JPS605790B2 - Wave energy conversion device using liquid turbine - Google Patents

Wave energy conversion device using liquid turbine

Info

Publication number
JPS605790B2
JPS605790B2 JP52069932A JP6993277A JPS605790B2 JP S605790 B2 JPS605790 B2 JP S605790B2 JP 52069932 A JP52069932 A JP 52069932A JP 6993277 A JP6993277 A JP 6993277A JP S605790 B2 JPS605790 B2 JP S605790B2
Authority
JP
Japan
Prior art keywords
liquid
storage tank
turbine
liquid storage
airtight pressurized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52069932A
Other languages
Japanese (ja)
Other versions
JPS545147A (en
Inventor
潤二郎 坪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BERITASU KK
Original Assignee
BERITASU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BERITASU KK filed Critical BERITASU KK
Priority to JP52069932A priority Critical patent/JPS605790B2/en
Publication of JPS545147A publication Critical patent/JPS545147A/en
Publication of JPS605790B2 publication Critical patent/JPS605790B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Description

【発明の詳細な説明】 本発明は、液体タービンを用いて波動エネルギーを変換
する装置に関するもので、海洋や湖沼等の水面に常時存
在する波動から効率良くエネルギーを抽出し、これを他
の有用なエネルギーに変換すことを目的とするものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device that converts wave energy using a liquid turbine, which efficiently extracts energy from waves that always exist on the surface of water such as oceans and lakes, and uses this energy for other useful purposes. The purpose is to convert it into energy.

海洋や湖沼面の波動に着目して、その有するエネルギー
を抽出して利用すべ〈、数多〈の提案がなされている。
Numerous proposals have been made to focus on wave movements on the surface of oceans and lakes, and to extract and utilize the energy they contain.

その中で、産業上利用できるものとして現在有力視され
ている方法として、波動の上下動に応じて波動ブィを垂
直振動させて波動エネルギーを抽出する方法と、波動の
上下動により気密室内の空気を圧縮して空気流としター
ビンを駆動する空気タービン法とがあり、いずれも実用
化のため実験が行われている。しかし〜浮動ブィの垂直
振動を利用する方法は、装置1個当りの取り出せるエネ
ルギー変換量に限度がありこれを大きくすることはむつ
かしく、その上定点に固定することが困難なため潮流に
よって漂流してしまうという欠点がある。これに対し、
空気タービン法は装置を係留するので漂流することはな
く、その上装置を大型化すれば、取り出し得るエネルギ
ー量を理論上はそれだけ大きくなし得るわけであるが、
タービンを駆動するエネルギー搬送媒体として圧縮率が
大きくかつ密度の小さい空気を用いるため、総合的なエ
ネルギー変換効率が悪く、そのため波動中に含まれる総
エネルギーのうち、極く一部のエネルギーしか抽出し利
用し得ないという大きな欠点がある。このほかにも、波
動エネルギーの変換手段として、例えばフロートの上下
運動を機械的中間機構を介して回転連動に変換する等、
機械装置を使用するものも多数提案されているが、機械
装置の作動自体にかなりのエネルギーが消費されるため
、全体としてのエネルギー変換効率は低く、その上磯織
機機にいまいま故障を起して保守に甚だ手間を要する等
の欠点がある。本発明は以上の点に鑑み研究の結果、従
来提案されているような機械的中間機構を介在させるこ
となく、さらに波動の運動量を、空気に比べてはるかに
密度の高い液体をエネルギー搬送媒体として用いて液体
タービンを駆動することにより、前記各方式に見られた
ような欠点のない波動エネルギーの変換装置を発明した
ものである。まず本発明の第1の目的は、海洋や湖沼等
の水面の波動から効率良くエネルギーを抽出し、これを
他の有用なエネルギーに変換する装置を堤供することで
ある。
Among these methods, the methods that are currently considered to be promising for industrial use include a method in which wave energy is extracted by vertically vibrating a wave buoy according to the vertical movement of the wave, and a method in which the wave energy is extracted by vertically vibrating the wave buoy in response to the vertical movement of the wave. There is an air turbine method in which the air is compressed into an air flow that drives a turbine, and both methods are being tested for practical use. However, with the method of utilizing the vertical vibration of a floating buoy, there is a limit to the amount of energy conversion that can be extracted per device, and it is difficult to increase this amount.Furthermore, it is difficult to fix it at a fixed point, so it may drift due to the current. It has the disadvantage of being stored away. On the other hand,
In the air turbine method, the equipment is moored, so it does not drift, and if the equipment is made larger, the amount of energy that can be extracted can theoretically be increased accordingly.
Since air, which has a high compressibility and low density, is used as the energy carrier medium to drive the turbine, the overall energy conversion efficiency is poor, and as a result, only a small portion of the total energy contained in the waves is extracted. The major drawback is that it cannot be used. In addition, as a means of converting wave energy, for example, converting the vertical movement of a float into rotational movement via a mechanical intermediate mechanism, etc.
Many proposals have been made that use mechanical devices, but since the operation of the mechanical devices itself consumes a considerable amount of energy, the overall energy conversion efficiency is low, and on top of that, the Iso loom has recently broken down. It has drawbacks such as requiring a lot of effort for maintenance. In view of the above points, the present invention was developed as a result of research, and without intervening a mechanical intermediate mechanism as conventionally proposed, the present invention uses a liquid, which has a much higher density than air, as an energy transport medium to transfer the momentum of waves. By using this method to drive a liquid turbine, we have invented a wave energy conversion device that does not have the drawbacks of the above-mentioned systems. The first object of the present invention is to provide a device that efficiently extracts energy from waves on the surface of water such as the ocean, lakes, and marshes, and converts it into other useful energy.

