JPS6057972A - Insulated gate field effect transistor - Google Patents

Insulated gate field effect transistor

Info

Publication number
JPS6057972A
JPS6057972A JP16590583A JP16590583A JPS6057972A JP S6057972 A JPS6057972 A JP S6057972A JP 16590583 A JP16590583 A JP 16590583A JP 16590583 A JP16590583 A JP 16590583A JP S6057972 A JPS6057972 A JP S6057972A
Authority
JP
Japan
Prior art keywords
film
dirt
effect transistor
polycrystalline silicon
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16590583A
Other languages
Japanese (ja)
Other versions
JPH053147B2 (en
Inventor
Hidemi Ishiuchi
秀美 石内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP16590583A priority Critical patent/JPS6057972A/en
Publication of JPS6057972A publication Critical patent/JPS6057972A/en
Publication of JPH053147B2 publication Critical patent/JPH053147B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To attain enhancement of the withstand voltage of an insualted gate effect transistor without dominated by film thickness of a gate insualting film by a method wherein doner concentration or accetor concentration is set to the most suitable value. CONSTITUTION:At an insulated gate field effect transistor having a gate electrode 23 wherein the whole or a part thereof is formed of polycrystalline silicon films 24, 25, the gate electrode is constructed as follows. When acceptor atom density and doner atom density contained in the polycrystalline silicon film 24 constructing the gate electrode 23 in the neighborhood of an interface 26 between a gate insulating film 22 and the polycrystalline silicon film 24 directly under the gage electrode 23 are indicated respectively by NA, ND, thickness of the insualting film 22 is by t2, the dielctric constant of the insulating film 22 is by epsiloni, permittivity of a vacuum is by epsilono elementally electric charge is by q= 1.6X10<-19> coulomb, and the maximum value of the insulation value of the potential difference between a source and the gate is indicated by VC, the inequality ¦ND-NA¦<10epsilonoepsiloniVG/qti<2> is made as to be satisfied.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、絶縁ダート型%不効果トランジスタに関する
DETAILED DESCRIPTION OF THE INVENTION TECHNICAL FIELD OF THE INVENTION The present invention relates to an insulated dart type percent ineffective transistor.

〔発明の技術的背景〕[Technical background of the invention]

従来、絶縁ゲート型電界効果トランジスタのゲート1i
L極とじ1は、砒素、鱈rロン等の不純物を含んだ多結
晶シリコン膜が使用されている。
Conventionally, the gate 1i of an insulated gate field effect transistor
For the L-pole binding 1, a polycrystalline silicon film containing impurities such as arsenic and cod oxide is used.

而して、不純物は、例えはリンを拡散にLクグートt&
中に導入する場合扛、ダート電極中の不純物製度は、不
純物の拡散条件にもよるか一般には3 X 10 〜5
XlOcIn の範囲で設足している。
Therefore, impurities, for example, diffuse phosphorus,
When introducing the impurity into the dirt electrode, the degree of impurity concentration in the dirt electrode depends on the impurity diffusion conditions, but is generally 3 x 10 to 5.
It has been established within the range of XlOcIn.

また、そのゲート絶縁膜としては、厚さが250〜30
0Xの二酸化シリコン族が一般に使用されている。近年
、集稼回路素子の微粗化を達成するために、ダート絶#
膜である二酸化シリコン膜の膜厚も小さくする方向にあ
る。−万、ダート電圧は、ダート絶縁膜の膜厚の縮小率
に対応しては小さくならない。従うて、ダート電界(ダ
ート電圧/ダート絶縁膜圧)が大きくなる傾向にある。
Moreover, the thickness of the gate insulating film is 250 to 30 mm.
OX silicon dioxide family is commonly used. In recent years, in order to achieve finer roughening of integrated circuit elements, dirt
There is also a tendency to reduce the thickness of the silicon dioxide film. - 10,000, the dart voltage does not decrease in accordance with the reduction rate of the film thickness of the dart insulating film. Therefore, the dart electric field (dart voltage/dart insulating film pressure) tends to increase.

