JPS5934900A - Determination of component in bioliquid - Google Patents

Determination of component in bioliquid

Info

Publication number
JPS5934900A
JPS5934900A JP14325782A JP14325782A JPS5934900A JP S5934900 A JPS5934900 A JP S5934900A JP 14325782 A JP14325782 A JP 14325782A JP 14325782 A JP14325782 A JP 14325782A JP S5934900 A JPS5934900 A JP S5934900A
Authority
JP
Japan
Prior art keywords
ascorbic acid
determination
specimen
bioliquid
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14325782A
Other languages
Japanese (ja)
Other versions
JPS6036755B2 (en
Inventor
Michio Hama
浜 三知夫
Hideto Shibata
柴田 秀人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YATORON KK
Mitsubishi Kagaku Iatron Inc
Original Assignee
YATORON KK
Mitsubishi Kagaku Iatron Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YATORON KK, Mitsubishi Kagaku Iatron Inc filed Critical YATORON KK
Priority to JP14325782A priority Critical patent/JPS6036755B2/en
Publication of JPS5934900A publication Critical patent/JPS5934900A/en
Publication of JPS6036755B2 publication Critical patent/JPS6036755B2/en
Expired legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate the interference of ascorbic acid, and to determine the components in a bioliquid specimen easily and accurately, by removing ascorbic acid from the bioliquid specimen using phenazine methosulfate or its derivative. CONSTITUTION:In the determination of the components in a bioliquid specimen by the redox reaction using a dehydrogenase or oxidase, e.g. determination of alpha-amylase activity, determination of triglyceride, determination of transaminase activity, etc., the specimen is pretreated with phenazine methosulfate or its derivative and catalase or peroxidase in the absence of a color-developing electron acceptor. The reducing property of ascorbic acid exhibiting interference action to said redox reaction can be eliminated by this pretreatment.

Description

【発明の詳細な説明】 本発明は生体液中のアスコルビン酸の干渉を受けること
なく生体液中の成分を容易かつ正確に測定するためのア
スコルビン酸の除去に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the removal of ascorbic acid in order to easily and accurately measure components in biological fluids without interference from ascorbic acid in biological fluids.

生体液中の成分を測定するために脱水素酵素あるいは酸
化酵素による酸化・1元反応を用いる比色定量法が診断
試薬の分野では従来から広く行なわれてきた。しかしい
ずれの酵素反応にもとすく発色系も生体液中の物質によ
り干渉を受けることが多く、中でもアスコルビン酸をは
じめとする還元性物質によるものが重要視されてへた。
Colorimetric assays using oxidation and one-component reactions using dehydrogenases or oxidases have been widely used in the field of diagnostic reagents to measure components in biological fluids. However, as with any enzymatic reaction, color-forming systems are often interfered with by substances in biological fluids, and reducing substances such as ascorbic acid are particularly important.

すなわち、これら還元性物質が存在するときは、脱水素
酵素を用いたホルマザン発色反応においては正誤差を、
酸化酵素を用いた酸化縮合反応においては負の誤差を与
える。したがって、例えばアスコルビン酸が生体液中に
存在するときは成分の測定に先立ってアスコルビン酸を
除去し、その干渉作用を消去しなければ正確な成分の値
を測定することはで負ない。従来このようなアスコルビ
ン酸の干渉作用を除くためにはアスコルビン酸オキシダ
ーゼのような酵素を用いる方法が一般であるが、酵素を
用いることは試薬の安定性、経済性の点から望ましいこ
とではない。
In other words, when these reducing substances are present, the correct error in the formazan coloring reaction using dehydrogenase is
Oxidative condensation reactions using oxidases give negative errors. Therefore, for example, when ascorbic acid is present in a biological fluid, it is impossible to accurately measure the value of the component unless ascorbic acid is removed and its interference effect is eliminated prior to measuring the component. Conventionally, in order to eliminate the interference effect of ascorbic acid, it is common to use an enzyme such as ascorbic acid oxidase, but the use of an enzyme is not desirable from the viewpoint of stability and economic efficiency of the reagent.

本発明者等はこれらの欠点を改善するため種々研究した
結果、フェナジンメトサルフェートあるいはその誘導体
の特性を利用し生体液中のアスコルビン酸を除去する方
法を開発し本発明を完成した。
As a result of various studies aimed at improving these drawbacks, the present inventors developed a method for removing ascorbic acid from biological fluids by utilizing the properties of phenazine methosulfate or its derivatives, and completed the present invention.

