JPS6058097A - Method for determination of component in body fluid free from influence with endogenous and exogenous substance - Google Patents

Method for determination of component in body fluid free from influence with endogenous and exogenous substance

Info

Publication number
JPS6058097A
JPS6058097A JP16505483A JP16505483A JPS6058097A JP S6058097 A JPS6058097 A JP S6058097A JP 16505483 A JP16505483 A JP 16505483A JP 16505483 A JP16505483 A JP 16505483A JP S6058097 A JPS6058097 A JP S6058097A
Authority
JP
Japan
Prior art keywords
nad
reaction
endogenous
component
oxidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16505483A
Other languages
Japanese (ja)
Other versions
JPH0316119B2 (en
Inventor
Kuniaki Arimura
有村 国明
Michio Hama
浜 三知夫
Hideto Shibata
柴田 秀人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YATORON KK
Mitsubishi Kagaku Iatron Inc
Original Assignee
YATORON KK
Mitsubishi Kagaku Iatron Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YATORON KK, Mitsubishi Kagaku Iatron Inc filed Critical YATORON KK
Priority to JP16505483A priority Critical patent/JPS6058097A/en
Publication of JPS6058097A publication Critical patent/JPS6058097A/en
Publication of JPH0316119B2 publication Critical patent/JPH0316119B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate the influence of the interference of an endogenous and exogenous substance, and to determine the component in a body fluid with simple operation, by oxidizing the interfering substance in the presence of a dehydrogenase during the determination process, and reducing the NAD(P)<+>. CONSTITUTION:An endogenous and exogenous substance or their derivative exhibiting interfering action during the determination process, is oxidized in the presence of a dehydrogenase to eliminate the interference activity, and at the same time, the NAD(P)<+> is reduced. The produced NAD(P)H is oxidized in the presence of a diaphorase to the original NAD(P)<+>. When the system contains a catalase, the product is immediately oxidized with the dissolved oxygen in the reaction liquid to generate H2O2, which is decomposed and eliminated by the action of the catalase. When a peroxidase is present in the system, the product is oxidized with dissolved oxygen to produce water. The color development of formazan at the final stage is proportional to the content of the component, and accordingly, the amount of the component can be determined accurately by colorimetry.

Description

【発明の詳細な説明】 本発明は内因性あるいは外因性干渉物質の影響を受ける
ことなく生体液中の成分を容易かつ正確に測定する方法
に関する。さらに詳しくは、生体液中の成分を測定する
反応過程に脱水素酵素によるレドックス反応を適用し、
生成するニコチンアミドアデニンジヌクレオチドまたは
ニコチンアミドアデニンジヌクレオチドリン酸(以下い
ずれか一方を意味するときNAD(P) という)を最
終的に電子伝達体であるジアホラーゼと発色性電子受容
体であるテトラゾリウム化合物との反応に導き、ホルマ
ザンの発色を比色定量し、その結果から成分の量を測定
する方法において、検体中に当該反応の発色に関与する
干渉物質がある場合は、予めこれを後述の方法で除去し
た後生体液中の成分の測定を行なう方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for easily and accurately measuring components in biological fluids without being influenced by endogenous or exogenous interfering substances. More specifically, we apply a redox reaction using dehydrogenase to the reaction process to measure components in biological fluids.
The produced nicotinamide adenine dinucleotide or nicotinamide adenine dinucleotide phosphate (hereinafter referred to as NAD(P) when referring to either one) is finally combined with diaphorase, which is an electron carrier, and a tetrazolium compound, which is a chromogenic electron acceptor. In this method, in which the amount of the component is determined by colorimetrically quantifying the color development of formazan with The present invention relates to a method for measuring components in a biological fluid after removal thereof.

