345B1 (en) 1983-08-12 1984-08-08 Image pickup system capable of reproducing a stereo and/or a nonstereo image by the use of a single optical system
US06/639,950 US4613899A (en) 1983-08-12 1984-08-10 Image pickup system capable of reproducing a stereo and/or a nonstereo image by the use of a single optical system
CA000460724A CA1243769A (en) 1983-08-12 1984-08-10 Image pickup system capable of reproducing a stereo and/or a nonstereo image by the use of a single optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58165965A JPS6058789A (en) 1983-09-09 1983-09-09 Steroescopic image pickup system

Publications (2)

Publication Number Publication Date
JPS6058789A JPS6058789A (en) 1985-04-04
JPH02918B2 true JPH02918B2 (en) 1990-01-09

Family

ID=15822370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58165965A Granted JPS6058789A (en) 1983-08-12 1983-09-09 Steroescopic image pickup system

Country Status (1)

Country Link
JP (1) JPS6058789A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2707790B2 (en) * 1990-03-27 1998-02-04 日本電気株式会社 Satellite imaging device
JPH0594514A (en) * 1991-10-01 1993-04-16 Mitsubishi Electric Corp Optical image pickup device and image processing method for the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5875933A (en) * 1981-10-31 1983-05-07 Omron Tateisi Electronics Co Communication system to vehicle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5875933A (en) * 1981-10-31 1983-05-07 Omron Tateisi Electronics Co Communication system to vehicle

Also Published As

Publication number Publication date
JPS6058789A (en) 1985-04-04

Similar Documents

Publication Publication Date Title
EP0009983A1 (en) Optical beam splitting apparatus
US6943946B2 (en) Multiple aperture imaging system
US7859572B2 (en) Enhancing digital images using secondary optical systems
CN105203159A (en) Single channel visible light and infrared image collecting, fusing and monitoring system
US20140168434A1 (en) Dual-q imaging system
US5109158A (en) Staring array imaging systems and imaging array devices
US20090041368A1 (en) Enhancing digital images using secondary optical systems
JP2004007413A (en) Image input device and its method
JPH02918B2 (en)
US4329050A (en) Strip-field spectroradiometer
US8063941B2 (en) Enhancing digital images using secondary optical systems
CN214177434U (en) Visible-infrared integrated camera system
JPH02917B2 (en)
JP2020071487A (en) Camera device, driver assist system, and vehicle
CA1073715A (en) Optical system for multiple imaging of a linear object
JP2752913B2 (en) 3D image capturing device
CN112770065A (en) Visible-infrared integrated camera system and imaging method thereof
WO2024051214A1 (en) Three-dimensional image collection apparatus and method, and related device
EP0510267A1 (en) Imaging array devices and staring array imaging systems
US20230333362A1 (en) Apparatus And Method For Combined Use Of Two Independent Monoculars
CN113109833A (en) Bionic three-dimensional imaging system and method based on fusion of visible light and laser radar
JP6249367B2 (en) Undersea imaging device
JP2856739B2 (en) Spacecraft visual device
JPH01160268A (en) Wide range high resolution image pickup system
WO2001045390A1 (en) Camera with multiple tapered fiber bundles coupled to multiple ccd arrays