JPH02104298A - Quantification of 1,5-anhydroglucitol - Google Patents

Quantification of 1,5-anhydroglucitol

Info

Publication number
JPH02104298A
JPH02104298A JP25641688A JP25641688A JPH02104298A JP H02104298 A JPH02104298 A JP H02104298A JP 25641688 A JP25641688 A JP 25641688A JP 25641688 A JP25641688 A JP 25641688A JP H02104298 A JPH02104298 A JP H02104298A
Authority
JP
Japan
Prior art keywords
glucose
hexokinase
oxidase
atp
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25641688A
Other languages
Japanese (ja)
Other versions
JPH0771514B2 (en
Inventor
Noriaki Tanaka
憲彰 田中
Kuniyoshi Matsunaga
松永 國義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amano Enzyme Inc
Original Assignee
Amano Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amano Pharmaceutical Co Ltd filed Critical Amano Pharmaceutical Co Ltd
Priority to JP25641688A priority Critical patent/JPH0771514B2/en
Publication of JPH02104298A publication Critical patent/JPH02104298A/en
Publication of JPH0771514B2 publication Critical patent/JPH0771514B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To accomplish the title quantification conveniently, accurately and quickly by making, in advance, a reagent containing e.g., glucokinase act on a sample followed by making a determination using e.g., pyranose oxidase. CONSTITUTION:A reagent containing 4-400U/ml of glucokinase or hexokinase, 0.5-12U/ml of pyruvic acid kinase, 1-10mM of phosphoenolpyruvic acid and 0.3-1.4mM of adenosine triphosphoric acid is added to a sample such as 1,5- anhydroglucitol(1,5-AG)-contg. human serum to make a reaction to convert the glucose in the sample into glucose-6-phosphoric acid and allow the 1,5-AG to be left. Thence, this 1,5-AG is incorporated with 10-500U/ml of pyranose oxidase or L-sorbose oxidase and, if needed, 3-70mM of Mg ion followed by reaction at 5-40 deg.C for 1-60min to form H2O2. The H2O2 is then quantified with peroxidase to quantify the corresponding 1,5-anhydroglucitol.

Description

【発明の詳細な説明】 〔利用分野〕 本発明は1.5−アンヒドログルシトール(以下1.5
−ACと言う)の正確、迅速でかつ自動分析装置にも応
用可能な測定方法に関するものである。
Detailed Description of the Invention [Field of Application] The present invention relates to 1,5-anhydroglucitol (hereinafter referred to as 1.5-anhydroglucitol).
- AC) is accurate, rapid, and applicable to automatic analyzers.

〔従来技術〕[Prior art]

1.5−ACはヒト髄液及び血清中に存在し、ある種の
疾患特に糖尿病において血清中の量が低下することが報
告されている化合物である。
1.5-AC is a compound that exists in human cerebrospinal fluid and serum, and it has been reported that the amount in serum decreases in certain diseases, particularly diabetes.

従来1.5−AGを測定する方法は、主にガスクロマト
グラフィー法によって行われていた。最近、試料中の1
.5−AGの測定に1.5−AC特異性酵素を用いた測
定法(特開昭62−79780)が開発された。
Conventionally, 1.5-AG has been measured mainly by gas chromatography. Recently, 1 in the sample
.. A method for measuring 5-AG using a 1.5-AC specific enzyme (Japanese Unexamined Patent Publication No. 79780/1983) was developed.