血清あるいは血漿中の成分の測定に上述のようなホルマ
ザンの発色を比色定量する方法は従ば次の反応式で示す
方法は、その1例で各反応が定量的に進行するので、最
終のホルマザンの発色を比色定量すれば成分の測定がで
きる@(1)測定すべき成分→誘導物質 (2) 誘導物質+NAD(P)+十NAD(P)H十
1脱水素酵素 一一一一→酸化型誘導物質 (3) NAD(P)H十H+NTB ジオホラーゼ ーーーーーー→NAD (P )++ホルマデン(発色
)ただし、NTB :テトラゾリウム化合物の一つ、ニ
トロテトラゾリウムブルーを表わす。
The method of colorimetrically quantifying the color development of formazan as described above for measuring components in serum or plasma is one example of the method shown by the following reaction formula, since each reaction proceeds quantitatively. Components can be measured by colorimetrically quantifying the color of formazan @ (1) Component to be measured → Inducer (2) Inducer + NAD (P) + 10 NAD (P) H 11 Dehydrogenase 1111 →Oxidized type inducer (3) NAD(P)H+NTB Geophorase---→NAD(P)++Formadene (color development) However, NTB: represents nitrotetrazolium blue, one of the tetrazolium compounds.

しかしこの反応系は検体中に存在する干渉物質の影響を
受け易く予めこれを除かないと正確な測定ができない。
However, this reaction system is easily affected by interfering substances present in the sample, and accurate measurements cannot be made unless these are removed in advance.

もし上記反応(1)の誘導物質と同じものが検体中に干
渉物質として存在するときは、測定すべき成分からの誘
導物質と共に反応(2)以下が進行し、反応(3)のホ
ルマザンの比色定量に正の誤差を与える。このような干
渉物質には、α−アミラーゼ測定における内因性のグル
コース、外因性ノマルトース、GOT 、 GPT測定
におけるL−グルタメート、トリグリセライド測定にお
けるグリセリン等がある。
If the same inducer in reaction (1) above exists as an interfering substance in the sample, reaction (2) and subsequent reactions will proceed together with the inducer from the component to be measured, and the ratio of formazan in reaction (3) will increase. Gives a positive error to color quantification. Such interfering substances include endogenous glucose in alpha-amylase measurements, exogenous nomaltose, GOT, L-glutamate in GPT measurements, glycerin in triglyceride measurements, and the like.

従来は、このような場合測定すべき成分と干渉物質を一
緒に測定した吸光度から干渉物質のみを測定した吸光度
を差し引くことによシ誤差を修正した。しかしこの方法
は操作を二度繰シ返さなければならず煩雑でありしかも
試薬の無駄も大きい。
Conventionally, in such cases, errors have been corrected by subtracting the absorbance measured for only the interfering substance from the absorbance measured for the component to be measured and the interfering substance together. However, this method is complicated because the operation must be repeated twice, and there is also a large waste of reagents.

本発明者等はNAD(P)Hの酸化反応におけるジアホ
ラーゼ活性に関し、鋭意研究した結果、内因性および外
因性干渉物質の影響を全く受けない、しかも操作が簡単
な生体液中の成分の測定方法を開発し、本発明を完成し
た。
As a result of intensive research into diaphorase activity in the oxidation reaction of NAD(P)H, the present inventors found a method for measuring components in biological fluids that is completely unaffected by endogenous and exogenous interference substances and is easy to operate. and completed the present invention.

本発明の方法は測定反応の過程で干渉作用を示す内因性
、外因性物質あるいはその誘導物質を脱水素酵素の存在
下に酸化してその干渉能力を失わせると同時にNAD 
(P ) を還元し生成するNAD(P)I(を次にジ
アホラーゼの存在下に酸化しNAD (P ) に戻す
と同時にカタラーゼの存在下には反応液中の溶存酸素に
よシ直に酸化され同時に過酸化水素を生成するが、この
過酸化水素はカタラーゼの作用で分解されて消失する。
The method of the present invention oxidizes endogenous or exogenous substances or their inducers that exhibit an interfering effect in the course of a measurement reaction in the presence of dehydrogenase to lose their interfering ability and at the same time
The NAD(P)I produced by reducing (P) is then oxidized in the presence of diaphorase and returned to NAD(P), while at the same time being directly oxidized by dissolved oxygen in the reaction solution in the presence of catalase. At the same time, hydrogen peroxide is produced, but this hydrogen peroxide is decomposed by the action of catalase and disappears.