本発明の第2の目的は、波動のもつ運動量を密度の高い
液体流に転換して、それにより液体夕−ビンを駆動する
ことによって、効率良くエネルギーを抽出し得る装置を
提供することである。
A second object of the present invention is to provide an apparatus capable of efficiently extracting energy by converting the momentum of waves into a dense liquid flow and thereby driving a liquid turbine. .

本発明の第3の目的は、保守、運転ともに簡単で手間を
要せずかつ大型化することも容易な装置を用い、大量の
エネルギーを効率良く抽出し得る装置を提供することで
ある。本発明の第4の目的は、波動のもつエネルギーを
他の有用なエネルギーに変換すると同時に、副次的効果
として波動を減衰せしめて有用な他の目的に使用し得る
静水面を得ることのできる装層を提供することである。
A third object of the present invention is to provide a device that can efficiently extract a large amount of energy using a device that is easy to maintain and operate, requires no effort, and can be easily enlarged. A fourth object of the present invention is to convert the energy of waves into other useful energy, and at the same time, as a side effect, to attenuate the waves and obtain a still water surface that can be used for other useful purposes. The purpose is to provide a covering layer.

以下本発明に係る装置を、そのいくつかの実施例を示す
図面に基づいて詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The apparatus according to the present invention will be explained in detail below based on the drawings showing some embodiments thereof.

第1図は、本発明装置に用いる複数個の気密与圧室を有
する装置の−実施例の、液体タービン部分を含む断面図
で、図では2つの気密与圧室を並置した例が示してあり
、貯液槽を固定せず該貯液槽が浮動する方式のものであ
る。
FIG. 1 is a sectional view including a liquid turbine portion of an embodiment of a device having a plurality of airtight pressurized chambers used in the device of the present invention, and the figure shows an example in which two airtight pressurized chambers are arranged side by side. There is a type in which the liquid storage tank is not fixed and the liquid storage tank floats.