〔背景技術の問題点〕 而して、ダート絶IIi&膜とダート電極である多結晶
シリコンの界面は、決して平坦ではなく、凹凸が存在す
る。この状態を図示したのが第1図である。図中1は、
例えはp形のシリコン基板である。3は、このシリコン
基板1上にダート絶縁膜2である二酸化シリコン膜を介
して積層された多結晶シリコン膜からなるダート電極で
ある。多結晶シリコン族中には、例えはリンが3XlO
cm 含まれている。ダート絶縁膜2は、同図から明ら
かなように局所的に薄肉部分があり、その表面は凹凸部
4を有している。その結果、ダート絶縁膜2の耐圧が劣
化する問題があうた。
[Problems with Background Art] Therefore, the interface between the dart electrode IIi& film and the polycrystalline silicon that is the dart electrode is not flat at all, but has irregularities. FIG. 1 illustrates this state. 1 in the figure is
An example is a p-type silicon substrate. Reference numeral 3 denotes a dirt electrode made of a polycrystalline silicon film laminated on the silicon substrate 1 with a silicon dioxide film serving as the dirt insulating film 2 interposed therebetween. In the polycrystalline silicon group, for example, phosphorus is
cm included. As is clear from the figure, the dirt insulating film 2 has locally thin portions, and its surface has uneven portions 4. As a result, the problem of deterioration of the breakdown voltage of the dirt insulating film 2 occurred.

なお、同図は、ゲート絶縁膜2とダート電極3との界面
の凹凸部4t−見やすくするために、誇張して拡大した
状態で表現している。凹凸部4の高さは、ダート絶縁膜
2の約10%である。
Note that, in this figure, the uneven portion 4t at the interface between the gate insulating film 2 and the dirt electrode 3 is shown in an exaggerated and enlarged state in order to make it easier to see. The height of the uneven portion 4 is approximately 10% of the height of the dirt insulating film 2.

〔発明の目的〕[Purpose of the invention]

本発明は、ゲート絶縁膜の膜厚に左右されずに、耐圧の
向上を達成した絶縁ダート型[4効果トランジスタを提
供することをその目的とするものである。
An object of the present invention is to provide an insulated dart type [4-effect transistor] which achieves improved breakdown voltage regardless of the thickness of the gate insulating film.

〔発明の概要〕[Summary of the invention]

本発明は、ドナー濃度NDまたはアクセプタ濃度Nムを
最適値に設足して、r−ト絶縁膜の膜厚に左右されずに
、耐圧の同上を達成した絶縁ダート型電界効果トランジ
スタである。
The present invention is an insulated dart type field effect transistor that achieves the same breakdown voltage without being affected by the thickness of the r-to insulating film by setting the donor concentration ND or the acceptor concentration N to an optimum value.

次に、本発明をリン拡散を施したゲート電極kp形シリ
コン基板上に設けたnチャネル型の絶縁ダート型’Il
l効果トランジスタを例に挙げて詳述する。
Next, the present invention will be described in which an n-channel insulated dart type 'Il' is provided on a kp-type silicon substrate with a gate electrode subjected to phosphorus diffusion.
This will be explained in detail using an L-effect transistor as an example.

第2図は、このトランジスタのダートに電圧Voを印加
したときのノ々ンドダイヤグラムを示している。図中1
1は、p形シリコン基板、12はダート絶縁膜、13は
ダート電極である。電位は、第2図中の表面電位ψBを
基準にして測定し、ダートに印加する電圧VGは正とす
る。通常のトランジスタの場合、動作時にφBはソース
電位に吟しい。
FIG. 2 shows a node diagram when voltage Vo is applied to the dirt of this transistor. 1 in the diagram
1 is a p-type silicon substrate, 12 is a dirt insulating film, and 13 is a dirt electrode. The potential is measured based on the surface potential ψB in FIG. 2, and the voltage VG applied to the dirt is positive. In the case of a normal transistor, φB is equal to the source potential during operation.

このとき、ダート電極は、xdの長さだけ空乏層ができ
る。このxdは次式(1)で表わされる。
At this time, a depletion layer is formed in the dart electrode by a length xd. This xd is expressed by the following equation (1).