本発明に従って、生体液中の成分を脱水素酵素あるいは
酸化酵素による酸化還元反応を用いて測定する方法にお
いて、当該反応に干渉作用を有する生体液中のアスコル
ビン酸を発色性電子受容体の存在しない状態でフェナジ
ンメトサルフェートあるいはその誘導体およびカタラー
ゼまたはペルオキシダーゼと作用させ、その還元性を消
失せしめることを特徴とする生体液中の成分の測定方法
が提供される。
According to the present invention, in a method for measuring components in a biological fluid using a redox reaction using a dehydrogenase or an oxidase, ascorbic acid in the biological fluid that interferes with the reaction is detected in the absence of a color-forming electron acceptor. Provided is a method for measuring a component in a biological fluid, which is characterized in that the reducing property of phenazine methosulfate or a derivative thereof and catalase or peroxidase is eliminated.

本発明の方法において次の模式で示す過程を経てアスコ
ルビン酸の除去が行なわれる。
In the method of the present invention, ascorbic acid is removed through the steps shown in the following schematic.

生体液中の成分の測定に先立って前処理として本発明方
法を行なうと、上記の模式に従いアスコルビン酸は速や
かに酸化されその干渉作用は消失する。ここでPMS 
(m−PMS)は触媒として働らき、元に戻るため変化
はない。従って、事後の成分の測定反応に何ら影響を及
ぼすことはない。
When the method of the present invention is performed as a pretreatment prior to measuring components in biological fluids, ascorbic acid is rapidly oxidized according to the above-mentioned scheme, and its interfering effect disappears. PMS here
(m-PMS) acts as a catalyst and returns to its original state, so there is no change. Therefore, there is no influence on subsequent measurement reactions of the components.

生体液中の成分の測定に脱水素酵素を用いる場合に本発
明方法を前処理として適用すれば、事後の酸化還元反応
を次の反応式に従って新たに加えるテトラゾリウム塩の
存在下にホルマザンの発色に導も比色定量することがで
きる。
If the method of the present invention is applied as a pretreatment when dehydrogenase is used to measure components in biological fluids, the subsequent redox reaction can be performed to develop the color of formazan in the presence of newly added tetrazolium salt according to the following reaction formula. can also be quantified colorimetrically.

NAD(P)H十H++ PMS (rn−PMS )
−−−→NAD+(P) +PMS H2(m−PMS
 H2)PMSH,(m−PMSHI)+テトラゾリウ
ム塩−−−−→P M S (m −P M S )+
ホルマザン発色性)  NAD+(P) :ニコチンア
ミドアダニ/ジヌクレオチド捷たは、ニコチン アミドアデニノジヌクレオチドリン酸 NAD(P)H:同上の還元型 この場合、発色性電子受容体であるテトラゾリウム塩が
存在するのでホルマザン発色が優先して起り正確な測定
値が得られると共に測定試薬の1成分であるPMS (
m−PMS )  がそのまま利用でへ、かつ本発明方
法実施後つまり前処理後、その量に変化がないことは従
来のアスコルビン酸オキシグーゼのような酵素を別に必
要とする方法に較べ操作上もまた経済的にも非常に有利
である。
NAD(P)H1H++ PMS (rn-PMS)
---→NAD+(P) +PMS H2(m-PMS
H2) PMSH, (m-PMSHI)+tetrazolium salt----→PMS (m-PMS)+
formazan chromogenic) NAD+(P): nicotinamide adenoid dinucleotide phosphate or nicotinamide adenino dinucleotide phosphate NAD(P)H: reduced form of the above In this case, a tetrazolium salt which is a chromogenic electron acceptor Because of the presence of PMS (
The fact that m-PMS) can be used as it is and that there is no change in the amount after carrying out the method of the present invention, that is, after pretreatment, is also operationally advantageous compared to conventional methods that require a separate enzyme such as ascorbic acid oxygose. It is also very economically advantageous.

また、酸化酵素を用いる場合には、本発明方法による前
処理後、酸化還元反応により生成する過酸化水素をペル
オキシダーゼ存在下に適当な電子供与体を新たに添加す
ることにより、つぎの酸化縮合反応により比色定量がで
へる。
In addition, when using an oxidizing enzyme, after pretreatment according to the method of the present invention, the hydrogen peroxide produced by the redox reaction can be further added with an appropriate electron donor in the presence of peroxidase to carry out the next oxidative condensation reaction. This allows for colorimetric determination.