またペルオキシダーゼ(POD)の存在下の場合は溶存
酸素によシ酸化され元に戻ると同時に水を生成する(以
下これらの工程を前処理とも伝う)。
In addition, in the presence of peroxidase (POD), it is oxidized by dissolved oxygen and returns to its original state, at the same time producing water (hereinafter these steps are also referred to as pretreatment).

このようにして検体中の干渉物質を後に影響を残すこと
なく消侭した後前述の通シ成分の測定を行なうので、最
終段階のホルマザン発色は成分の量に比例するものとな
シ正確な比色定量ができる。なおこの場合には発色性電
子受容体であるテトラゾリウム化合物が存在するのでジ
アホラーゼは溶存酸素との反応に優先して定量的にホル
マザンの発色を発現させる。
In this way, after the interfering substances in the sample have disappeared without leaving any effects, the above-mentioned general components are measured, so the final stage of formazan color development is proportional to the amount of the components, and an accurate ratio can be obtained. Capable of color quantification. In this case, since a tetrazolium compound, which is a color-forming electron acceptor, is present, diaphorase gives priority to the reaction with dissolved oxygen and quantitatively develops the color of formazan.

本発明の方法は上述のように、脱水素酵素によるレドッ
クス反応を適用して、測定すべき成分よシ順次定量的に
生成する誘導体を最終的に電子伝達体−発色性電子受容
体反応系を用いて測定する、体液中のα−アミラーゼの
測定、トランスアミナーゼの測定、およびグリセリン脱
ホスフェート脱水素酵素によるトリグリセライドの測定
等に適用でき、その効果は顕著である。
As mentioned above, the method of the present invention applies a redox reaction using a dehydrogenase, and finally converts the derivative to be quantitatively produced sequentially from the component to be measured into an electron carrier-chromogenic electron acceptor reaction system. It can be applied to the measurement of α-amylase in body fluids, the measurement of transaminase, and the measurement of triglyceride using glycerol dephosphate dehydrogenase, and its effects are remarkable.

次に本発明の方法およびその効果について実施例、試験
例によシさらに詳細に説明する。
Next, the method of the present invention and its effects will be explained in more detail with reference to Examples and Test Examples.

実施例1 α−アミラーゼの測定 体液中のα−アミラーゼは次の反応系によシ測定できる
: α−アミラーゼ (1ン 修飾デンプン 分解デンプ ン α−グルコアミラーゼ (2) 分解デンゾy−一一一一一一、グルコース ヘキソキナーゼ (3) グルコース+ATP□グルコースー6−リン酸
+ADP (4) グルコース−6−リン酸十NAD (P )+
グルコースホスホグルコン酸+NAD(P)H (5) NAD(P)H+ NTBLびLニーNAD(
P)++ホルマデン ただし、ATP :アデノシン三すン酸ADP :アデ
ノシンニリン酸 NTB :ニトロテトラゾリウムプール(テトラゾリウ
ム化合物) を表わす。
Example 1 Measurement of α-amylase α-Amylase in body fluids can be measured using the following reaction system: α-amylase (1) modified starch decomposed starch α-glucoamylase (2) decomposed Denzo Y-1111 11. Glucose hexokinase (3) Glucose + ATP □ Glucose-6-phosphate + ADP (4) Glucose-6-phosphate + NAD (P ) +
Glucose phosphogluconate + NAD(P)H (5) NAD(P)H+ NTBL and Lnee NAD(
P) ++Formaden However, ATP: Adenosine trisunate ADP: Adenosine diphosphate NTB: Nitrotetrazolium pool (tetrazolium compound).