また、1.5−ACをピラノースオキシダーゼ又はL−
ソルボースオキシダーゼを用いて測定する方法(特開昭
63−185397)等が報告されている。しかし、後
者の方法においてはピラノースオキシダーゼ又はL−ソ
ルボースオキシダーゼが基質特異性において厳密でない
ために健状人で通常、100 mg/a、 I!尿病患
者テハlo001ng/clJ!ニモ達するグルコース
等のような共存するI!頻に反応し、測定できない。そ
のため、グルコースの様なti類を除去する目的のため
イオン交換樹脂を充填したカラムに試料を通し、そのの
ちL5−AGをピラノースオキシダーゼ又はL−ソルボ
ースオキシダーゼを用いて測定する方法、または試料中
のグルコースをグルコースオキシダーゼで処理し、その
結果生成する過酸化水素をカタラーゼで分解後、残存す
る1、5−AC;をピラノースオキシダーゼ又はL−ソ
ルボースオキシダーゼで測定する方法、さらには試料を
前処理した後、ヘキソキナーゼでグルコースをグルコー
ス−6−リン酸に変換後、残存する1、5−ACをピラ
ノースオキシダーゼ又はL−ソルボースオキシダーゼで
測定する方法がある。
In addition, 1.5-AC can be used with pyranose oxidase or L-
A method of measuring using sorbose oxidase (Japanese Unexamined Patent Publication No. 185397/1983) has been reported. However, in the latter method, the substrate specificity of pyranose oxidase or L-sorbose oxidase is not strict, so the amount of pyranose oxidase or L-sorbose oxidase is usually 100 mg/a, I! Urinary patient Tehalo001ng/clJ! I coexist like glucose, etc. that reaches Nemo! It reacts frequently and cannot be measured. Therefore, for the purpose of removing Ti such as glucose, there is a method in which a sample is passed through a column packed with ion exchange resin, and then L5-AG is measured using pyranose oxidase or L-sorbose oxidase, or A method of treating glucose with glucose oxidase, decomposing the resulting hydrogen peroxide with catalase, and measuring the remaining 1,5-AC with pyranose oxidase or L-sorbose oxidase, and further after pretreating the sample. There is a method in which, after converting glucose to glucose-6-phosphate using hexokinase, remaining 1,5-AC is measured using pyranose oxidase or L-sorbose oxidase.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、1.5−AG特異性酵素を使用する方法
はその基質特異性がそれ程厳密で無い事より測定の際に
は誤差の原因となりやすく、またカラムを使用して糖類
を除去したのちに、ピラノースオキシダーゼ又はし−ソ
ルボースオキシダーゼを作用させる方法は操作が繁雑で
あり、近年各種の臨床検査項目に対して実施されている
自動分析機器での自動化への適用が難しい。またグルコ
ースの除去のためにグルコースオキシダーゼを用いる方
法は、試料中の溶存酸素の消費が後のピラノースオキシ
ダーゼ又は1.−ソルボースオキシダーゼの反応を阻害
し、さらにグルコースオキシダーゼのKm値が大きい為
、試料中のグルコースを完全に処理できない。グルコー
スの除去の為にヘキソキナーゼを用い、残存する1、5
−ACをピラノースオキシダーゼで測定しようとした場
合、ヘキソキナーゼで完全にグルコースを除去できなか
ったり、ピラノースオキシダーゼの反応時間が長く、正
確な定量を迅速に行うことができないなどの問題点があ
った。
However, the method using a 1.5-AG specific enzyme is likely to cause errors during measurement because its substrate specificity is not very strict, and after removing sugars using a column, The method of using pyranose oxidase or sorbose oxidase requires complicated operations, and is difficult to apply to automation with automatic analysis equipment that has been implemented in recent years for various clinical test items. In addition, the method using glucose oxidase for the removal of glucose involves the use of pyranose oxidase or 1. - Since the reaction of sorbose oxidase is inhibited and the Km value of glucose oxidase is large, glucose in the sample cannot be completely processed. Using hexokinase to remove glucose, remaining 1,5
When trying to measure -AC using pyranose oxidase, there were problems such as the inability to completely remove glucose with hexokinase and the long reaction time of pyranose oxidase, making it impossible to perform accurate quantification quickly.

(問題点を解決するための手段およびその作用〕本発明
者等は、簡便で実用的な1.5−ACの測定方法即ち自
動分析機器にも応用可能な方法を検討し、本発明を完成
した。
(Means for solving the problems and their effects) The present inventors investigated a simple and practical method for measuring 1.5-AC, that is, a method that can be applied to automatic analysis equipment, and completed the present invention. did.

本発明は、試料中に共存するグルコースを効率良く除去
し、試料中の1.5−ACを正確、迅速に測定する方法
を提供するものであり、詳細にはマグネシウムイオン、
アデノシン三リン酸(以下、ATPと言う)、ホスホエ
ノールピルビン酸、ピルビン酸キナーゼ、ヘキソキナー
ゼ或いはグルコキナーゼと試料を反応させ、試料中のグ
ルコースをグルコース−6−リン酸に変換後、残存する
1、5−ACにピラノースオキシダーゼまたは1.−ソ
ルボースオキシダーゼを反応させ、生成した過酸化水素
をパーオキシダーゼと各種の基質を使用して測定する方
法に関する。
The present invention provides a method for efficiently removing glucose coexisting in a sample and accurately and quickly measuring 1.5-AC in the sample.
After reacting the sample with adenosine triphosphate (hereinafter referred to as ATP), phosphoenolpyruvate, pyruvate kinase, hexokinase, or glucokinase to convert glucose in the sample into glucose-6-phosphate, the remaining 1, 5-AC with pyranose oxidase or 1. -Relates to a method of reacting sorbose oxidase and measuring generated hydrogen peroxide using peroxidase and various substrates.

