JPS6030519B2 - A method to measure components in biological fluids without interference from endogenous or exogenous substances - Google Patents

A method to measure components in biological fluids without interference from endogenous or exogenous substances

Info

Publication number
JPS6030519B2
JPS6030519B2 JP9928582A JP9928582A JPS6030519B2 JP S6030519 B2 JPS6030519 B2 JP S6030519B2 JP 9928582 A JP9928582 A JP 9928582A JP 9928582 A JP9928582 A JP 9928582A JP S6030519 B2 JPS6030519 B2 JP S6030519B2
Authority
JP
Japan
Prior art keywords
reaction
measured
endogenous
pms
dehydrogenase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9928582A
Other languages
Japanese (ja)
Other versions
JPS58216698A (en
Inventor
国明 有村
三和夫 浜
秀人 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YATORON KK
Original Assignee
YATORON KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YATORON KK filed Critical YATORON KK
Priority to JP9928582A priority Critical patent/JPS6030519B2/en
Publication of JPS58216698A publication Critical patent/JPS58216698A/en
Publication of JPS6030519B2 publication Critical patent/JPS6030519B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は内因性あるいは外因性干渉物質の影響を受ける
ことなく生体液中の成分を容易にかつ正確に測定する方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for easily and accurately measuring components in biological fluids without being influenced by endogenous or exogenous interfering substances.

さらに詳しくは、生体液中の成分を測定する反応過程に
脱水素酵素によるレドックス反応を適用し、生成するニ
コチンアミドアデニンジヌクレオチドまたはニコチンア
ミドアデニンジヌクレオチドリン酸(以下いずれか一方
を意味するときNAD(P)↓という)を最終的に電子
伝達体であるフェナジンメトサルフェート(以下PMS
という)あるいはその誘導体である1ーメトキシー5ー
メチルフェナジンメトサルフェート(以下m−PMSと
いう)と発色性電子受容体であるテトラゾIJウム化合
物との反応に導き、ホルマザンの発色を比色定量し、そ
の結果から成分の量を測定する方法において、検体中に
当該反応のホルマザン発色に関与する干渉物質がある場
合は、予めこれを後述の方法で除去した後生体液中の成
分の測定を行なう方法に関する。血清あるいは血賂中の
成分の測定に上述のようなホルマザンの発色を比色定量
する方法は従釆から数多く診断試薬に応用されている。
例えば次の反応式で示す方法は、その1例で各反応が定
量的に進行するので、最終のホルマザンの発色を比色定
量すれば、成分の測定ができる。‘1’測定すべき成分
→誘導物質 ■ 誘導物質十NAD(P)+脱水素酵素酸化型十NA
D(P)日十日十 誘導物質(3} NAD(P
)H+H++m一PMS→NAD(P)十m−PMSH
2【4} m−PMSH2十NTB→m−PMS+ホル
マザン(発色)ただし、NTB:テトラゾリウム化合物
の一つ、ニトロテトラゾリウムブルーを表わす。
More specifically, a redox reaction using dehydrogenase is applied to the reaction process for measuring components in biological fluids, and nicotinamide adenine dinucleotide or nicotinamide adenine dinucleotide phosphate (NAD (P) ↓) is finally converted into phenazine methosulfate (hereinafter referred to as PMS), which is an electron carrier.
) or its derivative, 1-methoxy-5-methylphenazine methosulfate (hereinafter referred to as m-PMS), and a chromogenic electron acceptor, tetrazoIJium compound. In the method of measuring the amount of a component from the result, if there is an interfering substance involved in the formazan coloring of the reaction in the sample, it is related to a method in which this is removed in advance by the method described below and then the component in the biological fluid is measured. The above-mentioned method of colorimetrically quantifying the color development of formazan for measuring components in serum or blood has been applied to many diagnostic reagents.
For example, in the method shown by the following reaction formula, each reaction proceeds quantitatively, so the components can be measured by colorimetrically quantifying the color development of the final formazan. '1' Component to be measured → Inducer ■ Inducer 10NAD (P) + Dehydrogenase oxidized 10NA
D(P) day 10 day 10 Inducer (3) NAD(P
)H+H++m-PMS→NAD(P)10m-PMSH
2 [4} m-PMSH20NTB → m-PMS + formazan (color development) However, NTB: represents nitrotetrazolium blue, one of the tetrazolium compounds.