H2O2+電子供与体 一一−→ 発色性酸化網金物 ペルオキシダーゼ この場合、生成する過酸化水素はアスコルビン酸が除去
されているのでアスコルビン酸による消費はなく正確な
成分の址を示す酸化縮合物の発色を与える。
H2O2 + Electron donor 11-→ Color-forming oxidized mesh peroxidase In this case, the hydrogen peroxide produced has ascorbic acid removed, so it is not consumed by ascorbic acid, and the color of the oxidized condensate shows the exact location of the components. give.

本発明方法は、上述のように脱水素酵素あるいは酸化酵
素による酸化還元反応による生体液中の成分の測定に広
く適用可能である。
As mentioned above, the method of the present invention is widely applicable to the measurement of components in biological fluids through redox reactions caused by dehydrogenases or oxidases.

例えば、−α−アミラーゼ活性測定法、トリグリセライ
ド測定法やトランスアミナーゼ活性測定法などがある。
Examples include -α-amylase activity measurement method, triglyceride measurement method, and transaminase activity measurement method.

以下に実験例を示す。An experimental example is shown below.

実験例 アスコルビン酸の酸化反応: 試薬 (1)  2 m M  m −P M 510000
v/l  ペルオキシダーゼを含む0.1Mリン酸バッ
ファー pH7,5操作法 試薬(1) 2.5−を37℃、5分間保温後、100
 my/llのアスコルビン酸溶液10μtを加え、2
65 nmでの吸光度の変化を求める。
Experimental example Oxidation reaction of ascorbic acid: Reagent (1) 2 m M m -P M 510000
v/l 0.1M phosphate buffer containing peroxidase pH 7.5 Procedure reagent (1) After incubating 2.5- at 37°C for 5 minutes, 100
Add 10 μt of my/ll ascorbic acid solution and
Determine the change in absorbance at 65 nm.

第1図にはアスコルビン酸の還元型と、反応生成′吻の
酸化型との吸収スペクトルを示した。
Figure 1 shows the absorption spectra of the reduced form of ascorbic acid and the oxidized form of the reaction product.

第2図にはアスコルビン酸の酸化反応の経時変化を示し
た。
Figure 2 shows the time course of the oxidation reaction of ascorbic acid.

本条件の場合には、反応開始約3分間でアスコルビン酸
は完全に酸化される。
Under these conditions, ascorbic acid is completely oxidized within about 3 minutes from the start of the reaction.

次に実施例により本発明をさらに詳しく説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例1 α−アミラーゼ活性測定法 試薬 (1)  5mM  アデノシン三リン酸(ATP)0
.4  mM    NADP 30  μMm−PMS 20mM  Mgα。
Example 1 α-amylase activity assay reagent (1) 5mM adenosine triphosphate (ATP) 0
.. 4mM NADP 30μM m-PMS 20mM Mgα.

10000 v/L  カタラーゼ 600  v/l   ヘキソキナーゼ500  v/
L   グリコース6リン酸デヒドロゲナーゼ 4800v/l グリコアミラーゼ 0.1% 牛アルブミ/ ヲ含む0.1Mコハク酸ナトリウムバッファー pH8
,2 (2) 3mM  ニトロテトラゾリウムフルー1 %
    ト リ ト ン   X−1007,2t/l
  ソデイウムカルボキ/ スターチ を含む0.04Mコハク酸ナトリウムバッファー pH
6,4 (3)0.33  %   ト リ ト ン   X−
100を含む0.6NHC/溶液 操作法 試薬(1)2ゴに検体20μtを加え、37℃5分間保
温後、試薬(2)1−を加え、さらに37℃5分間保温
後に試薬(3) 1 dを加えて反応を停止した後、波
長600 nmで吸光度を測定する。別に、α−アミラ
ーゼ活性既知の検体を上記と同様に操作し、検量線をつ
くり、この検量線より検体のα−アミラーゼ活性を求め
る。
10000 v/L catalase 600 v/l hexokinase 500 v/
L Glycose 6-phosphate dehydrogenase 4800v/l Glycoamylase 0.1% Bovine albumin/0.1M sodium succinate buffer pH 8
,2 (2) 3mM Nitrotetrazolium Flu 1%
Triton X-1007, 2t/l
0.04M Sodium Succinate Buffer with Sodium Carboxylate/Starch pH
6,4 (3)0.33% Triton X-
Add 20μt of specimen to 0.6NHC/solution handling method reagent (1) 2 containing 100, keep warm at 37°C for 5 minutes, add reagent (2) 1-, and keep warm at 37°C for 5 minutes, then add reagent (3) 1. After stopping the reaction by adding d, the absorbance is measured at a wavelength of 600 nm. Separately, a sample with known α-amylase activity is operated in the same manner as above to create a calibration curve, and the α-amylase activity of the sample is determined from this calibration curve.