ついで本発明の詳細な説明する。グルコースのグルコー
ス−6−リン酸への変換はマグネシウムイオン、ATP
の存在下でヘキソキナーゼ或いはグルコキナーゼによっ
て行われるが、本発明者らの研究によればATP1度が
反応に大きく影響することを見出した。つまりATPが
少量の場合、グルコースの変換が充分になされ難く、ま
た逆に多量の場合は以後のピラノースオキシダーゼ又は
L−ソルボースオキシダーゼ、パーオキシダーゼ。
Next, the present invention will be explained in detail. Conversion of glucose to glucose-6-phosphate involves magnesium ions, ATP
The reaction is carried out using hexokinase or glucokinase in the presence of ATP, but according to the research conducted by the present inventors, it was found that the degree of ATP greatly influences the reaction. In other words, when ATP is small, it is difficult to convert glucose sufficiently, and when ATP is large, it is necessary to use pyranose oxidase, L-sorbose oxidase, or peroxidase.

過酸化水素検出試薬の反応を抑制することが判明した。It was found that the reaction of the hydrogen peroxide detection reagent was suppressed.

この問題を解決するためホスホエノールピルビン酸、ピ
ルビン酸キナーゼを測定系に存在させた。即ち、ヘキソ
キナーゼまたはグルコキナーゼとグルコースの反応でA
TPはADPへと変換されるが、ホスホエノールピルビ
ン酸、ヘキソキナーゼを存在させることによってADP
は再びATPとして供給されるため、測定系でのATP
濃度は一定の範囲内にコントロールされる。従って、測
定系でのATP濃度を最適な範囲にコントロールする事
が可能となり、上記のような問題点は認められず、迅速
で簡便な測定が出来、さらに操作が簡便であるので自動
化測定をもたやすくなった。
To solve this problem, we included phosphoenolpyruvate and pyruvate kinase in the measurement system. That is, the reaction of hexokinase or glucokinase with glucose produces A
TP is converted to ADP, but by the presence of phosphoenolpyruvate and hexokinase, ADP
is supplied as ATP again, so ATP in the measurement system
The concentration is controlled within a certain range. Therefore, it is possible to control the ATP concentration in the measurement system within the optimal range, the above problems are not observed, and the measurement is quick and simple.Furthermore, because the operation is simple, automated measurement is also possible. It became easy.

本発明に使用するグルコキナーゼ、ヘキソキナーゼ、ピ
ルビン酸キナーゼ、ピラノースオキシダーゼ、L−ソル
ボースオキシダーゼ及びパーオキシダーゼは国際生化学
連合の分類に従い各々EC2,7,1,2、EC2,7
,1,1、EC2,7,1,40、EC1,1,3,i
o 、EC1,1,3,11及びEC1,11,1,7
と分類されるものであり、臨床検査に使用できるほどに
精製されたものが好ましい。またホスホエノールピルビ
ン酸等の試薬は反応に際して妨げとならない程度に精製
されたものが用いられる。各々の酵素及び試薬の使用量
は、反応温度、反応時間、反応p)I、酵素の起源や試
薬の純度により左右されるが、概ね以下に示す量であれ
ばよい。グルコキナーゼまたはヘキソキナーゼは4〜1
00 U/mfl、ピルビン酸キナーゼは0.5〜12
11/厩、ホスホエノールビルピン酸は1〜10mM、
ATPは0.3〜1.4mM、マグネシウムイオンは3
〜70mM、ピラノースオキシダーゼ又はL−ソルボー
スオキシダーゼはlO〜500U/ dが使用される。
Glucokinase, hexokinase, pyruvate kinase, pyranose oxidase, L-sorbose oxidase and peroxidase used in the present invention are classified as EC2, 7, 1, 2 and EC2, 7, respectively, according to the classification of the International Union of Biochemistry.
,1,1,EC2,7,1,40,EC1,1,3,i
o , EC1,1,3,11 and EC1,11,1,7
It is preferable that it be purified to the extent that it can be used in clinical tests. Further, reagents such as phosphoenolpyruvate are used after being purified to such an extent that they do not interfere with the reaction. The amounts of each enzyme and reagent to be used depend on the reaction temperature, reaction time, reaction p)I, the origin of the enzyme, and the purity of the reagent, but may generally be in the amounts shown below. Glucokinase or hexokinase is 4-1
00 U/mfl, pyruvate kinase 0.5-12
11/stable, phosphoenolbilpic acid is 1-10mM,
ATP is 0.3-1.4mM, magnesium ion is 3
~70mM, pyranose oxidase or L-sorbose oxidase is used at ~500U/d.