しかしこの反応系は検体中に存在する干渉物質の影響を
受け易く予めこれを除かないと正確な測定ができない。
もし上記反応{1}の誘導物質と同じものが検体中に干
渉物質として存在するときは、測定すべき成分からの誘
導物質と共に反応21以下が進行し、反応{41のホル
マザンの比色定量に正の誤差を与える。このような干渉
物質には、aーアミラ−ゼ測定における内因性のグリコ
ース、外因性のマルトース、GOT,OPT測定におけ
るL−グルタメート、トリグリセライド測定におけるグ
リセリン等がある。従来は、このような場合測定すべき
成分と干渉物質を一緒に測定した吸光度から干渉物質の
みを測定した吸光度を差し引くことにより誤差を修正し
た。
However, this reaction system is easily affected by interfering substances present in the sample, and accurate measurements cannot be made unless these are removed in advance.
If the same inducer of reaction {1} above exists as an interfering substance in the sample, reactions 21 and below will proceed together with the inducer from the component to be measured, and the colorimetric determination of formazan in reaction {41 Gives a positive error. Such interfering substances include endogenous glycose in alpha-amylase measurements, exogenous maltose, L-glutamate in GOT and OPT measurements, and glycerin in triglyceride measurements. Conventionally, in such cases, errors have been corrected by subtracting the absorbance measured for only the interfering substance from the absorbance measured for the component to be measured and the interfering substance together.

しかしこの方法は操作を二度繰り返さなければならず煩
雑でありしかも試薬の無駄も大きい。本発明者等はPM
Sまたはm−PMSの還元型すなわちPMSH2,m−
PMSH2が溶液中の溶存酸素により酸化され遠かにP
MS,m−PMSに戻る性質があるのに着目し、鋭意研
究した結果、内因性および外因性干渉物質の影響を全く
受けない、しかも操作が簡単な生体液中の成分の測定方
法を開発し、本発明を完成した。
However, this method is complicated because the operation must be repeated twice, and there is also a large waste of reagents. The inventors are PM
Reduced form of S or m-PMS i.e. PMSH2,m-
PMSH2 is oxidized by dissolved oxygen in the solution and P
Focusing on the property of reverting to MS and m-PMS, as a result of intensive research, we developed a method for measuring components in biological fluids that is completely unaffected by endogenous and exogenous interfering substances and is easy to operate. , completed the invention.

本発明の方法は測定反応の過程で干渉作用を示す内因性
、外因性物質あるいはその誘導物質を脱水素酵素の存在
下に酸化してその干渉能力を失わせると同時にNDA(
P)+を還元し生成するNAD(P)日を次のPMSま
たはm−FMSの存在下に酸化しNAD(P)+に戻す
と同時にPMS,m−PMSを還元してPMSH5,m
−PMSH2を生ずるこのものはカタラ−ゼの存在下に
は反応液中の溶存酸素により直に酸化され元のPMS,
m−PMSに戻ると同時に過酸化水素を生成するが、こ
の過酸化水素はカタラーゼの作用で分解されて消失する
The method of the present invention oxidizes endogenous or exogenous substances or their inducers that exhibit an interfering effect during the measurement reaction process in the presence of dehydrogenase to lose their interfering ability, and at the same time, NDA (
P)+ is reduced and the generated NAD(P) is oxidized in the presence of PMS or m-FMS and returned to NAD(P)+. At the same time, PMS and m-PMS are reduced and PMSH5, m
- This product which produces PMSH2 is directly oxidized by dissolved oxygen in the reaction solution in the presence of catalase, and the original PMS,
At the same time as it returns to m-PMS, hydrogen peroxide is generated, but this hydrogen peroxide is decomposed by the action of catalase and disappears.

