JPS6057997A - Method of producing multilayer circuit board - Google Patents

Method of producing multilayer circuit board

Info

Publication number
JPS6057997A
JPS6057997A JP16498583A JP16498583A JPS6057997A JP S6057997 A JPS6057997 A JP S6057997A JP 16498583 A JP16498583 A JP 16498583A JP 16498583 A JP16498583 A JP 16498583A JP S6057997 A JPS6057997 A JP S6057997A
Authority
JP
Japan
Prior art keywords
insulating film
film
wiring layer
thick
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16498583A
Other languages
Japanese (ja)
Inventor
恒雄 小林
江本 義明
千代士 鎌田
寛治 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16498583A priority Critical patent/JPS6057997A/en
Publication of JPS6057997A publication Critical patent/JPS6057997A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は高密度配線に適した多層配線基板の製造方法に
関し、特に平坦化、高信頼性な図った多層配線層の形成
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for manufacturing a multilayer wiring board suitable for high-density wiring, and particularly to a method for forming a multilayer wiring layer that is planarized and highly reliable.

〔背景技術〕[Background technology]

複数個の半導体チップを実装する基板では、七の実装密
度の増大に伴なって配線は多層化される傾向にあり、し
たがって少なくとも2層の配線層(導体層)な層間絶縁
膜を介して重畳形成すると共に、各配線層はこの層間絶
縁膜内に設けた層間接続部材な用いて導通を図るように
している。
In substrates on which multiple semiconductor chips are mounted, wiring tends to be multi-layered as the packaging density increases, and therefore, at least two wiring layers (conductor layers) are overlapped via an interlayer insulating film. At the same time, each wiring layer is made conductive using an interlayer connecting member provided within the interlayer insulating film.

ところで、この種の層間絶縁膜の形成には、これまで薄
膜形成技術と厚膜形成技術とが知らハている。これらは
、日本工業調査会発行の「IC化実装技術」(日本マイ
クロエレクトロニクス協会綿)に示されている。薄膜形
成技術は、下側配線層上にスパッタ法等を用いてSiO
,等の絶m膜な形成し、その上に上側配線層な形成する
方法である。このようにして形成した薄膜(絶縁膜)は
緻密な構造であることから絶縁の信頼性が高いという利
点がある一方、膜形成原理上の理由から十分に厚い膜を
形成することが困難なために特性−インピーダンスのマ
ツチングがとり難いという問題がある。また、薄膜であ
ることから下側配線層の配、11Jパタ一ン段差がその
まま薄膜上面に表われ、上側配線層のカバレジが低下し
て段切れ等の断線h″−生じ易い。
By the way, thin film forming techniques and thick film forming techniques are known for forming this type of interlayer insulating film. These are shown in "IC Mounting Technology" (Japan Microelectronics Association) published by the Japan Industrial Research Council. The thin film formation technology uses a sputtering method etc. to deposit SiO on the lower wiring layer.
, etc., and then form an upper wiring layer thereon. The thin film (insulating film) formed in this way has an advantage of high insulation reliability due to its dense structure, but it is difficult to form a sufficiently thick film due to the principle of film formation. However, there is a problem in that it is difficult to match characteristics and impedance. Moreover, since it is a thin film, the level difference in the 11J pattern of the lower wiring layer appears as it is on the upper surface of the thin film, reducing the coverage of the upper wiring layer and easily causing disconnections such as step breaks.

一方、厚膜形成技術はガラスペーストな印刷法により形
成するものであり、厚い膜厚が容易に得うして特性イン
ピーダンスのマツチングがとり易いという利点ケ有する
ものの、形成方法が塗布法であることから内部に気泡等
の欠陥が生じ易く、これがピンホールとなって絶縁性の
低下、即ち絶縁膜の信頼性が低下されるという問題が;
し)る。また、厚膜形成技術においても重圧下側配線層
」;に膜を形成し、スルーホールを通して上下の配線層
の導通なとるのみでは上側配線層に段切れが生じ易い。
On the other hand, thick film formation technology is formed using a glass paste printing method, and although it has the advantage of easily obtaining a thick film and matching the characteristic impedance, the formation method is a coating method. There is a problem that defects such as bubbles are likely to occur inside, and these become pinholes, resulting in a decrease in insulation properties, that is, a decrease in the reliability of the insulation film.
). In addition, even in the case of thick film formation technology, if a film is formed on a heavily pressured lower wiring layer and only the upper and lower wiring layers are made conductive through through holes, breaks in the upper wiring layer tend to occur.