反応温度は5〜40°C1好ましくは25〜40″Cで
反応時間は1分〜60分で好ましくは1分〜10分であ
る。更に、グルコースを効率良く変換するためにムタロ
ターゼを共存させてもよく、その場合の使用量は概ね0
.25〜4.OU/ mlである。反応により生成した
過酸化水素の定量には高感度に定量できる方法であれば
いずれでもよいが、通常はペルオキシダーゼを使用して
、各種の基質を過酸化水素で酸化し、生成した色素を分
光光度計などで測定する方法が簡便でかつ自動測定装置
に好適である。又、生成する過酸化水素を測定する代わ
りに消費した酸素を適当な方法で検出してもよい。
The reaction temperature is 5 to 40°C, preferably 25 to 40"C, and the reaction time is 1 minute to 60 minutes, preferably 1 minute to 10 minutes. Furthermore, in order to efficiently convert glucose, mutarotase is allowed to coexist. In that case, the amount used is approximately 0.
.. 25-4. OU/ml. Any method that can be used to quantify hydrogen peroxide produced by the reaction with high sensitivity may be used, but usually peroxidase is used to oxidize various substrates with hydrogen peroxide, and the produced dye is measured spectrophotometrically. The method of measuring with a meter is simple and suitable for automatic measuring devices. Also, instead of measuring the hydrogen peroxide produced, the consumed oxygen may be detected by an appropriate method.

次に本発明を試験例及び実施例で説明するが、本発明は
これらにより制限されるものではない。
Next, the present invention will be explained with test examples and examples, but the present invention is not limited thereto.

試験例1 ヘキソキナーゼの1.5〜ACへの反応性各
種濃度の1.5−A−Gへのヘキソキナーゼの反応性を
下記条件で検討した。なお健常人の血漿1.5−AG濃
度の平均値は約2■/d1〔日本臨床、44巻夏期臨時
増刊号(1986) )である。1.5−AC濃度とし
て 0.1.2.5.10.15及び20■/d1溶液
0.05戒に13mMOMgC1gを含有する50mM
 トリス−塩酸緩衝液(pH8,0) 2.6rn1に
500u/ rrdl濃度のヘキソキナーゼ溶液を0.
1ml、16mMのATP溶液を0 、1 mfl、4
hMのホスホエノールピルビン酸溶液をo、ird。
Test Example 1 Reactivity of hexokinase to 1.5-AC The reactivity of hexokinase to 1.5-AG at various concentrations was investigated under the following conditions. The average plasma 1.5-AG concentration of healthy individuals is about 2/d1 (Japan Clinical Research, Vol. 44, Summer Special Issue (1986)). 1.5-AC concentration: 50mM containing 13mMgC1g in 0.15 and 20 /d1 solution
Tris-hydrochloric acid buffer (pH 8,0) 2.6rn1 with 500u/rrdl hexokinase solution at 0.0.
1ml, 16mM ATP solution at 0, 1 mfl, 4
hM phosphoenolpyruvate solution.

6mMのNADH溶液を0.1戚及び50u/戒のピル
ビン酸キナーゼと50u/ rtdlのラフティトデヒ
ドロゲナーゼを含む溶液0.1dを加え、37°Cで反
応させ、340nmの吸光度変化を測定することにより
、ヘキソキナーゼの1.5−AGの反応性を確かめた。
By adding 0.1 d of a solution containing 6 mM NADH solution and 50 u/rtdl of pyruvate kinase and 50 u/rtdl of raftite dehydrogenase, reacting at 37 °C, and measuring the change in absorbance at 340 nm. The reactivity of hexokinase with 1.5-AG was confirmed.

いずれの濃度においても1.5−ACを含まないものと
反応に差は認められなかった。即ちヘキソキナーゼは1
.5−ACに反応しないことが判明した。
At any concentration, no difference in reaction was observed compared to that containing no 1.5-AC. That is, hexokinase is 1
.. It was found that it did not react with 5-AC.

試験例2 グルコキナーゼの1.5−AC;への反応性
ヘキソキナーゼ溶液に代わり、1000u/ml濃度の
グルコキナーゼ溶液を使用した点以外は、試験側上と同
様に検討した。その結果、ヘキソキナーゼの場合と同様
、グルコキナーゼは1.5−AGに反応しないことが判
明した。
Test Example 2 Reactivity of glucokinase to 1.5-AC; The same study as above was conducted on the test side, except that a glucokinase solution with a concentration of 1000 u/ml was used instead of the hexokinase solution. As a result, it was found that glucokinase does not react with 1.5-AG, similar to the case of hexokinase.