またベルオキシダーゼ(POD)の存在下の場合は溶存
酸素により酸化され元のPMS,m−PMSに戻ると同
時に水を生成する(以下これらの工程を前処理ともいう
)。
In addition, in the presence of peroxidase (POD), it is oxidized by dissolved oxygen and returns to the original PMS and m-PMS, and at the same time water is generated (hereinafter these steps are also referred to as pretreatment).

このようにして検体中の干渉物質を後に影響を残すこと
なく消燈した後前述の通り成分の測定を行なうので、最
終段階のホルマザン発色は成分の量に比例するものとな
り正確な比色定量ができる。
In this way, the interfering substances in the sample are extinguished without leaving behind any effects, and then the components are measured as described above, so the formazan color development in the final stage is proportional to the amount of the components, making accurate colorimetric determination possible. can.

なおこの場合には発色性電子受容体であるテトラゾリウ
ム化合物が存在するので最終段階のPMS4,m−PM
SH2は溶存酸素との反応に優先して定量的にホルマザ
ンの発色を発現する。本発明の方法は上述のように、脱
水素酵素によるレドツクス反応を適用して、測定すべき
成分より順次定量的に生成する誘導体を最終的に電子伝
達体−発色性電子受容体反応系を用いて測定する、体液
中のaーアミラーゼの測定、トランスアミナーゼの測定
、およびグリセリン脱水素酵素、またはグリセロキナー
ゼーグリセロホスフエート脱水素酵素によるトリグリセ
ラィドの測定等に適用でき、その効果は顕著である。次
に本発明の方法およびその効果について実施例、試験例
によりさらに詳細に説明する。
In this case, since a tetrazolium compound, which is a color-forming electron acceptor, is present, the final stage of PMS4, m-PM
SH2 preferentially reacts with dissolved oxygen and quantitatively develops the color of formazan. As described above, the method of the present invention applies a redox reaction using a dehydrogenase, and finally generates a derivative quantitatively from the component to be measured using an electron carrier-chromogenic electron acceptor reaction system. It can be applied to the measurement of α-amylase in body fluids, the measurement of transaminases, and the measurement of triglycerides using glycerol dehydrogenase or glycerokinase-glycerophosphate dehydrogenase, etc., and its effects are remarkable. Next, the method of the present invention and its effects will be explained in more detail with reference to Examples and Test Examples.

実施例 1 a−アミラーゼの測定 体液中のa−アミラーゼは次の反応系により測定できる
:○’修飾デンプンa−アミラ−ゼ分解デンプン■ 分
解デンプンaーグルコアミラーゼグルコース(3} グ
ルコース+ATPへキソキナーゼグルコースー6−リン
酸+ADP■ グルコース−6−リン酸十NAD(P)
十グルコース−6−リン酸脱水素酵素6−ホスホグルコ
ン酸+NAD(P)日 【51 NAD(P)日十HTBm−PMSNAD(P
)十十ホルマザンただし、ATP:アデノシン三リン酸 ADP:アデノシンニリン酸 NTB:ニトロテトラゾリウムフルー (テトラゾリウム化合物) を表わす。
Example 1 Measurement of a-amylase α-amylase in body fluids can be measured by the following reaction system: ○' Modified starch α-amylase decomposed starch ■ Degraded starch a-glucoamylase glucose (3) Glucose + ATP hexokinase Glucose-6-phosphate + ADP■ Glucose-6-phosphate 1NAD (P)
Decoglucose-6-phosphate dehydrogenase 6-phosphogluconate + NAD (P) day [51 NAD (P) day Ten HTBm-PMSNAD (P
) 10 formazan However, ATP: Adenosine triphosphate ADP: Adenosine diphosphate NTB: Nitrotetrazolium flu (tetrazolium compound).

反応【5’で生成するホルマザンの吸光度を測定し、そ
の結果から、a−アミラーゼの活性値を計算する。
The absorbance of formazan produced in reaction [5' is measured, and the activity value of a-amylase is calculated from the result.