反応(5)で生成するホルマザンの吸光度を測定し、そ
の結果から、α−アミラーゼの活性値を計算する。もし
生体液中に内因性グルコース、または、最近盛んに輸液
として用いられているマルトースが干渉物質として存在
するときは反応(3)また、反応(2) 、 (3)に
よシ、次いで反応(4)。
The absorbance of the formazan produced in reaction (5) is measured, and the α-amylase activity value is calculated from the result. If endogenous glucose or maltose, which has recently been widely used as an infusion, exists in the biological fluid as an interfering substance, reaction (3) will occur, and reactions (2) and (3) will occur, followed by reaction ( 4).

(5)によシホルマデンが生成するため、α−アミラー
ゼの測定値に正の誤差を与える。
(5) Since cyformaden is produced, a positive error is given to the measured value of α-amylase.

本発明においては、始めに反応(1)の修飾デンプンを
加えることなく反応(2)以下を行なわせ内因性グルコ
ース、およびマルトースは反応(2)。
In the present invention, reaction (2) and subsequent reactions are performed without adding the modified starch of reaction (1), and endogenous glucose and maltose are removed from reaction (2).

(3) 、 (4)によジローホスホグルコン酸とし、
これを除去する。次いで反応(5)はNTBが存在しな
いので起らず次の別反応が進行する。
(3) and (4) with dirophosphogluconic acid,
Remove this. Next, reaction (5) does not occur because NTB is not present, and the next separate reaction proceeds.

(6) NAD(P)H+ H+ o2(7) NAD
(P)I(+ H+十残0まただし、02:溶存酸素 を表わす。
(6) NAD(P)H+ H+ o2(7) NAD
(P)I(+H+10 remainder 0 except 02: represents dissolved oxygen.

反応(6) 、 (7)によシ干渉物質から生ずるNA
D(P)HはNAD(P) に戻シ、カタラーゼを使用
する場合は最終的には水と酸素を生ずるのみであシ、ま
たPODを使用する場合は水を生ずる。したがって、続
く成分の測定の際には干渉物質の影響は全く除かれてい
る。すなわち前処理をした後、反応(1)よシ反応(5
)までを実施すればα−アミラーゼの正確な測定ができ
る。
NA arising from interfering substances in reactions (6) and (7)
D(P)H is returned to NAD(P), and when catalase is used, only water and oxygen are ultimately produced, and when POD is used, water is produced. Therefore, the influence of interfering substances is completely excluded in the subsequent measurement of the components. In other words, after pretreatment, reaction (1) and reaction (5) are performed.
), α-amylase can be measured accurately.

1、 試薬 (1) ATP 5 m mol/A’NADP+0.
4 m mol/l ソアホラーゼ 2000 μ/1 MgC1220m mol/l ヘキソキナーゼ 600μ/l グルコース−6−リン酸 sooμ/を脱水素酵素 グルコアミラーゼ 4800μ/1 POD 10000μ/を 牛アルゾミン 0.1% を含む100 mmol/lpH8,2コハク酸緩衝液 (2ン NTB 3 m mol/l トリトンX−1001% ソノウム・スターチ 7.2 mm ・グリコレート を含む40 m mol/lpH6,4コンク酸緩衝液 (3) ト リ ト ンX−1000,33%を含む0
.6 NHCl溶液 2、操作法 試薬(1) 2 adに血清検体20μLを加え37℃
、ロム曲伍!迫鉢 汁蕨l勇1.Iル自n4 者L I
y37℃、5分間保温後に試薬(3) 1 dを加えて
、反応を停止した後、波長600 nmで吸光度を測定
する。別にα−アミラーゼ活性既知の検体を上記と同様
に操作し、検量線を造シ、この検量線よシ血清検体のα
−アミラーゼ活性をめる。
1. Reagent (1) ATP 5 mmol/A'NADP+0.
4 m mol/l soaphorase 2000 μ/1 MgC1220 m mol/l hexokinase 600 μ/l glucose-6-phosphate soo μ/ dehydrogenase glucoamylase 4800 μ/1 POD 10000 μ/100 mmol/ containing 0.1% bovine alzomine 1 pH 8,2 succinic acid buffer (2 NTB 3 m mol/l Triton 0 containing 1000, 33%
.. 6 Add 20 μL of serum sample to NHCl solution 2, procedure reagent (1) 2 ad, and add at 37°C.
, Rom Kyokugo! Sakobachi Shiwarabi lyu 1. I le self n4 person L I
After incubating at 37°C for 5 minutes, add reagent (3) 1 d to stop the reaction, and then measure the absorbance at a wavelength of 600 nm. Separately, a sample with known α-amylase activity was operated in the same manner as above to create a standard curve, and this calibration curve was used to calculate the α-amylase activity of the serum sample.
- Measure amylase activity.