〔発明の目的〕[Purpose of the invention]

本発明の目的は必要なインピーダンスのマツチングを容
易にとることができると共にビンボール等による絶縁膜
と17ての信頼性の低下を防止し、かつ配線層の平坦化
を図って段切れを防止する等して高密度配線に最適な多
層配線層の製造方法を提供することにある。
The purpose of the present invention is to easily achieve the necessary impedance matching, prevent a decrease in reliability between the insulation film and the like due to bottle balls, etc., and planarize the wiring layer to prevent breakage. The object of the present invention is to provide a method for manufacturing multilayer wiring layers that is optimal for high-density wiring.

本発明の前記ならびにそのほかの目的と新規な特徴は、
本明細書の記述および添付図面からあきらかになるであ
ろう。
The above and other objects and novel features of the present invention include:
It will become clear from the description of this specification and the accompanying drawings.

〔発明の概要〕[Summary of the invention]

本願において開示される発明のうち代表的なものの概要
な簡単に説明すれば、下記のとおりである。
A brief summary of typical inventions disclosed in this application is as follows.

すなわち、層間接続部に突状のメタライゼーションを形
成l〜た上で層間絶縁膜として薄膜形成技術おJ二び厚
膜形成技術による各絶縁膜を重ねて形成しかつ表面平坦
化処理な施すことにより、特性インピーダンスのマツチ
ングに必要な膜厚な容易に得ると共に薄膜の緻密性によ
って絶縁膜の信頼性な向上でき、かつ平坦化によって上
側配線層の段切れ2防+)−して配線の高密度化を達成
するものである。
That is, after forming a protruding metallization at the interlayer connection part, each insulating film is formed as an interlayer insulating film using a thin film formation technique and a thick film formation technique, and a surface planarization treatment is performed. This makes it possible to easily obtain the film thickness necessary for matching characteristic impedance, improve the reliability of the insulating film due to the density of the thin film, and prevent breakage in the upper wiring layer by flattening it, thereby increasing the wiring height. This is to achieve density.

〔実施例〕〔Example〕

第1図(A、)〜(F)は本発明の一実施例方法を説明
する工程図である。
FIGS. 1A to 1F are process diagrams illustrating a method according to an embodiment of the present invention.

先ず、アルミナ(A、、(3t Os )や絶縁性シリ
:、lンカーパイ)(SiC)等の絶縁材料からなる基
板1内表面KTi(100OA厚)、 Cu (5In
厚)、’ll’+(100OA厚)の各層を図外の配線
パターン用マスクな用いて順次蒸着形成し、これに」:
り同図偽)のような所定パターン形状の下側配線層2な
形成する。また、Ti、 Cu、 Ti の各層を全面
釦形成しておき、その上でホトリソグラフィ技術により
バターニングを行なうようにしてもよい。この場合、基
板1上にガラス層な塗布等により形成1.表面を平坦化
した後、配線パターンを形成するのが好ましい。
First, the inner surface of the substrate 1 made of an insulating material such as alumina (A, (3tOs) or insulating silicon (SiC)), KTi (100OA thick), Cu (5In
Thickness), 'll' + (100OA thickness) were sequentially deposited using a wiring pattern mask (not shown).
A lower wiring layer 2 having a predetermined pattern shape as shown in the figure (not shown) is formed. Alternatively, each layer of Ti, Cu, and Ti may be formed into a button on the entire surface, and then patterning may be performed using photolithography. In this case, a glass layer is formed on the substrate 1 by coating, etc. 1. It is preferable to form a wiring pattern after flattening the surface.