図において、1は底部が水中に開□した鋼板などにより
作られた箱体で、紙面に直角方向に適宜の長さを有し「
図面横方向の中は波動の平均波長とほぼ同一とし、その
内部は中仕切板2によって2つの気密与圧室3と気密与
圧室4とに隔てられている。6と6は上部が気密与圧室
内に閉口した液体を収蔵する貯液槽で、紙面に直角方向
に箱体1よりや)短く作られ、両貯液槽はその底部に浮
力付与体7を有し「その浮力は貯液槽中に液体が充満し
たときも貯液槽が沈没しない程度の浮力をもつものとし
、さらに上下浮動を円滑ならしめるため、適宜個数の滑
車8をその側面に取付けている。
In the figure, 1 is a box made of steel plate etc. whose bottom is open underwater, and has an appropriate length in the direction perpendicular to the plane of the paper.
The inside in the horizontal direction of the drawing is approximately the same as the average wavelength of the waves, and the inside thereof is separated by a partition plate 2 into two airtight pressurized chambers 3 and 4. 6 and 6 are liquid storage tanks for storing liquid whose upper parts are closed in airtight pressurized chambers, which are made shorter than the box body 1 in the direction perpendicular to the paper, and both liquid storage tanks have buoyancy imparting bodies 7 at their bottoms. The tank shall have enough buoyancy to prevent the tank from sinking even when the tank is filled with liquid, and an appropriate number of pulleys 8 will be attached to the side of the tank to ensure smooth vertical floating. ing.

9,IQ,11,12は導管で、それぞれの一端に弁機
構13,14,15,16を有し、他端は液体タービン
17に連結されている。
9, IQ, 11 and 12 are conduits, each having a valve mechanism 13, 14, 15, 16 at one end and connected to a liquid turbine 17 at the other end.

液体タービン17及び各導管と液体タービンとの連結方
式は、理解をし易くするため図においては模式的に表示
してあるが、実施するにあたっては公知の工学的方法に
従って変更して差支えない。例えば、図では各導管はそ
れぞれ液体タービンに別々に連結されているが、第2図
に示すように導管9と10を一体とした上液体タービン
の流入口側に連結し、また図示はしていないが、液体タ
ービンの排出口側に導管15と16とを一体とした上達
結してもよい。液体タービンの回転軸は図において紙面
に直角方向に設置されているが、これもこの方向に限ら
れるものではなく、さらに液体タービンを箱体1の上部
に設置すれば、修理を必要とするとき都合がよい。以上
のように構成製作された本発明に用いる装置は、貯液槽
内の適量の液体を入れ、箱体の上半部が波動水面上に突
出し、図面の横方向が波動の進行方向と一致するような
向きに浮べ、所要の長さと強度をもつ鋼素または鎖18
によって水底19に繁定して浮設する。つぎに、以上の
ように製作して波動水面上に浮段された、本発明に使用
する装置の作動について説明する。
The liquid turbine 17 and the way in which the liquid turbine is connected to each conduit are shown schematically in the figures for ease of understanding, but may be modified according to known engineering methods in practice. For example, in the figure, each conduit is connected to the liquid turbine separately, but as shown in FIG. However, the conduits 15 and 16 may be integrally connected to the discharge port side of the liquid turbine. Although the rotating shaft of the liquid turbine is installed in the direction perpendicular to the plane of the paper in the figure, this is not limited to this direction.Furthermore, if the liquid turbine is installed at the top of the box 1, it will be easy to use when repairs are required. convenient. The device used in the present invention constructed and manufactured as described above has an appropriate amount of liquid in the liquid storage tank, the upper half of the box protrudes above the waving water surface, and the horizontal direction of the drawing matches the traveling direction of the waves. A steel element or chain 18 having the required length and strength and floating in a direction such that
It grows and floats on the bottom 19 of the water. Next, the operation of the apparatus used in the present invention, manufactured as described above and floated on a waving water surface, will be explained.