試験例1 α−アミラーゼ活性測定法におけるアスコル
ビン酸の影響: 検体に予じめ、アスコルビン酸を12.5゜25.50
■/dlの濃度で添加した検体について実施例1により
吸光度を測定した。結果を第3図に示した。
Test Example 1 Effect of ascorbic acid on α-amylase activity measurement method: Ascorbic acid was added to the sample in advance at 12.5°25.50°C.
The absorbance was measured according to Example 1 for the sample added at a concentration of 1/dl. The results are shown in Figure 3.

本条件下にアスコルビン酸80■leu相当までは完全
に消去され影響を受けないことは明らかである。
It is clear that under these conditions up to 80 leu of ascorbic acid is completely eliminated and is not affected.

実施例2 トリグリセライド測定法 試薬 (1)  20 pM  m−PMS 10000v/l  ペルオキシダーゼ1、6 X 1
011v/L  リパーゼを含む0.02M  N、N
’−ビス(2−ハイドロキシエチル)−2−アミノエタ ノスルホン酸バッファー(BES ) pH7,7 (2)  80 v/l    グリセロキナーゼ24
00v/l    グリセロール3リン酸オキシ5μM
 7ラビ/アデニンジヌクレオ チド(FADl 1.5μMA、TP 15mゲ戸均α2 0.1mM  4−アミノア7チピリ10.5mM  
N−エチル−N−スルホプロピル−m−トルイジン を含む0.02MBESバッファーpH7,7操作法 試薬(1) 0.5 tdに検体20μtを加え37℃
10分間保温後、試薬(2) 2. s triを加え
、さらに37℃15分間保温し、波長550 nmで吸
光度を測定する。別に濃度既知の検体を上記と同様に操
作し検量線を作りこの検量線より検体のトリグリセライ
ド含量を求める。
Example 2 Triglyceride measurement reagent (1) 20 pM m-PMS 10000v/l Peroxidase 1,6 X 1
0.02M N, N containing 011v/L lipase
'-Bis(2-hydroxyethyl)-2-aminoethanosulfonic acid buffer (BES) pH 7,7 (2) 80 v/l glycerokinase 24
00v/l glycerol triphosphate oxy 5μM
7 Rabi/adenine dinucleotide (FADl 1.5μMA, TP 15mA2 0.1mM 4-Aminoa 7tipiri 10.5mM
0.02 MBES buffer containing N-ethyl-N-sulfopropyl-m-toluidine pH 7.7 Procedure Reagent (1) Add 20 μt of specimen to 0.5 td and stir at 37°C.
After incubating for 10 minutes, remove reagent (2) 2. s tri was added, the mixture was further incubated at 37°C for 15 minutes, and the absorbance was measured at a wavelength of 550 nm. Separately, a sample whose concentration is known is operated in the same manner as above to create a calibration curve, and the triglyceride content of the sample is determined from this calibration curve.

試験例2 トリグリセライド測定法におけるアスコルビ
ン酸の影響: 検体に予じめ、アスコルビン酸を10゜17、5 、2
5 、35 rrq/lttの濃度で添加した検体につ
いて・実施例2により吸光度を測定した。結果を第4図
に示した。
Test Example 2 Effect of ascorbic acid on triglyceride measurement method: Ascorbic acid was added to the sample in advance at 10°17,5,2
For the specimen added at a concentration of 5,35 rrq/ltt, the absorbance was measured according to Example 2. The results are shown in Figure 4.

酸化蝉素を用いた場合にも本条件下にアスコルビン酸3
0〜/dt相当までは完全に影響を除くことが可能であ
る。
Even when using oxidized cicada, ascorbic acid 3
It is possible to completely eliminate the influence up to the equivalent of 0 to /dt.