次いで、今度は層間接続用のマスク3を使用してCu等
の金属を蒸着し、同図(11)のように下側配線層2上
の所定箇所、つまり層間接続部に厚さの大きなメタライ
ゼーション4を形成する。このとき、エレクトロンビー
ム蒸着を使用すれば短時間で厚さの大きいものを得るこ
とができる。メタライゼーション4の厚さは25μm程
度が好ましい。
Next, a metal such as Cu is vapor-deposited using the mask 3 for interlayer connection, and as shown in FIG. Formation 4. At this time, if electron beam evaporation is used, a large thickness can be obtained in a short time. The thickness of the metallization 4 is preferably about 25 μm.

次に層間絶縁膜5の一部としてスバ、ツタ法や気相化学
反応(CVD)法により絶縁性の薄膜絶縁膜6を同図(
C)のように全面に形成する。本実施例ではスパッタ法
により5i01膜を厚さ3〜5μmに形成している。こ
れらにより形成される薄膜を形成する時間は、この程度
の厚さであれば全く問題にならない。また、膜の緻密性
には極めて高いものを得ることができる。さらに、この
程度の厚さであれば、硬質で内部応力の大きくなり勝ち
な薄膜においても応力な小さく抑えられる。しかる後に
、同図(D)のように薄膜絶縁膜6上の全面に厚膜絶縁
膜7を形成し、これら両絶縁膜6.7によって層間絶縁
膜5を構成する。厚膜絶縁膜7は結晶化ガラスやポリイ
ミド樹脂等を厚膜印刷、スプレーによる塗布あるいはス
ピンナな用いた塗布等の所謂厚膜形成技術によって形成
し、その厚さは例えば3011rILというメタライゼ
ーション4の厚さよりも少なくない厚さとする。これら
の方法によれば表面はほぼ平坦になる。厚膜絶縁膜7の
形成後には適温度による焼成またはベークな行なって安
定化する。この場合、眉間絶縁膜5の熱膨張係数は基板
1の熱膨張係数よりも小さくシ2、表面に圧縮応力を残
すようにすることがクラックの発生防止上好ましい。
Next, as a part of the interlayer insulating film 5, an insulating thin film 6 is formed using the Suba-Tsuta method or the Vapor Phase Chemical Reaction (CVD) method (as shown in the figure).
It is formed on the entire surface as shown in C). In this example, the 5i01 film is formed to a thickness of 3 to 5 μm by sputtering. The time required to form a thin film made of these materials does not matter at all as long as the thickness is within this range. Furthermore, extremely high film density can be obtained. Furthermore, with a thickness of this level, stress can be kept low even in thin films that are hard and tend to have large internal stress. Thereafter, a thick insulating film 7 is formed on the entire surface of the thin insulating film 6, as shown in FIG. 6(D), and these two insulating films 6.7 constitute an interlayer insulating film 5. The thick film insulating film 7 is formed of crystallized glass, polyimide resin, etc. by a so-called thick film forming technique such as thick film printing, spray coating, or coating using a spinner, and its thickness is, for example, 3011rIL, which is the thickness of the metallization 4. The thickness shall be no less than that. These methods result in a substantially flat surface. After the thick insulating film 7 is formed, it is stabilized by firing or baking at an appropriate temperature. In this case, the coefficient of thermal expansion of the glabellar insulating film 5 is smaller than that of the substrate 1, and it is preferable to leave compressive stress on the surface in order to prevent the occurrence of cracks.

次いで、前記層間絶縁膜5ないしメタライゼーション4
0表面を機械的又は化学的方法により′で削除し、同図
(E)のように表面を平坦化する。具体的方法としては
ウェットエッチ又はドライエッチや研摩等が用いられる
。このとき、メタライゼーション4は表面が露呈される
ようにする。そして、この上に上側配線層8を下側配線
層2と同様な方法により形成すれば図図(F)のような
2層配線構造を形成することができる。
Next, the interlayer insulating film 5 or metallization 4
The 0 surface is removed by a mechanical or chemical method, and the surface is flattened as shown in FIG. As a specific method, wet etching, dry etching, polishing, etc. are used. At this time, the surface of the metallization 4 is exposed. Then, by forming the upper wiring layer 8 thereon in the same manner as the lower wiring layer 2, it is possible to form a two-layer wiring structure as shown in Figure (F).