試験例1 (リ α−アミラーゼ測定におけるグルコース、の影響 血清検体にグルコースを200.400 。Test example 1 (Influence of glucose on re-α-amylase measurement Glucose 200.400 for serum sample.

600.800.lOoo1ng/dtの濃度で添加し
た検体について実施例1にょシ吸光度を測定した。別に
同じ検体について本発明の前処理を行なわない方法、す
なわち、試薬(1)2dと試薬(2) 1 atの混合
試薬に検体2oμtを加えて、37℃、5分間保温後に
試薬(3) 1 dを加えて反応を停止した後、吸光度
を測定した。
600.800. Example 1 Absorbance was measured for a sample added at a concentration of 100 ng/dt. A method in which the same specimen is not subjected to the pretreatment of the present invention, that is, 2 μt of the specimen is added to a mixed reagent of reagent (1) 2d and reagent (2) 1 at, and after incubation at 37°C for 5 minutes, reagent (3) 1 is added. After the reaction was stopped by adding d, the absorbance was measured.

その結果は、次の表に示す。The results are shown in the following table.

上の表が示すように、内因性グルシースに対する前処理
を行なわない場合は、グルコースによシ、かなシの影響
を受け、結果として、α−アミラーゼ活性を測定してい
るとはいえな諭。本発明によれば、1000−の高濃度
のグルコースによっても影響を受けずにα−アミラーゼ
活性を正確に測定できる。
As shown in the above table, if endogenous glucose is not pretreated, it will be affected by glucose, and as a result, it cannot be said that α-amylase activity is being measured. According to the present invention, α-amylase activity can be accurately measured without being affected even by glucose at a high concentration of 1000 μm.

(2)本発明方法のα−アミラーゼ活性濃度と吸光度と
の関係 実施例1の方法によシ、α−アミラーゼ活性の濃度系列
について吸光度を測定した結果を第1図に示す。
(2) Relationship between α-amylase activity concentration and absorbance according to the method of the present invention FIG. 1 shows the results of measuring the absorbance of α-amylase activity concentration series according to the method of Example 1.

この図が示すようにα−アミラーゼ活性の濃度と吸光度
とは、直線関係を示し、正しく、α−アミラーゼ活性を
測定できることが分る。
As this figure shows, there is a linear relationship between the concentration of α-amylase activity and the absorbance, indicating that α-amylase activity can be accurately measured.

実施例2 グルタメートオキデルアセテート転移酵素(GOT)お
よびグルタメートピルベート転移酵素(GPT )の測
定 体液中のGOT 、 GPTはグルタメート脱水素酵素
(GLDH)を用い次の反応系によシ測定できる。
Example 2 Measurement of glutamate oxidelacetate transferase (GOT) and glutamate pyruvate transferase (GPT) GOT and GPT in body fluids can be measured by the following reaction system using glutamate dehydrogenase (GLDH).