fi  ヘキソキナーゼによりグルコースを処理する際
のATP濃度の影響 試料として500mg/ aのグルコース溶液或いは水
0.05m1に1.15u/mItのムタロターゼ、 
4.6u/ rtrlのパーオキシダーゼ、 0.05
8mg/d1の4−アミノアンチピリン、 0.37m
g/戚のN−エチル−N−(2−ヒドロキシ−3−スル
ホプロピル)−m−トルイジン+ 13mMのMgC1
gを含有する50mM トリス−塩酸緩衝液(pH8,
0)を2.8mi、  500u/−濃度のヘキソキナ
ーゼ溶液を0.1成及び各種濃度のATP溶液0.1d
 ゛を加え、37°Cで10分間反応させた後、500
u/ roll濃度のピラノースオキシダーゼ0.1d
を添加し、37°Cで10分間反応させ、550tvの
吸光度を測定した。
fi Effect of ATP concentration when treating glucose with hexokinase Sample: 500 mg/a glucose solution or 1.15 u/ml mutarotase in 0.05 ml water;
4.6u/rtrl peroxidase, 0.05
4-aminoantipyrine at 8 mg/d1, 0.37 m
g/related N-ethyl-N-(2-hydroxy-3-sulfopropyl)-m-toluidine + 13mM MgCl
50mM Tris-HCl buffer (pH 8,
0) for 2.8 mi, 500 u/- concentration of hexokinase solution at 0.1 concentration and ATP solution at various concentrations at 0.1 d.
After adding ゛ and reacting at 37°C for 10 minutes,
u/roll concentration of pyranose oxidase 0.1d
was added and reacted at 37°C for 10 minutes, and the absorbance at 550 tv was measured.

グルコース溶液を含有する試料と含有しない試料との吸
光度の差を第1表に示す。ATP濃度が高まるに従い、
550nmの吸光度の差は減少する。
Table 1 shows the difference in absorbance between samples containing and not containing glucose solution. As the ATP concentration increases,
The difference in absorbance at 550 nm decreases.

^TP濃度としては330mM以上を必要とすることが
判明した。
It was found that a TP concentration of 330 mM or more is required.

試験例4 グルコキナーゼによりグルコースを処理する
際のATP濃度の影響 ヘキソキナーゼ溶液に代わり、1000u/m1度のグ
ルコキナーゼ溶液を使用した点以外は拭駁桝主と同様に
操作した。
Test Example 4 Effect of ATP concentration when treating glucose with glucokinase The procedure was the same as in the wiping box except that a 1000 u/ml glucokinase solution was used instead of the hexokinase solution.

結果を第2表に示す。νJ創例」−と同様に330++
M以上のATP濃度を必要とすることが判明した。
The results are shown in Table 2. 330++ similar to νJ creation example"-
It has been found that an ATP concentration of M or more is required.

(以下余白) 第2表 試験例5 ピラノースオキシダーゼ、パーオキシダーゼ
、過酸化水素検出試薬によって1.5−AGを測定する
際のATPの濃度の影響20mg/dの1.5−AC?
容ン夜0.05dに4.6u/蔵のパーオキシダーゼ、
 0.058n+g/ifの4−アミノアンチピリン、
 0.31mg/mlのN−エチル−N−(2−ヒドロ
キシ−3−スルホプロピル)−m〜トルイジン、 13
mMのMgCl□を含有する50mM )リス−塩酸緩
衝液(pH8,0) 2.8mAと、各種濃度のATP
溶液を0.1m、 1ooOu/m1f1度のピラノー
スオキシダーゼ0.1mflを加え、37°Cで反応さ
せ550nmの吸光度の変化を測定した。第1図に示す
ようにATP1度が高濃度の場合、吸光度の上昇が抑制
されることが判明した。都3先例」ユや試験例4に示し
た様に試料中のグルコースを除去するには、ATP濃度
として330mM以上を必要とするが]の結果ではこの
ような高い濃度ではピラノースオキシダーゼの反応を阻
害し、正確な測定ができないことが判明した。
(Margins below) Table 2 Test Example 5 Effect of ATP concentration when measuring 1.5-AG using pyranose oxidase, peroxidase, and hydrogen peroxide detection reagents 20 mg/d of 1.5-AC?
Peroxidase of 4.6u/kura per 0.05d,
4-aminoantipyrine at 0.058n+g/if;
0.31 mg/ml N-ethyl-N-(2-hydroxy-3-sulfopropyl)-m~toluidine, 13
50mM) Lis-HCl buffer containing mM MgCl□ (pH 8,0) 2.8mA and various concentrations of ATP
0.1 mfl of the solution was added with 0.1 mfl of pyranose oxidase at a concentration of 1 ooOu/ml and 1 degree, and the reaction was carried out at 37°C, and the change in absorbance at 550 nm was measured. As shown in FIG. 1, it was found that when the concentration of ATP 1 degree is high, the increase in absorbance is suppressed. As shown in Precedent 3 and Test Example 4, an ATP concentration of 330mM or more is required to remove glucose from a sample], but such a high concentration inhibits the reaction of pyranose oxidase. However, it turned out that accurate measurements could not be made.