したがって、この方法によれば上、下の各配線層2.8
間の層間絶縁膜5な平坦化できるので、特に上側配線層
8における段切れ等の不具合を防止できる。また、この
ようにして形成された層間絶縁膜5は1す膜絶縁膜7に
よって必要な厚い膜を容易に得ることができるので、特
性インピーダンスのマツチングを蘭学にとることができ
る。また、筒速スイ・グングする信号が各配線に印加さ
れる場合のクロストークな有効に防止できる。なお、特
に結晶化ガラスは比誘電率が7〜8と大きいので、膜厚
を厚くできることは有利である。一方、層間絶縁膜5は
緻密構造の薄膜絶縁膜6を有しているので、厚膜絶縁膜
7にピンホール等の欠陥が生じていても高絶縁性な得る
ことができる。更に、ずW膜形成技術法で形成したSi
n、膜は薄くても比誘電率が3.5〜4と小さいため、
同じインピーダンスマツチングをとるためには厚膜絶縁
膜7の厚さを小さくすることができ、層間絶縁膜5の全
厚さを小さくすることもできる。更に先に薄膜絶縁膜6
を形成して下側配線層2をカバーしているので、厚膜形
成時(ベーク等)に下側配線層2が酸化摩耗されるおそ
れもない。
Therefore, according to this method, each upper and lower wiring layer has 2.8
Since the interlayer insulating film 5 in between can be flattened, problems such as breakage in the upper wiring layer 8 can be particularly prevented. Further, since the interlayer insulating film 5 formed in this way can easily be made thick as required by the single-layer insulating film 7, matching of characteristic impedance can be carried out in a Dutch-style manner. In addition, crosstalk can be effectively prevented when a signal that changes the cylinder speed is applied to each wiring. Note that since crystallized glass in particular has a large dielectric constant of 7 to 8, it is advantageous to be able to increase the film thickness. On the other hand, since the interlayer insulating film 5 has the thin film insulating film 6 with a dense structure, high insulation properties can be obtained even if defects such as pinholes occur in the thick film insulating film 7. Furthermore, Si formed using the ZW film formation technology
n, even if the film is thin, the dielectric constant is as small as 3.5 to 4, so
In order to obtain the same impedance matching, the thickness of the thick insulating film 7 can be reduced, and the total thickness of the interlayer insulating film 5 can also be reduced. Furthermore, the thin film insulating film 6
Since the lower wiring layer 2 is covered by forming the lower wiring layer 2, there is no fear that the lower wiring layer 2 will be oxidized and worn during thick film formation (baking, etc.).

ここ1で、@2図は配線層な3層に形成した例であり、
前述の方法を繰返すことにより可能とされる。図中、第
2層の層間絶縁膜5Aと第3の配線層8Aには夫々添字
を付した対応符号で示I7ている。
Here in 1, Figure @2 is an example of forming three wiring layers,
This is possible by repeating the method described above. In the figure, the second layer interlayer insulating film 5A and the third wiring layer 8A are each indicated by a corresponding reference numeral I7 with a suffix attached.

〔効 果〕〔effect〕

(1)層間絶縁膜を薄膜形成技術による薄膜絶縁膜と、
厚膜形成技術圧よる厚膜絶縁膜にて形成1−1ているの
で、必要な特性インピーダンスのマツチングを得るため
の膜厚を容易に得ることができる一方、厚膜に生じ易い
ピンホール等による絶縁性不良を薄膜によって防止でき
高絶縁性を得ることができる。
(1) The interlayer insulating film is a thin film insulating film formed by thin film formation technology,
Thick film formation technology Since the thick insulating film is formed using pressure 1-1, it is possible to easily obtain the film thickness to obtain the required characteristic impedance matching, but it is also possible to easily obtain the film thickness to obtain the required characteristic impedance matching. Insulation defects can be prevented by the thin film, and high insulation properties can be obtained.