もし生体液中に内因性グルコースまたは、最近盛んに輪
液として用いられているマルトースが干渉物質として存
在するときは反応【3はた、反応■,‘3’により、次
いで反応{4’,【5)によりホルマザンが生成するた
め、aーアミラーゼの測定値に正の誤差を与える。本発
明においては、始めに反応{1’の修飾デンプンを加え
ることなく反応‘2}以下を行なわせ内因性グルコース
、およびマルトースは反応■,‘3’,‘41により6
−ホスホグルコン酸とし、これを除去する。
If endogenous glucose or maltose, which has recently been widely used as a ring fluid, exists as an interfering substance in the biological fluid, the reaction [3] will be followed by the reaction ■, '3', then the reaction {4', [ 5) produces formazan, giving a positive error to the measured value of α-amylase. In the present invention, the following reaction {2} is carried out without adding the modified starch of reaction {1'}, and endogenous glucose and maltose are converted to 6 by reactions ■, '3', and '41.
- phosphogluconic acid and remove it.

次いで反応{別まNTBが存在しないので起らず次の別
反応が進行する。【6ー NAD(P)H+H+十m−
PMS→NAD(P)+ 十m−PMS比‘7} m−
PMS比十02→ m−PMS+仏02 ■ 比02タカラーゼ日20 十夕2 ‘9’m肌叫ぶ2POD m−PMS十比○ ただし、02:溶存酸素 比02:過酸化水素 を表わす。
Then the reaction {separately, does not occur because NTB is not present, and the next separate reaction proceeds. [6-NAD(P)H+H+10m-
PMS→NAD(P)+ 10m-PMS ratio'7} m-
PMS ratio 1002 → m-PMS + Buddha 02 ■ ratio 02 Takaraze day 20 Toyo 2 '9'm skin scream 2POD m-PMS ratio ○ However, 02: dissolved oxygen ratio 02: represents hydrogen peroxide.

反応■〜【9}‘こより干渉物質から生ずる。Reactions ■~[9}' result from interfering substances.

NAD(P)日はNAD(P)十に戻り、またm−PM
SH2はm−PMSに戻り、カタラーゼを使用する場合
は最終的には水と酸素を生ずるのみであり、またPOD
を使用する場合は水を生ずる。したがって、続く成分の
測定の際には干渉物質の影響は全く除かれている。すな
わち前処理をした後、反応(1’より反応‘51までを
実施すればa−アミラーゼの正確な測定ができる。1
試薬 ‘11ATP 5mm。
NAD(P) day returns to NAD(P) ten and m-PM again
SH2 returns to m-PMS, and if catalase is used, it ultimately only produces water and oxygen, and POD
If used, water will be produced. Therefore, the influence of interfering substances is completely excluded in the subsequent measurement of the components. That is, after pretreatment, a-amylase can be measured accurately by performing reactions (1' to '51).1
Reagent '11ATP 5mm.

1ノクNADご 0.4mmol
/〆m−PMS 30仏mm。
1 noku NAD 0.4 mmol
/〆m-PMS 30 French mm.

1/そMgC12 2仇hm。1/So MgC12 2nd hm.

1/〆へキソキナーゼ 600山/〆グ
ルコース−6ーリン酸 500仏/ぐ脱水素酵素
グルコアミラーゼ 4800一/〆P〇D
IOOOO仏/そ牛アルプミ
ン 0.1%を含む10仇hm
ol/そ PH8.2コハク酸緩衝液
【2’NTB 3hmol/Z
トリトンX−100 1%ソジウ
ム・スターチ 7.2mc/の【・グリコ
レートを含む4帆mol/ク PH6
.4コンク酸緩衝液{31 トリトンX−100
0‐33%を含む0.州HCI溶液2 操
作法 試薬‘112の‘に血清検体20仏Zを加え37q0、
5分間保温後、試薬【2’1泌を加え、さらに370、
5分間保温後に試薬‘3’1肌を加えて、反応を停止し
た後、波長60肌mで吸光度を測定する。
1/〆Hexokinase 600 mountains/〆Glucose-6-phosphate 500 French/g Dehydrogenase glucoamylase 4800〆/〆P〇D
IOOOO Buddha/Sogyu Alpmin 10cm containing 0.1%
ol/so PH8.2 succinate buffer [2'NTB 3hmol/Z
Triton
.. 4 Concinate buffer {31 Triton X-100
0.0-33% included. State HCI Solution 2 Procedure Add 20 pieces of serum sample to reagent '112' and add 37q0,
After incubating for 5 minutes, add the reagent [2'1 secretion,
After keeping warm for 5 minutes, reagent '3'1 skin is added to stop the reaction, and the absorbance is measured at a wavelength of 60 m.