2  ホスホエノールピルビン酸、ピルビン酸キナーゼ
を都4先例」−の試薬に加えた時の1.5−ACを測定
する際のATPの濃度の影響 U例」−のATP溶液として、16.5mFIのATP
2 Effect of concentration of ATP when measuring 1.5-AC when phosphoenolpyruvate, pyruvate kinase is added to the reagent of ``4 precedent'' - As an ATP solution of 16.5 mFI ATP
.

49mMのホスホエノールピルビン酸及び50u/dの
ピルビン酸キナーゼ溶液を含む試液0.1 dを使用し
た結果、第2表の330mMのATP溶液の場合と同様
にグルコースを含有した試料と含有しない試料との吸光
度差は認められず、少量のATP濃度で完全にグルコー
スと反応することが判明した。このことはヘキソキナー
ゼによってATPがADPに変換したのち、ホスホエノ
ールピルビン酸及びピルビン酸キナーゼを共存させるこ
とによって、ADPがATPとしてリサイクルで供給さ
れるためATPの欠乏をもたらさないためである。
As a result of using 0.1 d of a test solution containing 49 mM phosphoenolpyruvate and 50 u/d pyruvate kinase solution, the results showed that the sample contained glucose and the sample did not contain glucose, as in the case of the 330 mM ATP solution in Table 2. No difference in absorbance was observed, indicating that ATP completely reacts with glucose at a small concentration of ATP. This is because after ATP is converted to ADP by hexokinase, by coexisting phosphoenolpyruvate and pyruvate kinase, ADP is recycled and supplied as ATP, so that no ATP deficiency occurs.

裏施拠土 血清中1.5−ACの測定 ■グルコース処理にヘキソキナーゼを用いた場合試薬A
  1.25u/mj!ムタロターゼ。
Measurement of 1.5-AC in serum ■Reagent A when using hexokinase for glucose treatment
1.25u/mj! mutarotase.

4.92u/成パーオキシダーゼ。4.92u/peroxidase.

0.062mg/m14−アミノアンチピリン。0.062 mg/ml 4-aminoantipyrine.

19.9u/−ヘキソキナーゼ。19.9u/-hexokinase.

0.66mM  A T P 。0.66mM ATP.

1 、96mMホスホエノールピルビン酸。1, 96mM phosphoenolpyruvate.

2.4u/ml  ピルビン酸キナーゼ。2.4u/ml pyruvate kinase.

試薬B  200u/++j!ピラノースオキシダーゼ
ヒト血清0.05mfに試薬A2.5rnlを添加し、
37°Cで5分間反応させた。その後試薬B−t−0.
5d添加し、5分後の550nmでの吸光度を測定した
。なお、同時にヒト血清の代わりに精製水を用いたブラ
ンクも測定した。あらかじめ作製した1、5−AC標準
検量線を用いて、血清中1,5〜AC濃度を測定すると
2.3mg/d1と判明した。
Reagent B 200u/++j! Add 2.5rnl of reagent A to 0.05mf of pyranose oxidase human serum,
The reaction was carried out at 37°C for 5 minutes. Then reagent B-t-0.
The absorbance was measured at 550 nm after 5 minutes. At the same time, a blank using purified water instead of human serum was also measured. When the 1,5-AC concentration in serum was measured using a 1,5-AC standard calibration curve prepared in advance, it was found to be 2.3 mg/d1.

■グルコース処理にグルコキナーゼを用いた場合ヘキソ
キナーゼに代わり33u/dグルコギナーゼを使用した
以外は■と同様に操作した。
(2) When glucokinase was used for glucose treatment The procedure was the same as (2) except that 33 u/d glucoginase was used instead of hexokinase.

血清中L5−AC濃度は2.1mg/d1と判明した。The serum L5-AC concentration was found to be 2.1 mg/d1.

プ」1例」−ガスクロマトグラフィー法と末法との比較 ヒト血清30検体について従来より行われているガスク
ロマトグラフィーによる方法と裏片」I 1の■及び■
の方法を用いて1.5−AGi1度を定量した。
Example 1 - Comparison of gas chromatography method and final method Conventional gas chromatography method and reverse side of 30 human serum samples I 1 ■ and ■
1.5-AGi 1 degree was quantified using the method of .

自動分析装置としては島津製作所製のCL−7000型
を使用し、)艷1例」2に使用した試薬Aを250 μ
!、試薬Bを50uf使用し、試料としての血清は5μ
!使用した。
The CL-7000 model manufactured by Shimadzu Corporation was used as an automatic analyzer, and 250 µm of reagent A used in 1 case 2 was used.
! , using 50uf of reagent B and 5μ of serum as a sample.
! used.