1、 α−ケトグルタレート+L−アスノやラギOT ン酸−−−→L−グルタメート+オキザル酢酸2、 α
−ケトゲルタレ−)+L−アラニンPT −一→L−グルタメート+ピルビン酸 3、L−グルタメート+NAD(P) + H20GL
D)I NAD(P)H+α−ケトグルタレート+NH3ソアホ
ラーゼ 4、NAD(P)H十NTB NAD(P) +ホルマ
ザン 上述の反応で生成するホルマザンの吸光度を測定し、そ
の結果からGOT 、 GPTの活性値を計算する。
1. α-ketoglutarate + L-asunoyaraginoic acid --- → L-glutamate + oxalacetic acid 2. α
-ketogeltare-) + L-alanine PT -1 → L-glutamate + pyruvate 3, L-glutamate + NAD(P) + H20GL
D) I NAD (P) H + α-ketoglutarate + NH3 Soaphorase 4, NAD (P) H + NTB NAD (P) + Formazan The absorbance of the formazan produced in the above reaction was measured, and from the results, the activities of GOT and GPT were determined. Calculate the value.

血清あるいは血漿中に干渉物質として存在するL−グル
タメートはGLDHと反応し、NAD(P)Hを生成す
るまため、GOTあるいはGPTの測定値に正の誤差を
与える。
L-glutamate, which is present as an interfering substance in serum or plasma, reacts with GLDH and produces NAD(P)H, giving a positive error to the measured value of GOT or GPT.

本発明においては始めに内因性L−グルタメートをGL
DHとNAD(P)十の反応によシ、α−ケトグルタレ
ートに転化し、これを除去する。次いで、生成したNA
D(P)Hの除去については実施例1で述べたのと全く
同様に行なわれ干渉物質であるL−グルタメートは消侭
される。
In the present invention, endogenous L-glutamate is first converted into GL
The reaction between DH and NAD(P) converts it into α-ketoglutarate, which is then removed. Then, the generated NA
Removal of D(P)H is carried out in exactly the same manner as described in Example 1, and the interfering substance L-glutamate is eliminated.

次いで、L−アスパラギン酸またはL−アラニン、α−
ケトグルタレートおよびNTBを含む試薬を添加し、ト
ランスアミナーゼ(GOT、GPT )活性を正確に測
定することができる0 1、 試薬 (1) カタラーゼ 10000μ/lグルタメ−) 
40000μ/を 脱水素酵素 ジアホラーゼ 4000μ/l を含むl 00 m mol/lpH7,8リン酸緩衝
液 (2) GPT測定用 DL−アラニン 800 m mol /Lα−ケトグ
ルタレート 11 m mol/1NTB 1. Om
 mol/L を含む100 m mol/lPH7,8リン酸緩衝液 GOT測定用 L−アスパラギン酸400 m mol/lα−ケトグ
ルタレート1.6 m mol/zNTB 1. Om
 mol /L を含む100 m mol/lpH7,8リン酸緩衝液 (3)トリトンX−1000,1%を含む0.IN−H
C1溶液 、操作法 試薬(す250μtに血清検体20μtを加え、37 
℃、 10騎+1JI俣濡径K、 試藝(21250μ
lを加え、さらに37℃、30分間保温後に、試薬(3
) 3 dを加えて反応を停止した後、波長560 n
mで吸光度を測定する。
Then L-aspartic acid or L-alanine, α-
Reagents containing ketoglutarate and NTB can be added to accurately measure transaminase (GOT, GPT) activity.Reagent (1) Catalase 10000 μ/l glutame)
40,000μ/l of dehydrogenase diaphorase 4,000μ/l of 100 mmol/l pH7,8 phosphate buffer (2) DL-alanine for GPT measurement 800 mmol/Lα-ketoglutarate 11 mmol/1NTB 1. Om
100 mmol/l PH7,8 phosphate buffer containing mol/L L-aspartic acid for GOT measurement 400 mmol/l α-ketoglutarate 1.6 mmol/zNTB 1. Om
100 mmol/l pH 7,8 phosphate buffer containing mol/L (3) Triton X-1000, containing 1%. IN-H
Add 20μt of serum sample to C1 solution, procedure reagent (250μt),
℃, 10 horses + 1 JI mata wet diameter K, trial product (21250μ
After further incubating at 37°C for 30 minutes, add the reagent (3
) After stopping the reaction by adding 3 d, the wavelength was 560 n.
Measure the absorbance at m.