装置の外側には仮想線Wで示した波動があり、矢印方向
に向って進行するものとする。前述したように、装置の
図における機中は、波動の波長とほぼ等しいように設計
製作されているから、1つの気密与圧室についてみれば
1/2皮長に相当し、従って波動の進行に伴って装置外
側の波動水面が上下するとき、両気密与圧室内の水には
それに応じて正負反対方向の力がそれぞれ受けることに
なる。いま、気密与圧室の一部に外気に通じる穴が開い
ているとすれば、室内の水面は外観の波動水面の上下に
応じて自由に上下するが、本発明装置の場合は気密に作
られているため、気密与圧室内の空気は外側の波動水面
の上下に応じて、内部に収蔵した貯液槽の上下動と同時
に圧縮される方向あるいは減圧される方向の力を受ける
ことになる。第1図の実施例の場合〜 2つの気密与圧
室が隣接して設けられているので、一方の気密与圧室内
の貯液槽が上昇し、しかも該室内の空気が圧縮方向の力
を受けるとき、他方の気密与圧室内の貯液槽は下降し、
しかも該室内の空気は減圧される方向に力を受けること
になり、それによるそれぞれの液面並びに空気圧の変動
による力は貯液槽中に収蔵されている液体面に作用する
ことによる。
It is assumed that there is a wave shown by a virtual line W on the outside of the device, and it travels in the direction of the arrow. As mentioned above, the inside of the machine in the diagram of the device is designed and manufactured so that it is almost equal to the wavelength of the wave, so if you look at one airtight pressurized chamber, it corresponds to 1/2 the skin length, and therefore the progress of the wave When the wave water surface outside the device rises and falls as a result, the water in both airtight pressurized chambers is subjected to forces in opposite directions, respectively. Now, if a part of an airtight pressurized room has a hole that communicates with the outside air, the water level inside the room would rise and fall freely according to the rise and fall of the undulating water surface on the outside, but in the case of the device of the present invention, it can be made airtight. As a result, the air inside the airtight pressurized chamber is compressed or depressurized at the same time as the liquid storage tank stored inside rises and falls, depending on the rise and fall of the undulating water surface outside. . In the case of the embodiment shown in Fig. 1, since the two airtight pressurized chambers are provided adjacent to each other, the liquid storage tank in one of the airtight pressurized chambers rises, and the air in the chamber receives a force in the compression direction. When receiving liquid, the liquid storage tank in the other airtight pressurized chamber lowers,
Moreover, the air in the room is subjected to a force in the direction of pressure reduction, and the resulting force due to fluctuations in the liquid level and air pressure acts on the liquid level stored in the liquid storage tank.

そこで図示した状態のとき、気密与圧室3中の空気は圧
縮され気密与圧室4中の空気は減圧され、これらの力が
貯液槽中の液体面に作用しているから「両貯液槽間の液
面差並びに両気密与圧室間の気圧差のため、貯液槽5中
の液体は弁機構13を通って導管9中に液体流を作り、
液体タービン17を駆動したのち導管12と弁機構16
を経て狩液槽6中に移動する。つぎに、装置外側の波動
が矢印方向に進行して、気密与圧室3中の貯液槽が降下
し、且つ該室3中の空気が減圧方向に、気密与圧室4中
の貯液槽が上昇し、且つ該室4中の空気が加圧方向にそ
れぞれ変化すると、両室間の液面差並びに気圧差が逆転
するので、貯液槽6中の液体は前記と逆に弁機構14を
通って導管10中に液体流を作り、液体タービンを駆動
したのち導管11と弁機構15を経て貯液槽3中に復帰
する。又、第1図図示の実施例では、両貯液槽間の液面
差並びに両気密与圧室間の気圧差により両貯液槽間の液
体面の間に、最終的には貯液槽の液面並びに気圧差につ
り合った高さの液面差を生ずる。
Therefore, in the illustrated state, the air in the airtight pressurized chamber 3 is compressed and the air in the airtight pressurized chamber 4 is depressurized, and these forces act on the liquid surface in the liquid storage tank. Due to the liquid level difference between the liquid tanks as well as the pressure difference between the two gas-tight pressurized chambers, the liquid in the liquid storage tank 5 creates a liquid flow in the conduit 9 through the valve mechanism 13.
After driving the liquid turbine 17, the conduit 12 and the valve mechanism 16
It then moves into the liquid tank 6. Next, the wave motion on the outside of the device advances in the direction of the arrow, and the liquid storage tank in the airtight pressurized chamber 3 descends, and the air in the chamber 3 moves in the decompression direction, causing the liquid storage tank in the airtight pressurization chamber 4 to fall. When the tank rises and the air in the chamber 4 changes in the pressurizing direction, the liquid level difference and the pressure difference between the two chambers are reversed, so the liquid in the liquid storage tank 6 is moved by the valve mechanism in the opposite way to the above. A liquid flow is created in the conduit 10 through the conduit 14, which drives the liquid turbine, and then returns to the liquid storage tank 3 via the conduit 11 and the valve mechanism 15. In addition, in the embodiment shown in FIG. 1, due to the liquid level difference between the two liquid storage tanks and the pressure difference between the two airtight pressurized chambers, the liquid level between the two liquid storage tanks is eventually This produces a liquid level difference in height that is balanced by the liquid level and pressure difference.