別にa−アミラーゼ活性既知の検体を上記と同様に操作
し、検量線を造り、この検量線より血清検体のa−アミ
ラーゼ活性を求める。試験例 1 ○)a−アミラーゼ測定におけるグルコースの影響血清
検体にグルコースを200,400,600,800,
1000雌/d‘の濃度で添加した検体について実施例
1により吸光度を測定した。
Separately, a sample with known α-amylase activity is operated in the same manner as above to create a calibration curve, and the α-amylase activity of the serum sample is determined from this calibration curve. Test example 1 ○) Effect of glucose on a-amylase measurement
The absorbance was measured according to Example 1 for the sample added at a concentration of 1000 females/d'.

別に同じ検体について本発明の前処理を行なわない方法
、すなわち、試薬‘1’2泌と試薬脚1の上の混合試薬
に検体20ムクを加えて、370、5分間保温後に試薬
‘311の‘を加えて反応を停止した後、吸光度を測定
した。その結果は、次の表に示す。上の表が示すように
、内因性グルコースに対する前処理を行なわない場合は
、グルコースにより、かなりの影響を受け、結果として
、aーアミラーゼ活性を測定しているとはいえない。本
発明によれば、1000の9/d‘の高濃度のグルコー
スによっても影響を受けずにa−アミラーゼ活性を正確
に測定できる。‘21 本発明方法のa−アミラーゼ活
性濃度と吸光度との関係実施例1の方法により、aーア
ミラーゼ活性の濃度系列について吸光度を測定した結果
を第1図に示す。
Separately, there is a method in which the same specimen is not subjected to the pretreatment of the present invention, that is, 20 ml of specimen is added to the mixed reagent on reagent '1' and reagent leg 1, and after incubation for 5 minutes, reagent '311' is added. was added to stop the reaction, and then the absorbance was measured. The results are shown in the following table. As shown in the above table, if no pretreatment is performed on endogenous glucose, the results are significantly affected by glucose, and as a result, it cannot be said that α-amylase activity is being measured. According to the present invention, α-amylase activity can be accurately measured without being affected by glucose at a high concentration of 1000 9/d'. '21 Relationship between α-amylase activity concentration and absorbance according to the method of the present invention The absorbance was measured for a concentration series of α-amylase activity using the method of Example 1. The results are shown in FIG.

この図が示すようにaーアミラーゼ活性の濃度と吸光度
とは、直線関係を示し、正しく、a−アミラーゼ活性を
測定できることが分る。
As shown in this figure, there is a linear relationship between the concentration of α-amylase activity and the absorbance, indicating that α-amylase activity can be accurately measured.

実施例 2グルタメートオキザルアセテート転移酵素(
GOT)およびグルタメートピルベート転移酵素(GP
T)の測定体液中のGOT,OPTはグルタメート脱水
素酵素(GLDH)を用い次の反応系により測定できる
Example 2 Glutamate oxal acetate transferase (
GOT) and glutamate pyruvate transferase (GP
Measurement of T) GOT and OPT in body fluids can be measured by the following reaction system using glutamate dehydrogenase (GLDH).

l aーケトグルタレート+L−アスパラギン酸GOT
Lーグルタメート十オキサル酢酸2 a−ケトグルタ
レート十LーアラニンGPTL−グルタメート+ピルビ
ン酸3 Lーグルタメート+NAD(P)十 十日20
GLDHNAD(P)日十aーケトグルタレート+NH
34 NAD(P)日十NTBm−PMSNAD(P)
+ホルマザン上述の反応で生成するホルマザンの吸光度
を測定し、その結果からGOT,OPTの活性値を計算
する。
l α-ketoglutarate + L-aspartic acid GOT
L-glutamate 10 oxalacetic acid 2 a-ketoglutarate 10 L-alanine GPTL-glutamate + pyruvate 3 L-glutamate + NAD (P) 10 10 days 20
GLDHNAD (P) Niten-a-ketoglutarate + NH
34 NAD(P) day 10NTBm-PMSNAD(P)
+Formazan The absorbance of formazan produced in the above reaction is measured, and the activity values of GOT and OPT are calculated from the results.