以上述べたように、本発明方法は簡単な方法で検体中の
アスコルビン酸の干渉作用を除去し、試薬の無駄な使用
もなく正確な測定を可能にした点で有用なものである。
As described above, the method of the present invention is useful in that it eliminates the interference effect of ascorbic acid in a sample in a simple manner and enables accurate measurement without wasting reagents.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はアスコルビン酸の吸収スペクトルを、第2図は
アスコルビン酸量の酸化反応における経時変化を示す。 第3図はα−アミラーゼ活性測定法におけるアスコルビ
ン酸濃度の影響を示す。第4図はトリグリセライド測定
法におけるアスコルビン酸の濃度の影響を示す。 第1図 558− 第3図
FIG. 1 shows the absorption spectrum of ascorbic acid, and FIG. 2 shows the change over time in the oxidation reaction of the amount of ascorbic acid. FIG. 3 shows the influence of ascorbic acid concentration on the α-amylase activity measurement method. FIG. 4 shows the influence of ascorbic acid concentration on the triglyceride measurement method. Figure 1 558- Figure 3

Claims (1)

【特許請求の範囲】[Claims] 生体液中の成分を脱水素酵素あるいは酸化酵素による酸
化還元反応を用いて測定する方法において、当該反応に
干渉作用を有する生体液中のアスコルビン酸を発色性電
子受容体の存在しない状態でフェナジンメトサルフェー
トあるいはその誘導体およびカタラーゼまたはベルオキ
ツダーゼと作用させ、その還元性を消失せしめることを
特徴とする生体液中の成分の測定方法。
In a method for measuring components in biological fluids using a redox reaction using dehydrogenase or oxidase, ascorbic acid in the biological fluid, which has an interfering effect on the reaction, is treated with phenazinemeth in the absence of a color-forming electron acceptor. 1. A method for measuring components in a biological fluid, which comprises interacting with sulfate or a derivative thereof and catalase or peroxodase to eliminate its reducing property.
JP14325782A 1982-08-20 1982-08-20 Method for measuring components in biological fluids Expired JPS6036755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14325782A JPS6036755B2 (en) 1982-08-20 1982-08-20 Method for measuring components in biological fluids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14325782A JPS6036755B2 (en) 1982-08-20 1982-08-20 Method for measuring components in biological fluids

Publications (2)

Publication Number Publication Date
JPS5934900A true JPS5934900A (en) 1984-02-25
JPS6036755B2 JPS6036755B2 (en) 1985-08-22

Family

ID=15334535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14325782A Expired JPS6036755B2 (en) 1982-08-20 1982-08-20 Method for measuring components in biological fluids

Country Status (1)

Country Link
JP (1) JPS6036755B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6315168A (en) * 1986-06-21 1988-01-22 ベ−リンガ−・マンハイム・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Method of measuring serum fructosamine content in blood or sample induced from blood

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6315168A (en) * 1986-06-21 1988-01-22 ベ−リンガ−・マンハイム・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Method of measuring serum fructosamine content in blood or sample induced from blood

Also Published As

Publication number Publication date
JPS6036755B2 (en) 1985-08-22

Similar Documents

Publication Publication Date Title
KR920001449B1 (en) Process for the colorimetric determination of an analyte by means of enzymetic oxidation
US5032506A (en) Color control system
JPH0577399B2 (en)
WO1988004694A1 (en) Digital threshold color control system
JPH0555119B2 (en)
US5962248A (en) Quantitative determination method for chloride ions
JP4807920B2 (en) Total homocysteine measurement method
JPS59230161A (en) Method and reagent for decomposing reducing material
EP0100217A2 (en) Process for quantitative determination of substrate treated with oxidase
JPH02104298A (en) Quantification of 1,5-anhydroglucitol
US4695539A (en) Process for quantitative determination of substrate treated with oxidase
JPS5818077B2 (en) Method and reagent for measuring glycerin
JPS5934900A (en) Determination of component in bioliquid
JPS5822200B2 (en) How to measure serum components
JPH0249600A (en) Assay of nad(p)h
JPS61173799A (en) Method of determining activity of substrate or enzyme
JPS63214199A (en) Enzyme assay of biological substance
JPS6066993A (en) Method for measuring component in living body fluid
JPS6030519B2 (en) A method to measure components in biological fluids without interference from endogenous or exogenous substances
JPH0343096A (en) Determination of substrate or enzyme
JPS63116700A (en) Analytical method for trace substance
JPS59106299A (en) Determination of reducing coenzyme
JPS6058097A (en) Method for determination of component in body fluid free from influence with endogenous and exogenous substance
US4695540A (en) Quantitative determination of substrate treated with oxidase
JPS606638B2 (en) Method for measuring components in biological fluids