そして装置外側の波動が移動して、両気密与圧室間に於
ける貯液槽の昇降並びに両気密与圧室間の気圧差が逆転
し始めると、両貯液槽間にはこの液面差のため液体流が
起こり、貯液槽の昇降並びに両気密与圧室間の気圧差が
未だ完全に逆転して反対方向に空気圧の力が働くに至ら
なくとも、それにより図面に即していえば貯液槽6から
弁機構14を通じ導管10中に液体流を作り、液体ター
ビンを駆動したのち導管11と弁機構15を経て貯液槽
5中に液体を復帰せしめるのである。そして貯液槽の昇
降並びに両気密与圧室の空気圧が完全に逆転の方向に向
えば、前述した液面差並びに空気圧の作用により導管1
0中に、液体流が持続し、貯液槽5中の液面は上昇を続
け貯液槽6中の液面よりだんだん高くなり、最終的には
再び両室の気圧差につり合った高さになる液面差を両貯
液槽間に作ることになる。この液面差による液体流の発
生は、波動のような一種の振動現象が、一方の向きから
逆の向きにその運動方向を変える際の休止期間に、液体
タービンの回転を止めることなくタービンの回転を円滑
に持続するという重要な作用を果すものである。特に、
本発明に於いては、貯液槽自体が浮力を有し気密与圧室
内の水面の上下と共に浮動するから、前述した両気密与
圧室間の気圧差による液体の移動に加えて、特有の作用
が重量的に働くものである。
When the waves outside the device move and the rise and fall of the liquid storage tank between the two airtight pressurized chambers and the pressure difference between the two airtight pressurized chambers begin to reverse, this liquid level between the two storage tanks begins to rise. Due to the difference, a liquid flow occurs, and even if the lifting and lowering of the liquid storage tank and the pressure difference between the two airtight pressurized chambers have not yet completely reversed and caused a pneumatic force to act in the opposite direction, this will cause the liquid to flow according to the drawing. For example, a liquid flow is created in the conduit 10 from the liquid storage tank 6 through the valve mechanism 14, and after driving a liquid turbine, the liquid is returned to the liquid storage tank 5 through the conduit 11 and the valve mechanism 15. When the liquid storage tank goes up and down and the air pressure in both airtight pressurized chambers is completely reversed, the conduit 1
During zero, the liquid flow continues, and the liquid level in the liquid storage tank 5 continues to rise, gradually becoming higher than the liquid level in the liquid storage tank 6, and finally reaches a height that is again balanced by the pressure difference between the two chambers. This creates a liquid level difference between the two liquid storage tanks. The generation of liquid flow due to this difference in liquid level occurs during the rest period when a type of vibration phenomenon such as a wave changes its direction of motion from one direction to the opposite direction, without stopping the rotation of the liquid turbine. This plays an important role in maintaining smooth rotation. especially,
In the present invention, since the liquid storage tank itself has buoyancy and floats with the rise and fall of the water surface in the airtight pressurized chamber, in addition to the movement of liquid due to the pressure difference between the two airtight pressurized chambers, The action is based on weight.