血清あるいは血築中に干渉物質として存在するL−グル
タメートはGLDHと反応し、NAD(P)日を生成す
るため、GOTあるいはGPTの測定値に正の誤差を与
える。
L-glutamate, which is present as an interfering substance in serum or blood, reacts with GLDH and generates NAD(P), giving a positive error to the measured value of GOT or GPT.

本発明においては始めに内因性L−グルタメ−トをOL
D日とNAD(P)十 の反応により、a−ケトグルタ
レートに転化し、これを除去する。
In the present invention, endogenous L-glutamate is first
The reaction between D and NAD(P) converts it into a-ketoglutarate, which is then removed.

次いで、生成したNAD(P)H+の除去については実
施例1で述べたのと全く同機に行なわれ干渉物質である
L−グルタメートは消醸される。次いで、Lーアスパラ
ギン酸またはLーアラニン、aーケトグルタレートおよ
びNTBを含む試薬を添加し、トランスアミナーゼ(G
OT,GPT)活性を正確に測定することができる。1
試薬 ‘1)カタラーゼ 1000肌/そグル
タメート 4000肌/〆脱水素酵素NA
D十 4価mol/〆m−PMS
10Oムmm。
Next, the removal of the generated NAD(P)H+ was carried out in exactly the same manner as described in Example 1, and the interfering substance L-glutamate was eliminated. Reagents containing L-aspartic acid or L-alanine, a-ketoglutarate and NTB are then added and transaminase (G
OT, GPT) activity can be accurately measured. 1
Reagent'1) Catalase 1000 skin/Soglutamate 4000 skin/Dehydrogenase NA
D14 valent mol/〆m-PMS
100 mm.

1/〆を含む10仇hmol/〆 PH
7.8リン酸緩衝液■ OPT測定用 DL−アラニン 80仇nmol/そa−
ケトグルタレート 11mmol/そNTB
I‐比hm。
1/10 hmol including 〆/〆 PH
7.8 Phosphate buffer ■ DL-alanine for OPT measurement 80 nmol/soa-
Ketoglutarate 11 mmol/NTB
I-ratiohm.

1/〆を含む10皿mol/〆 PH7
.8リン酸緩衝液GOT測定用 L−アスパラギン酸 40仇hmol/〆aーケ
トグルタレート 18hmol/そN畑
1.肌mol/夕を含む1胸hmol/〆
PH7.8リン酸緩衝液{3} トリ
トソX−1000.1%を含む0.1N一日CI溶液2
操作法 試薬‘1}250Aそに血清検体20〆〆を加え、37
℃、10分間保温後に、試薬■250ムクを加え、さら
に37q0、3び分間保温後に、試薬{313泌を加え
て反応を停止した後、波長56肌血で吸光度を測定する
1/10 dishes including the final product mol/10 dishes PH7
.. 8 Phosphate buffer for GOT measurement L-aspartic acid 40 hmol/A-ketoglutarate 18 hmol/N field
1. Skin mol/1 breast hmol including evening/〆
PH7.8 phosphate buffer {3} 0.1N daily CI solution 2 containing 0.1% Tritoso X-100
Procedure Reagent '1} Add 20 〆〆〆 of serum specimen to 250A, 37
After incubating at 10° C. for 10 minutes, add 250 ml of reagent (37q0), and after incubating for 3 minutes at 37q0, add reagent {313 secretion to stop the reaction, and then measure the absorbance at wavelength 56 skin blood.