別に、GOT 、、GPT活性既知の検体を上記と同様
に操作し、検量線を造シ、この検量線よシ、血清検体の
GOT 、 GPT活性をめる。
Separately, a sample with known GOT, GPT activity is operated in the same manner as above to create a calibration curve, and the GOT and GPT activities of the serum sample are determined from this calibration curve.

試験例2 (1) GO’l’ 、 GPT測定におけるL−グル
タメートの影響 血清検体にL−グルタメートを20.40゜so、xo
omp/aの濃度で添加した検体について、実施例2に
よシ、吸光度を測定した。
Test Example 2 (1) Effect of L-glutamate on GO'l', GPT measurement L-glutamate was added to the serum sample at 20.40°so,xo
The absorbance of the sample added at the concentration of omp/a was measured according to Example 2.

別に同じ検体について、本発明の前処理を行なわない方
法、即ち、試薬(1)250μtと試薬(2) 250
μtの混合試薬に検体20μtを加えて、37℃、30
分間保温後に試薬(3) 3 dを加えて反応停止した
後、吸光度を測定した。
Separately, there is a method in which the same specimen is not subjected to the pretreatment of the present invention, that is, 250 μt of reagent (1) and 250 μt of reagent (2).
Add 20μt of sample to μt mixed reagent and heat at 37°C for 30 minutes.
After incubating for a minute, 3 d of reagent (3) was added to stop the reaction, and the absorbance was measured.

その結果は、次の表に示す。The results are shown in the following table.

上の表が示すように、内因性L−グルタメートに対する
前処理を行なわない場合は、L−グルタメートによシ、
かなシの影響を受け、結果として、GOT 、 GPT
活性を測定しているとはいえない。本発明によれば、1
00 mg/lieの高濃度のL−グルタメートによっ
ても影響を受けずに、GOT 、 GPT活性を正確に
測定できる。
As the table above shows, if no pretreatment is performed for endogenous L-glutamate, L-glutamate
Under the influence of Kanashi, as a result, GOT, GPT
It cannot be said that activity is being measured. According to the invention, 1
GOT and GPT activities can be accurately measured without being affected by L-glutamate at a high concentration of 0.00 mg/lie.

(2)本発明方法のGOT 、 GPT活性濃度と吸光
度との関係 実施例2の方法によ5 、GOT 、 GPT活性の濃
度系列について吸光度を測定した結果を第2図に示す。
(2) Relationship between GOT and GPT activity concentration and absorbance according to the method of the present invention The absorbance was measured for a concentration series of GOT and GPT activities using the method of Example 2. The results are shown in FIG.

この図が示すように、GOT 、 GPT活性の濃度と
吸光度とは、直線関係を示し、正しくGOT 、 GP
T活性を測定できることが分る。
As this figure shows, there is a linear relationship between the concentration of GOT and GPT activity and the absorbance, which indicates that GOT and GPT activities are correctly related.
It turns out that T activity can be measured.

以上述べた通シ本発明方法は簡単な方法で検体中の干渉
性物質を除去し試薬の無駄な使用もなく正確な測定を可
能にした点で極めて有用なものである。
Overall, the method of the present invention as described above is extremely useful in that it removes interfering substances from a sample in a simple manner and enables accurate measurements without wasting reagents.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図の縦軸は吸光度を示し、横軸は血清の
希釈度を示す。 また、第1図O印は、血清中のα−アミラーゼ活性を、
第2図の○印はGOT活性を、Δ印はGPT活性を示す
。 第1図 iEl、列令駄度
The vertical axes in FIGS. 1 and 2 indicate absorbance, and the horizontal axes indicate serum dilution. In addition, the O mark in Figure 1 indicates α-amylase activity in serum.
In FIG. 2, ○ marks indicate GOT activity, and Δ marks indicate GPT activity. Figure 1 iEl, series command

Claims (1)