■グルコース処理にヘキソキナーゼを用いた場合ガスク
ロマトグラフィーによる方法と末法による結果は第2図
に示す。相関係数は0.89で両定量法間には、高い相
関性が認められた。
(2) When hexokinase is used for glucose treatment The results of the gas chromatography method and the terminal method are shown in Figure 2. The correlation coefficient was 0.89, indicating a high correlation between both quantitative methods.

■グルコース処理にグルコキナーゼを用いた場合相関係
数は0.91でヘキソキナーゼを用いた場合と同様にガ
スクロマトグラフィー法との間には、高い相関性が認め
られた。
(2) When glucokinase was used for glucose treatment, the correlation coefficient was 0.91, and similar to when hexokinase was used, a high correlation with gas chromatography was observed.

〔発明の効果] 本発明は、正確かつ自動化測定可能な1.5−ACの測
定法に関するものである。即ち、本性により近年各種の
臨床検査項目に対して実施されている自動分析機器での
測定が可能となり、多数検体を同時に処理出来るように
なった。
[Effects of the Invention] The present invention relates to a method for measuring 1.5-AC that is accurate and capable of automated measurement. That is, due to its nature, it has become possible to perform measurements using automatic analyzers that have recently been implemented for various clinical test items, and it has become possible to process a large number of samples at the same time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はATPの濃度の差による反応の差を示し、第2
図はグルコース処理にヘキソキナーゼを用いた本発明の
方法とガスクロマトグラフィーによる方法の各種血清に
おける相関図であり、第3図はグルコース処理にグルコ
キナーゼを用いた本発明の方法とガスクロマトグラフィ
ーによる方法の各種血清における相関図である。 特許出願人  天野製薬株式会社 第  l  図 す 反応時間(分) 第  2  図 本発明(加g、/dll 第  3  図 本発明(mg/dl)
Figure 1 shows the difference in reaction due to the difference in ATP concentration, and the second
The figure shows the correlation between the method of the present invention using hexokinase for glucose treatment and the method using gas chromatography in various serum samples. Figure 3 shows the method of the present invention using glucokinase for glucose treatment and the method using gas chromatography. FIG. 2 is a correlation diagram of various serum types. Patent applicant Amano Pharmaceutical Co., Ltd. Figure 1 Reaction time (minutes) Figure 2 The present invention (additional g,/dll) Figure 3 The present invention (mg/dl)

Claims (1)

【特許請求の範囲】[Claims] (1)1,5−アンヒドログルシトールをピラノースオ
キシダーゼまたはL−ソルボースオキシダーゼを用いて
測定する方法において、予め試料にグルコキナーゼまた
はヘキソキナーゼ及びアデノシン三リン酸、ピルビン酸
キナーゼ、ホスホエノールピルビン酸を含む試薬を作用
させることを特徴とする1,5−アンヒドログルシトー
ルの定量法。
(1) In a method for measuring 1,5-anhydroglucitol using pyranose oxidase or L-sorbose oxidase, glucokinase or hexokinase and adenosine triphosphate, pyruvate kinase, or phosphoenolpyruvate are added to the sample in advance. 1. A method for quantifying 1,5-anhydroglucitol, which comprises reacting with a reagent containing 1,5-anhydroglucitol.
JP25641688A 1988-10-12 1988-10-12 Method for quantifying 1,5-anhydroglucitol Expired - Lifetime JPH0771514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25641688A JPH0771514B2 (en) 1988-10-12 1988-10-12 Method for quantifying 1,5-anhydroglucitol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25641688A JPH0771514B2 (en) 1988-10-12 1988-10-12 Method for quantifying 1,5-anhydroglucitol

Publications (2)

Publication Number Publication Date
JPH02104298A true JPH02104298A (en) 1990-04-17
JPH0771514B2 JPH0771514B2 (en) 1995-08-02

Family

ID=17292368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25641688A Expired - Lifetime JPH0771514B2 (en) 1988-10-12 1988-10-12 Method for quantifying 1,5-anhydroglucitol

Country Status (1)

Country Link
JP (1) JPH0771514B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05304997A (en) * 1991-12-18 1993-11-19 Nitto Boseki Co Ltd Determination of 1,5-anhydroglucitol
US5426033A (en) * 1993-01-27 1995-06-20 Kyowa Medex Co., Ltd. Method for enzymatic determination of substrate after enzymatically removing galactose
US5468621A (en) * 1992-03-02 1995-11-21 Nitto Boseki Co., Ltd. Method of quantitative assay for 1,5-anhydroglucitol
JPH10191998A (en) * 1997-01-17 1998-07-28 Asahi Chem Ind Co Ltd Determination of 1,5ag or adp
EP1008657A2 (en) * 1998-12-11 2000-06-14 Kyowa Medex Co., Ltd. Method and reagent for quantitative determination of 1,5-anhydroglucitol
JP2001116756A (en) * 1999-08-09 2001-04-27 Nippon Kayaku Co Ltd Liquid reagent and preservation method
US6268166B1 (en) 1991-12-18 2001-07-31 Nitto Boseki Co., Ltd Method of quantitative assay for 1,5-anhydroglucitol