5− ここで、 ε、は、ダート電極である多結晶シリコン膜の比誘電率
、 #1ij、ダート絶縁膜の比誘電率 C0は、真空の誘電率で8.86 X 10 F/an
Jは、ダート絶縁膜の厚さ qは、素電荷で1.6XlOC NDは、ダート電極中の不純物の不純物製度Voは、ソ
ース電位を基準にして測定したダート電位でVo > 
Oとする。
5- Here, ε is the relative permittivity of the polycrystalline silicon film that is the dirt electrode, #1ij, the relative permittivity C0 of the dirt insulating film is the vacuum permittivity of 8.86 x 10 F/an
J is the dirt insulating film thickness q is the elementary charge and is 1.6XlOC ND is the degree of impurity Vo of the impurity in the dirt electrode is the dirt potential measured based on the source potential Vo >
Let it be O.

このとき、xdの大きさを二酸化シリコン膜と多結晶シ
リコン膜の界面の凹凸と同程度または、それ以上即ち、
二酸化シリコン膜の厚さの約lO−以上とすると、第3
図に示すようにダート絶縁膜22の界面の凹凸部26を
平坦化するように空乏層ができる。式(1)は、界面は
全く平坦な場合の式であるが、界面に凹凸部がある場6
− 合には、第3図に示すように空乏層がのび、式(1)で
与えられる×dは、おおむね空乏層の平均を与える。第
3図中21はp形シリコン基板、22はその表面に形成
された二酸化シリコン膜からなるダート絶縁膜、23は
、ダート絶縁膜22上に形成されたダート電極であり、
24は空乏層、25は空乏化していない領域である。
At this time, the size of xd is set to be equal to or larger than the unevenness of the interface between the silicon dioxide film and the polycrystalline silicon film, that is,
If the thickness is approximately lO- or more than the thickness of the silicon dioxide film, the third
As shown in the figure, a depletion layer is formed so as to flatten the uneven portion 26 at the interface of the dirt insulating film 22. Equation (1) is for the case where the interface is completely flat, but if the interface has uneven parts6
- In this case, the depletion layer grows as shown in FIG. 3, and xd given by equation (1) roughly gives the average of the depletion layer. In FIG. 3, 21 is a p-type silicon substrate, 22 is a dirt insulating film made of a silicon dioxide film formed on the surface thereof, and 23 is a dirt electrode formed on the dirt insulating film 22.
24 is a depletion layer, and 25 is a non-depleted region.

このように空乏層の厚さX4がダート絶縁膜の厚さti
のおおむね10%以上であれは、空乏層24の存在によ
り電界を緩和することができる。
In this way, the thickness of the depletion layer X4 is the thickness of the dirt insulating film ti
If it is approximately 10% or more, the electric field can be relaxed due to the presence of the depletion layer 24.

上述の条件を式で表わすと式(1)からとなる。さらに
式(2)の根号内金展開すると近似的に とかけ、さらにこれをNDについて解くととなる。
Expressing the above-mentioned conditions as an equation, it is as shown in equation (1). Furthermore, when formula (2) is expanded into a radical, it is approximately solved, and then this is solved for ND.

つまり、不純物lli度NDを式(4)をみたすように
定めれは良い。なお、不純物濃度NDがダート電極23
内で一足という条件のもとで式(4)を導いたが、ND
が一定でないときは、Noとしてダート絶縁822とダ
ート電&23の界面における値を使用すれは良い。
In other words, it is good to set the impurity degree ND so as to satisfy equation (4). Note that the impurity concentration ND is the dirt electrode 23
Equation (4) was derived under the condition that ND
When is not constant, it is better to use the value at the interface between dart insulation 822 and dart insulation &23 as No.

また、不純物としてドナーとアクセプタの双方が存在す
る場合は、 を満足すれば良い。ここで、NDはドナー濃度、Nムは
アクセプタ濃度である。式(5)は、最も一般的な条件
である。
Furthermore, if both a donor and an acceptor exist as impurities, the following may be satisfied. Here, ND is the donor concentration and N is the acceptor concentration. Equation (5) is the most general condition.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例について図面を参照して説明する
Embodiments of the present invention will be described below with reference to the drawings.