別に、GOT,OPT活性既知の検体を上記と同様に操
作し、検量線を造り、この検量線より、血清検体のGO
T,OPT活性を求める。
Separately, a sample with known GOT and OPT activity was operated in the same manner as above to create a calibration curve, and from this calibration curve, GO of the serum sample was
Determine T,OPT activity.

試験例 2‘11 GOT,GPT測定におけるL−グ
ルタメートの影響血清検体にLーグルタメートを20,
40,80,100の9/d‘の濃度で添加した検体に
ついて、実施例2により、吸光度を測定した。
Test example 2'11 Effect of L-glutamate on GOT and GPT measurements.
The absorbance was measured according to Example 2 for the samples added at concentrations of 9/d' of 40, 80, and 100.

別に同じ検体について、本発明の前処理を行なわない方
法、即ち、試薬‘1}250仏夕と試薬■250山その
混合試薬に検体20メタを加えて、370、30分間保
温後に試薬‘3}3奴を加えて反応停止した後、吸光度
を測定した。その結果は、次の表に示す。上の表が示す
ように、内因性L−グルタメートに対する前処理を行な
わない場合は、Lーグルタメートにより、かなりの影響
を受け、結果として、GOT,GPT活性を測定してい
るとはいえない。本発明によれば、100の9/のの高
濃度のLーグルタメートによっても影響を受けずに、G
OT,GPT活性を正確に測定できる。■ 本発明方法
のGOT,OPT活性濃度と吸光度との関係実施例2の
方法により、GOT,GPT活性の濃度系列について吸
光度を測定した結果を第2図に示す。
Separately, for the same specimen, there is a method of not performing the pretreatment of the present invention, i.e., add 20 meth of the specimen to the mixed reagent, add 20 meth of the specimen to the mixed reagent, and incubate for 30 minutes, then add the reagent ``3'' to the mixed reagent. After terminating the reaction by adding 3 chlorides, the absorbance was measured. The results are shown in the following table. As shown in the above table, when no pretreatment is performed against endogenous L-glutamate, the results are considerably affected by L-glutamate, and as a result, it cannot be said that GOT and GPT activities are being measured. According to the present invention, G
OT and GPT activities can be measured accurately. (2) Relationship between GOT and OPT activity concentration and absorbance according to the method of the present invention The absorbance was measured for a concentration series of GOT and GPT activities using the method of Example 2. The results are shown in FIG.

この図が示すように、GOT,GPT活性の濃度と吸光
度とは、直線関係を示し、正しくGOT,OPT活性を
測定できることが分る。
As shown in this figure, there is a linear relationship between the concentration of GOT and GPT activities and the absorbance, indicating that GOT and OPT activities can be measured correctly.