(2)メタライゼーションを形成した後に薄膜形成技術
と厚膜形成技術によって層間絶縁膜な形成し、これな平
坦化処理した上で上側配線層な形成しているので、上側
配線層に段差による断線が生じることはなく、信頼性の
高い配線構造な得ることができ、高密度化に有利となる
(2) After forming the metallization, an interlayer insulating film is formed using thin film formation technology and thick film formation technology, and after this is flattened, the upper wiring layer is formed, so there is a disconnection due to a step in the upper wiring layer. Therefore, a highly reliable wiring structure can be obtained, which is advantageous for higher density.

(3)メタライゼーションにより上、下の配線層の接続
を図っているので、スルーホールを不要にでき、スルー
ホールに伴なう上側配線層の段切れ壱r防市することも
できる。
(3) Since the upper and lower wiring layers are connected by metallization, through-holes can be eliminated, and the upper wiring layer can be cut off due to the through-holes.

、]ソ上本発明者によってなされた発明な実施例にもと
づき具体的に説明したが、本発明は上記実施例に1)反
定されるものではなく、その要旨を逸脱しない範囲で種
々変更可能であることはいうまでもない。たとえば、薄
膜形成技術や厚膜形成技術の各具体的な技術や膜材料等
は前述した以外の技術やI料も・使用I−することかで
きる、し利用分野〕 以上の説明では主として本発明者によってなされた発明
なその背景となった利用分野である半導体ナツプの実装
用の基板に適用した場合について説明したが、それに限
定されるものではなく、一般に使用されるプリント回路
基板の多層配線化、更には半導体ウェーハ」二に形成す
る多層配線技術にも適用することができる。
] Although the present invention has been specifically described based on the embodiments of the invention made by the above inventor, the present invention is not limited to the above-mentioned embodiments, and can be modified in various ways without departing from the gist thereof. Needless to say, it is. For example, the specific technologies and film materials for thin film formation technology and thick film formation technology may also be applied to technologies and materials other than those described above. Although this invention was applied to a mounting board for semiconductor napkins, which is the field of application that formed the background of this invention, it is not limited thereto, and is applicable to multilayer wiring of commonly used printed circuit boards. Furthermore, it can also be applied to multilayer wiring technology formed on semiconductor wafers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)〜(F)は本発明の一実施例の製造工程図
、 第2図は同方法を用いて形成した他の構造例の断面図で
ある。 1・・・基板、2・・・下側配線層、4.4A・・・メ
タライゼーション、5.5A・・・層間絶縁膜、6,6
A・・・薄膜絶縁膜、7,7A・・・厚膜絶縁膜、R,
8,A・・・上側配線層。 第 1 図 (ff3) (C)
1A to 1F are manufacturing process diagrams of an embodiment of the present invention, and FIG. 2 is a sectional view of another structural example formed using the same method. DESCRIPTION OF SYMBOLS 1...Substrate, 2...Lower wiring layer, 4.4A...Metallization, 5.5A...Interlayer insulating film, 6,6
A... Thin film insulating film, 7, 7A... Thick film insulating film, R,
8, A... Upper wiring layer. Figure 1 (ff3) (C)

Claims (1)