第3図は、本発明の一実施例の要部の拡大図である。こ
の実施例は、本発明in−チャネル絶縁ダート型電界効
果トランジスタに適用したものである。図中21は、p
形のシリコン基板21″″Cある。シリコン基板≧1上
には、900℃の酸化界囲気中で厚さ150X形成され
た二酸化シリコン膜からなるダート絶縁膜22が設けら
れている。ダート絶縁膜22上には、多結晶シリコン膜
を厚さ3000X堆積し、これに加速電圧40kaV、
ドーズJt8×1014ctn−2の条件で砒素イオン
を注入してなるダート電極23が設けられている。なお
、このダート電極23のパターニング後に、通常のMO
S )ランジスタの製造プロセスに従りてソース、ドレ
イン電極等の形成が行われている。ソース、ドレインi
nへの不純物の導入は、ダート領域をマスクしてダート
領域の不純物濃度が高くならないようにして行りている
FIG. 3 is an enlarged view of essential parts of an embodiment of the present invention. This embodiment is applied to an in-channel insulated dart type field effect transistor of the present invention. 21 in the figure is p
There is a shaped silicon substrate 21''C. A dirt insulating film 22 made of a silicon dioxide film formed to a thickness of 150× in an oxidizing atmosphere at 900° C. is provided on the silicon substrate≧1. A polycrystalline silicon film is deposited on the dirt insulating film 22 to a thickness of 3000×, and an accelerating voltage of 40 kaV is applied to this film.
A dirt electrode 23 is provided which is formed by implanting arsenic ions at a dose of Jt 8×10 14 ctn-2. Note that after patterning this dirt electrode 23, a normal MO
S) Source, drain electrodes, etc. are formed according to the transistor manufacturing process. source, drain i
The impurity is introduced into n by masking the dirt region so that the impurity concentration in the dirt region does not become high.

ダート11極23にイオン注入された砒素は、その後の
熱工程(例えは、窒素雰囲気中での1000℃で40分
程度のアニール)で、ダート電極23内に#1#な一定
の濃度分布を呈している。この不純物l1l11度ND
は、ND−2,6X 10”m−39− 程度に設定されている。
The arsenic ion-implanted into the dirt 11 electrode 23 forms a constant #1# concentration distribution in the dirt electrode 23 through a subsequent thermal process (for example, annealing at 1000°C for about 40 minutes in a nitrogen atmosphere). It is showing. This impurity l1l11 degree ND
is set to approximately ND-2.6×10"m-39-.

このように構成された絶縁ダート型’ItR効果トラン
ジスタを、ソース電圧を基準にしてダート電圧を5vに
設定して使用すると、上述の式(4)の右辺は次のより
になる@ 10g。glVo 1OX8.86XlOX3.9X5
t lq (150XIO) Xl、6XIO−19−
4,8XIO(o++ ) つまり、ドナー濃度NDは、2.6XlOan (4,
8X10 cm を満足する。この結果から明ら〃≧に
r−ト絶縁膜22の耐圧が向上することが判る。
When the insulated dart type 'ItR effect transistor configured in this way is used with the dart voltage set to 5V with the source voltage as a reference, the right side of the above equation (4) becomes as follows @ 10g. glVo 1OX8.86XlOX3.9X5
t lq (150XIO) Xl, 6XIO-19-
4,8XIO(o++) In other words, the donor concentration ND is 2.6XIOan(4,
Satisfies 8x10 cm. From this result, it is clear that the withstand voltage of the r-to insulating film 22 is improved by ≧.

なお、本発明は、p−チャネルの素子にも適用できるこ
とは勿論である。この場合には、シリコン基板としてn
形シリコン基板を使用し、多結晶シリコン膜中には、ホ
ウ素を注入する。
It goes without saying that the present invention can also be applied to p-channel devices. In this case, as a silicon substrate, n
A polycrystalline silicon substrate is used, and boron is implanted into the polycrystalline silicon film.

また、ダート絶縁膜としては、窒化シリコン膜或は、窒
化シリコン膜と酸化シリコン膜の多層構造のものを用い
ても良い。
Further, as the dirt insulating film, a silicon nitride film or a multilayer structure of a silicon nitride film and a silicon oxide film may be used.