以上述べた通り本発明方法は簡単な方法で検体中の干渉
性物質を除去し試薬の無駄な使用もなく正確な測定を可
能にした点で極めて有用なものである。
As described above, the method of the present invention is extremely useful in that it removes interfering substances from a sample in a simple manner and enables accurate measurements without wasting reagents.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図の縦軸は吸光度を示し、横軸は血清の
希釈度を示す。 また、第1図○印は、血清中のa−アミラーゼ活性を、
第2図の○印はGOT活性を、△印はGPT活性を示す
。 第1図 第2図
The vertical axes in FIGS. 1 and 2 indicate absorbance, and the horizontal axes indicate serum dilution. In addition, the circle mark in Figure 1 indicates the a-amylase activity in the serum.
In FIG. 2, ○ marks indicate GOT activity, and △ marks indicate GPT activity. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1 生体液中の成分を測定するに当り、脱水素酵素を用
いるレドツクス反応を適用し生成する還元型ニコチンア
ミドアデニンジヌクレオチドまたはニコチンアミドアデ
ニンジヌクレオチドリン酸を電子伝達体−発色性電子受
容体反応系を用いて比色定量し、生体液中の成分の含有
量を測定する方法において、当該反応に干渉作用を有す
る生体液中の内因性、外因性物質あるいはその誘導物質
を予め脱水素酵素存在下に酸化し、その際生成する還元
型ニコチンアミドアデニンジヌクレオチドまたはニコチ
ンアミドアデニンジヌクレオチドリン酸を発色性電子受
容体の存在しない状態でフエナジンメトサルフエートあ
るいはその誘導体及びカタラーゼまたはペルオキシダー
ゼと作用させて除去することを特徴とする生体液中の成
分を測定する方法。
1. When measuring components in biological fluids, a redox reaction using dehydrogenase is applied and the generated reduced nicotinamide adenine dinucleotide or nicotinamide adenine dinucleotide phosphate is subjected to an electron carrier-chromogenic electron acceptor reaction. In the method of colorimetrically measuring the content of components in a biological fluid using a colorimetric system, endogenous or exogenous substances or their inducers in the biological fluid that interfere with the reaction are removed in advance from the presence of dehydrogenase. oxidation, and the reduced nicotinamide adenine dinucleotide or nicotinamide adenine dinucleotide phosphate produced at that time is reacted with phenazine methosulfate or its derivatives and catalase or peroxidase in the absence of a chromogenic electron acceptor. A method for measuring a component in a biological fluid, the method comprising: removing a component in a biological fluid;
JP9928582A 1982-06-11 1982-06-11 A method to measure components in biological fluids without interference from endogenous or exogenous substances Expired JPS6030519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9928582A JPS6030519B2 (en) 1982-06-11 1982-06-11 A method to measure components in biological fluids without interference from endogenous or exogenous substances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9928582A JPS6030519B2 (en) 1982-06-11 1982-06-11 A method to measure components in biological fluids without interference from endogenous or exogenous substances

Publications (2)

Publication Number Publication Date
JPS58216698A JPS58216698A (en) 1983-12-16
JPS6030519B2 true JPS6030519B2 (en) 1985-07-17

Family

ID=14243373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9928582A Expired JPS6030519B2 (en) 1982-06-11 1982-06-11 A method to measure components in biological fluids without interference from endogenous or exogenous substances

Country Status (1)

Country Link
JP (1) JPS6030519B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03116014U (en) * 1990-03-13 1991-12-02

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03116014U (en) * 1990-03-13 1991-12-02

Also Published As

Publication number Publication date
JPS58216698A (en) 1983-12-16

Similar Documents

Publication Publication Date Title
US4242446A (en) Method for determining a substance in a biological fluid and reagent combination for use in the method
JPH0687793B2 (en) Method and reagent for colorimetric determination of analyte by enzymatic oxidation, and reductive chromogenic electron acceptor therefor
JPH0470000B2 (en)
Ishihara et al. Enzymatic determination of ammonia in blood plasma
US3862885A (en) Determination of uric acid in blood with uricase
WO1995004831A1 (en) Method of determining chloride ion
US4801538A (en) Process for determining superoxide dismutase activity
EP0199363A1 (en) Method of terminating isocitrate dehydrogenase reaction
JPH02104298A (en) Quantification of 1,5-anhydroglucitol
JPS6030519B2 (en) A method to measure components in biological fluids without interference from endogenous or exogenous substances
EP0207493B1 (en) Method of terminating isocitrate dehydrogenase reaction
US3985621A (en) Stopping agents for enzyme reactions of dehydrogenase systems
JPS5818077B2 (en) Method and reagent for measuring glycerin
JPS6066993A (en) Method for measuring component in living body fluid
JPH0316119B2 (en)
JPH047200B2 (en)
US5447847A (en) Quantitative determination of pyruvic acid and quantitative analysis for component of living body making use of such determination
JPS6240300A (en) Activity measurement of adenosine deaminase in humor
JPS6036755B2 (en) Method for measuring components in biological fluids
JPS59106299A (en) Determination of reducing coenzyme
JP3566976B2 (en) Measuring method of measurement target in biological components
JPS5847498A (en) Measurement of component of living body solution
JPS6219100A (en) Measurement of bile acid
JPH07108239B2 (en) Method for quantifying pyruvic acid and method for quantifying biological components using the method
JPH0343096A (en) Determination of substrate or enzyme