【特許請求の範囲】 1、下側の配線層の所要箇所に層間接続部としてのメタ
ライゼーションを形成した上で、基板の全面圧薄膜絶縁
膜と厚膜絶縁膜を重ねて形成【2て層間絶縁膜な形成し
、その後前記層間絶縁膜ないしメタライゼーションの表
面を平坦に削成して上側配線層な形成することを特徴と
する多層配線基板の製造方法。 2、薄膜絶縁膜はスパッタや蒸着法等の堆積法により形
成してなる特許請求の範囲第1項記載の多層配線基板の
製造方法。 3、厚膜絶縁膜は印刷法九より形成してなる特許請求の
範囲第1項記載の多層配線基板のJ!!!遣方法。 4、表面の削成は化学的エツチング法や機械的研削法で
ある特許請求の範囲第1項又は第2項記載の多層配線基
板の製造方法。
[Claims] 1. After forming metallization as interlayer connections at required locations on the lower wiring layer, a thin film insulating film and a thick film insulating film are overlaid on the entire surface of the substrate. A method for manufacturing a multilayer wiring board, comprising forming an insulating film, and then flattening the surface of the interlayer insulating film or metallization to form an upper wiring layer. 2. The method of manufacturing a multilayer wiring board according to claim 1, wherein the thin insulating film is formed by a deposition method such as sputtering or vapor deposition. 3. J! of the multilayer wiring board according to claim 1, in which the thick insulating film is formed by a printing method. ! ! How to send. 4. The method for manufacturing a multilayer wiring board according to claim 1 or 2, wherein the surface abrasion is performed by a chemical etching method or a mechanical grinding method.
JP16498583A 1983-09-09 1983-09-09 Method of producing multilayer circuit board Pending JPS6057997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16498583A JPS6057997A (en) 1983-09-09 1983-09-09 Method of producing multilayer circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16498583A JPS6057997A (en) 1983-09-09 1983-09-09 Method of producing multilayer circuit board

Publications (1)

Publication Number Publication Date
JPS6057997A true JPS6057997A (en) 1985-04-03

Family

ID=15803639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16498583A Pending JPS6057997A (en) 1983-09-09 1983-09-09 Method of producing multilayer circuit board

Country Status (1)

Country Link
JP (1) JPS6057997A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61134099A (en) * 1984-12-05 1986-06-21 沖電気工業株式会社 Manufacture of multilayer thick film ic
US4980239A (en) * 1987-08-27 1990-12-25 Fujitsu Limited Metallization layer structure formed on aluminum nitride ceramics and method of producing the metallization layer structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61134099A (en) * 1984-12-05 1986-06-21 沖電気工業株式会社 Manufacture of multilayer thick film ic
US4980239A (en) * 1987-08-27 1990-12-25 Fujitsu Limited Metallization layer structure formed on aluminum nitride ceramics and method of producing the metallization layer structure

Similar Documents

Publication Publication Date Title
JP2964537B2 (en) Semiconductor device and manufacturing method thereof
JP3486184B2 (en) Chip carrier substrate
US4430365A (en) Method for forming conductive lines and vias
JPH03136243A (en) Formation of integrated circuit structure
KR20010072143A (en) Low-impedance high-density deposited-on-laminate structures having reduced stress
JPH02263445A (en) Aluminum nitride substrate and semiconductor using same
US6150074A (en) Method of forming electrically conductive wiring pattern
JPS6057997A (en) Method of producing multilayer circuit board
JPS62295493A (en) Manufacture of circuit board for mounting high speed device
JPH11251433A (en) Semiconductor device and manufacture thereof
JPH0330992B2 (en)
JPH0496254A (en) Thin film multi-layered circuit board an manufacture thereof
JPS59207692A (en) Method of producing multilayer circuit board
JPH06132421A (en) Manufacture of thin-film multilayer circuit board
JPH08255831A (en) Semiconductor device
JPH0697671A (en) Circuit board
JPH04323895A (en) Thin film multilayer circuit board and its manufacture
JPH0240232B2 (en)
JPH0818226A (en) Wiring board and its manufacture
JPH11176835A (en) Structure of multi-layer wiring and manufacture therefor
JPH02210893A (en) Manufacture of circuit board
KR20010072144A (en) Method for forming low-impedance high-density deposited-on-laminate structures having reduced stress
JPS61271897A (en) Multilayer wiring circuit board and manufacture thereof
JPS5886744A (en) Semiconductor integrated circuit device
JPH11330292A (en) Multilayer substrate