また、ダート電極としては、金属膜や金属の10− 硅化物換金多結晶シリコン膜上に積層したものを用いて
も良い。
Further, as the dirt electrode, a metal film or a metal film laminated on a 10-silicide-converted polycrystalline silicon film may be used.

〔発明の効果〕〔Effect of the invention〕

以上説すりした如く、本発明に係る絶縁ダート型電界効
果トランジスタによれは、ダート絶縁膜の膜厚に左右さ
れずに、耐圧の同上を達成できるものである。
As explained above, the insulated dart type field effect transistor according to the present invention can achieve the same breakdown voltage regardless of the thickness of the dirt insulating film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の絶縁ダート型電界効果トランジスタの
ダートの近傍領域を示す拡大図、第2図は、本発明の原
理を示すバンドダイヤグラム、第3図は、本発明の絶縁
ダート型電界効果トランジスタのr−)の近傍領域を示
す拡大図である。 1.11.21・・・p形シリコン基板、2゜ノ2,2
2・・・ダート絶縁膜、3,13.23・・・ダート電
極、24・・・多結晶シリコン膜の空乏層、25・・・
多結晶シリコン族の空乏化していない層。 出願人代理人 弁理士 鮎 江 武 彦11− 第1図 第2図
Fig. 1 is an enlarged view showing the area near the dirt of a conventional insulated dart type field effect transistor, Fig. 2 is a band diagram showing the principle of the present invention, and Fig. 3 is an insulated dart type field effect transistor of the present invention. FIG. 3 is an enlarged view showing a region near r-) of a transistor. 1.11.21...p-type silicon substrate, 2° no 2,2
2... Dirt insulating film, 3, 13. 23... Dirt electrode, 24... Depletion layer of polycrystalline silicon film, 25...
An undepleted layer of the polycrystalline silicon family. Applicant's representative Patent attorney Takehiko Ayue 11- Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 (1) ダート電極の全部または一部が多結晶シリコン
膜で形成されている絶縁f−)製電外効果トランジスタ
において、ダート電極直下のダート絶縁膜と多結晶シリ
コン膜との界面近傍で該ダート電極を形成する多結晶シ
リコン膜中に含まれるアクセプタ原子密度’k NA 
tドナー原子密度をNDとし、絶縁膜の厚さをtl、絶
縁膜の比誘電率をεl、真空の誘電率をε0.累電荷を
q=1、6 X 10 クーロン、ソースとダートの電
位差の絶縁値の最大値ヲvGとするとき、不等式を満足
することを特徴とする絶縁ダート型電界効果トランジス
タ。 (2)トランジスタのチャネルはn形であり、そのグー
)W極中にドナー原子を不純物とじて含有する特許請求
の範囲第1項記載の絶縁ダート製電外効果トランジスタ
。 (3ントランジスタのチャネルr、i p形であり、そ
のダート電極中にアクセプタ原子全不純物として含有す
る特許請求の範囲第1項記載の絶縁ダート型電界効果ト
ランジスタ。 (4) ダート電極は、多結晶シリコン膜の単層構造、
或は、金属膜または金属硅化物膜と多結晶シリコン膜の
複数層積層構造からなる特許請求の範囲第1項、第2項
、第3項の何れか記載の絶縁ダート型電界効果トランジ
スタ。 (5)ダート絶縁膜は、二酸化シリコン膜、窒化シリコ
ン膜、二酸化シリコン膜と窒化シリコン膜の二層構造体
の何れかである特許請求の範囲第1項、第2項、第3項
、第4項の何れか記載の絶縁ダート型電界効果トランジ
スタ。
[Scope of Claims] (1) In an insulating f-) manufactured external effect transistor in which all or part of the dirt electrode is formed of a polycrystalline silicon film, the dirt insulating film directly under the dirt electrode and the polycrystalline silicon film are Acceptor atomic density 'k NA contained in the polycrystalline silicon film forming the dirt electrode near the interface of
The donor atom density is ND, the thickness of the insulating film is tl, the dielectric constant of the insulating film is εl, and the permittivity of vacuum is ε0. An insulated dart type field effect transistor characterized in that it satisfies the inequality where the accumulated charge is q = 1, 6 x 10 coulombs, and the maximum insulation value of the potential difference between the source and the dart is vG. (2) The external effect transistor made of insulating dirt as claimed in claim 1, wherein the channel of the transistor is n-type, and the W pole contains donor atoms as impurities. (The insulated dart type field effect transistor according to claim 1, wherein the channel r, i of the transistor is p-type, and the dirt electrode contains all acceptor atoms as impurities. Single layer structure of crystalline silicon film,
Alternatively, the insulated dart type field effect transistor according to any one of claims 1, 2, and 3, comprising a multilayer stacked structure of a metal film or a metal silicide film and a polycrystalline silicon film. (5) The dirt insulating film is any one of a silicon dioxide film, a silicon nitride film, and a two-layer structure of a silicon dioxide film and a silicon nitride film. 4. The insulated dart type field effect transistor according to any one of Item 4.
JP16590583A 1983-09-09 1983-09-09 Insulated gate field effect transistor Granted JPS6057972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16590583A JPS6057972A (en) 1983-09-09 1983-09-09 Insulated gate field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16590583A JPS6057972A (en) 1983-09-09 1983-09-09 Insulated gate field effect transistor