【特許請求の範囲】[Claims] 生体液中の成分を測定するに当シ、脱水素酵素を用いる
レドックス反応を適用し生成する還元型ニコチンアミド
アデニンジヌクレオチドまたはニコチンアミドアデニン
ジヌクレオチドリン酸を電子伝達体−発色性電子受容体
反応系を用いて比色定量し、生体液中の成分の含有量を
測定する方法において、当該反応に干渉作用を有する生
体液中の内因性、外因性物質あるいはその誘導物質を予
め脱水素酵素存在下に酸化し、その際生成する還元型ニ
コチンアミドアデニンジヌクレオチドまたはニコチンア
ミドアデニンジヌクレオチドリン酸を発色性電子受容体
の存在しない状態でジアホラーゼ及びカタラーゼまたは
ペルオキシダーゼと作用させて除去するこ
To measure components in biological fluids, we apply a redox reaction using dehydrogenase to generate reduced nicotinamide adenine dinucleotide or nicotinamide adenine dinucleotide phosphate in an electron carrier-chromogenic electron acceptor reaction. In the method of colorimetrically measuring the content of components in a biological fluid using a colorimetric system, endogenous or exogenous substances or their inducers in the biological fluid that interfere with the reaction are removed in advance from the presence of dehydrogenase. oxidation, and the reduced nicotinamide adenine dinucleotide or nicotinamide adenine dinucleotide phosphate produced at that time is removed by reacting with diaphorase and catalase or peroxidase in the absence of a chromogenic electron acceptor.
JP16505483A 1983-09-09 1983-09-09 Method for determination of component in body fluid free from influence with endogenous and exogenous substance Granted JPS6058097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16505483A JPS6058097A (en) 1983-09-09 1983-09-09 Method for determination of component in body fluid free from influence with endogenous and exogenous substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16505483A JPS6058097A (en) 1983-09-09 1983-09-09 Method for determination of component in body fluid free from influence with endogenous and exogenous substance

Publications (2)

Publication Number Publication Date
JPS6058097A true JPS6058097A (en) 1985-04-04
JPH0316119B2 JPH0316119B2 (en) 1991-03-04

Family

ID=15804958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16505483A Granted JPS6058097A (en) 1983-09-09 1983-09-09 Method for determination of component in body fluid free from influence with endogenous and exogenous substance

Country Status (1)

Country Link
JP (1) JPS6058097A (en)

Also Published As

Publication number Publication date
JPH0316119B2 (en) 1991-03-04

Similar Documents

Publication Publication Date Title
US4242446A (en) Method for determining a substance in a biological fluid and reagent combination for use in the method
JPH02174695A (en) Method and reagent for colorimetry of analite by means of enzymic oxidation and direct or coloring electron acceptor therefor
JPH0577399B2 (en)
JPH0470000B2 (en)
US6309852B1 (en) Method and reagent for quantitative determination of 1,5-anhydroglucitol
JPH02104298A (en) Quantification of 1,5-anhydroglucitol
JPH0220239B2 (en)
JPS6058097A (en) Method for determination of component in body fluid free from influence with endogenous and exogenous substance
JPS61293397A (en) Composition for detecting triglyceride
JPS5818077B2 (en) Method and reagent for measuring glycerin
JPS6030519B2 (en) A method to measure components in biological fluids without interference from endogenous or exogenous substances
JPS6066993A (en) Method for measuring component in living body fluid
JPH047200B2 (en)
JPS63248397A (en) Method for determining d-mannose
JPS5934900A (en) Determination of component in bioliquid
JP2515551B2 (en) Novel method for quantifying hydrogen peroxide
EP0427252B1 (en) Measurement of diaphorase activity and reagent therefor
JP3034984B2 (en) Highly sensitive method and composition for quantification of D-galactose
JPH06253894A (en) Quantitative determination of 1,5-anhydroglucitol
JPS59213399A (en) Determination of nh3 or atp
JPH0343096A (en) Determination of substrate or enzyme
JPH0253039B2 (en)
JPH07108239B2 (en) Method for quantifying pyruvic acid and method for quantifying biological components using the method
JPS59106299A (en) Determination of reducing coenzyme
JPS6030696A (en) Method and reagent for determination of creatinine and creatine