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8945864B2 (en) 2006-06-22 2015-02-03 Ikeda Food Research Co., Ltd. Method of determining 1,5-anhydroglucitol, and reagent composition for determining 1,5-anhydroglucitol
CN104483487B (en) * 2014-12-22 2017-01-25 宁波美康生物科技股份有限公司 Kit for detecting 1, 5-anhydro-D-ghlcitol in human blood

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05304997A (en) * 1991-12-18 1993-11-19 Nitto Boseki Co Ltd Determination of 1,5-anhydroglucitol
US6268166B1 (en) 1991-12-18 2001-07-31 Nitto Boseki Co., Ltd Method of quantitative assay for 1,5-anhydroglucitol
US5468621A (en) * 1992-03-02 1995-11-21 Nitto Boseki Co., Ltd. Method of quantitative assay for 1,5-anhydroglucitol
US5426033A (en) * 1993-01-27 1995-06-20 Kyowa Medex Co., Ltd. Method for enzymatic determination of substrate after enzymatically removing galactose
JPH10191998A (en) * 1997-01-17 1998-07-28 Asahi Chem Ind Co Ltd Determination of 1,5ag or adp
EP1008657A2 (en) * 1998-12-11 2000-06-14 Kyowa Medex Co., Ltd. Method and reagent for quantitative determination of 1,5-anhydroglucitol
US6309852B1 (en) 1998-12-11 2001-10-30 Kyowa Medex Co., Ltd. Method and reagent for quantitative determination of 1,5-anhydroglucitol
EP1008657A3 (en) * 1998-12-11 2002-01-09 Kyowa Medex Co., Ltd. Method and reagent for quantitative determination of 1,5-anhydroglucitol
US6448029B1 (en) 1998-12-11 2002-09-10 Kyowa Medex Co., Ltd. Method and reagent for quantitative determination of 1,5-anhydroglucitol
JP2001116756A (en) * 1999-08-09 2001-04-27 Nippon Kayaku Co Ltd Liquid reagent and preservation method
JP4544598B2 (en) * 1999-08-09 2010-09-15 日本化薬株式会社 Liquid reagent and storage method

Also Published As

Publication number Publication date
JPH0771514B2 (en) 1995-08-02

Similar Documents

Publication Publication Date Title
CA1125151A (en) Triglycerides assay and reagents therefor
US6309852B1 (en) Method and reagent for quantitative determination of 1,5-anhydroglucitol
JPH02104298A (en) Quantification of 1,5-anhydroglucitol
EP0639646A1 (en) High precision determination of d-glucose-6-phosphate and composition therefor
Masayoshi et al. A new enzymatic method to determine creatine
US5426033A (en) Method for enzymatic determination of substrate after enzymatically removing galactose
JP2711721B2 (en) Determination of 1,5-anhydroglucitol in samples containing glucose
US5286627A (en) Method of high-sensitive analysis of bile acid and reagent composition for the analysis
US5468621A (en) Method of quantitative assay for 1,5-anhydroglucitol
Mura et al. Spectrophotometric determination of ribose-1-phosphate
EP0387697A2 (en) Determination of aminotranferases
US5447847A (en) Quantitative determination of pyruvic acid and quantitative analysis for component of living body making use of such determination
Rindfrey et al. Kinetic determination of glucose concentrations with glucose dehydrogenase
JP2761768B2 (en) Method for determining NADH and method for determining bile acid using the same
JP4544598B2 (en) Liquid reagent and storage method
JP4081709B2 (en) How to avoid the effects of contaminants
JPH0731498A (en) Determination kit for 1,5-anhydroglucitol and determination method using the kit
JPH04293499A (en) Catalase activity measurement
JPS63146800A (en) Measurement of inorganic phosphorus
EP0392021B1 (en) Method for analyzing components
JPH06253894A (en) Quantitative determination of 1,5-anhydroglucitol
JP3287879B2 (en) Determination of 1,5-anhydroglucitol
JPH01320998A (en) Determination of 1,5-anhydroglucitol in sample containing glucose
JPH06237794A (en) Determination of 1,5-anhydroglucitol
JPH06237795A (en) Determination of 1,5-anhydroglucitol

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 14