Publications (2)

Publication Number Publication Date
JPS6057972A true JPS6057972A (en) 1985-04-03
JPH053147B2 JPH053147B2 (en) 1993-01-14

Family

ID=15821221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16590583A Granted JPS6057972A (en) 1983-09-09 1983-09-09 Insulated gate field effect transistor

Country Status (1)

Country Link
JP (1) JPS6057972A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5286084A (en) * 1976-01-12 1977-07-16 Hitachi Ltd Field effect transistor
JPS5339083A (en) * 1976-09-22 1978-04-10 Hitachi Ltd Production of silicon gate mis semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5286084A (en) * 1976-01-12 1977-07-16 Hitachi Ltd Field effect transistor
JPS5339083A (en) * 1976-09-22 1978-04-10 Hitachi Ltd Production of silicon gate mis semiconductor device

Also Published As

Publication number Publication date
JPH053147B2 (en) 1993-01-14

Similar Documents

Publication Publication Date Title
US5567638A (en) Method for suppressing boron penetration in PMOS with nitridized polysilicon gate
US5783469A (en) Method for making nitrogenated gate structure for improved transistor performance
JP4101313B2 (en) Semiconductor device and manufacturing method thereof
US4199773A (en) Insulated gate field effect silicon-on-sapphire transistor and method of making same
US6734068B2 (en) Method to form silicates as high dielectric constant materials
KR950002276B1 (en) Process for producing cmos having doped polysilicon gate by outdiffusion of boron from implanted silicide gate
JPH01205470A (en) Semiconductor device and its manufacture
JPH07335898A (en) Manufacture of semiconductor device
US6054357A (en) Semiconductor device and method for fabricating the same
US6977205B2 (en) Method for manufacturing SOI LOCOS MOSFET with metal oxide film or impurity-implanted field oxide
JPS62156873A (en) Semiconductor device
JPS6057972A (en) Insulated gate field effect transistor
US5973381A (en) MOS capacitor and MOS capacitor fabrication method
US6881998B2 (en) Semiconductor device and method for producing the same
JPH0923013A (en) Semiconductor element and its preparation
US6670664B1 (en) Single transistor random access memory (1T-RAM) cell with dual threshold voltages
TWI265634B (en) Flash memory cell transistor and method for fabricating the same
JPS61177771A (en) Manufacture of semiconductor device
JP3203903B2 (en) Semiconductor device
US5851871A (en) Process for manufacturing integrated capacitors in MOS technology
JPH02224223A (en) Semiconductor device
US6281074B1 (en) Method of manufacturing oxide layer
JPS59181063A (en) Mos type semiconductor device
US7122877B2 (en) Semiconductor device and method for producing the same
JP2635086B2 (en) Method for manufacturing semiconductor device