いま図面をはなれて、まず両貯液槽中に同量の液体が収
蔵されていて、静水面においた時両者の液面が同じであ
るとすると、外側に波動の山部分が接近して、気密与圧
室3中の水面が上昇し気密与圧室4中の水面が下降し始
めると、貯液槽5は水面と共に上昇し、貯液槽6は水面
と共に下降し、両貯液槽に収蔵されている液体の液面間
に液面差が生ずる。この液面差により貯液槽5より貯液
槽6に向かう液体流が発生し、前述した両気密与圧室間
の気圧差により生ずる液体流の速度は一層加速されるこ
とになる。さらにまた、両貯液槽は気密与圧室内の水中
で浮動するものであり、液体の流出する側の貯液槽5は
液体の減った分だけ浮力が増すから気密与圧室3中の水
面からそれに応じて浮上し、液体の流入する側の貯液槽
は浮力が減るので気密与圧室4中の水面中にそれに応じ
て沈下することとなり、液面差により生ずる液体流の持
続および両気密与圧室間の気圧差の増大に寄与すること
による。そして気密与圧室3側で波動の最大上昇時には
、丁度第1図に図示する如き位置となり、以後気密与圧
室3側の貯液槽は室内の水面と共に下降し始め、反対に
気密与圧室4側の貯液槽は室内の水面と共に上昇し始め
るが、この方向に逆転する瞬間といえども貯液槽5から
貯液槽6へかけての液体流は休止することなく、液体タ
ービンの駆動が停止することはない。そして再び両貯液
槽間の液面差がなくなり、両気密与圧室間の気圧差によ
る空気圧の力が逆転して作用する時点からは、さきの説
明のごとく、気圧差による空気圧の作用と液面差とが共
に働くことになり、貯液槽6側から貯液槽5側に向けて
導管中を液体流が流れ液体タービンを駆動する。斯様に
本実施例は、波動サイクルの位相如何に拘らず常に導管
中にはいずれかの方向に液体流が作り出されることにな
り、極めて効果的に液体タービンを駆動するものである
。第1図図示の実施例においては、気圧差による液体流
に加えて液面差の作用によるものが大きく寄与するから
、排出側の導管11及び12の弁機構に近い方を、図示
のように相対的に太くすると導管9及び導管10中の液
体流を加速するのに効果的である。以上の説明は2つの
気密与圧室を並置したものについて行ったが、それぞれ
に貯液槽を有する気密与圧室を多数に設置し、波動面の
上下より生ずる液面差並びに圧力変動が正方向の気密与
圧室の中の貯液槽から、液面差並びに圧力変動が負の方
向となる気密与圧室の中の貯液槽に向けて弁機構をもつ
導管中に液体流を作り、この液体流によつて液体タービ
ンを駆動すれば、さらに大量のエネルギーを抽出するこ
とができる。
Moving away from the drawing, first of all, if the same amount of liquid is stored in both liquid storage tanks, and the liquid level in both tanks is the same when placed on a still water surface, the peak of the wave will approach the outside, When the water level in the airtight pressurized chamber 3 rises and the water level in the airtight pressurized chamber 4 begins to fall, the liquid storage tank 5 rises with the water level, and the liquid storage tank 6 descends with the water level, causing both liquid storage tanks to rise. A difference in liquid level occurs between the liquid levels stored. This liquid level difference generates a liquid flow from the liquid storage tank 5 toward the liquid storage tank 6, and the speed of the liquid flow caused by the above-mentioned pressure difference between the airtight pressurized chambers is further accelerated. Furthermore, both liquid storage tanks float in the water inside the airtight pressurized chamber, and the liquid storage tank 5 on the side from which the liquid flows out has increased buoyancy by the amount of liquid reduced, so that the water surface in the airtight pressurized chamber 3 increases. As the buoyancy of the liquid storage tank on the side into which the liquid flows decreases, it sinks accordingly into the water surface in the airtight pressurized chamber 4, which prevents the continuation of the liquid flow caused by the difference in liquid level and the By contributing to an increase in the pressure difference between airtight pressurized chambers. When the wave motion reaches its maximum on the airtight pressurized chamber 3 side, the position is exactly as shown in Fig. 1, and after that, the liquid storage tank on the airtight pressurized chamber 3 side begins to fall together with the water level in the room, and on the other hand, the airtight pressurized The liquid storage tank on the chamber 4 side begins to rise along with the water level in the room, but even at the moment when this direction is reversed, the liquid flow from the liquid storage tank 5 to the liquid storage tank 6 does not stop, and the liquid turbine continues to flow. The drive never stops. Then, from the point where the liquid level difference between the two storage tanks disappears again, and the air pressure force due to the pressure difference between the two airtight pressurized chambers acts in reverse, as explained earlier, the air pressure force due to the pressure difference acts. Together with the liquid level difference, a liquid flow flows through the conduit from the liquid storage tank 6 side to the liquid storage tank 5 side, driving the liquid turbine. In this way, the present embodiment drives the liquid turbine very effectively, as a liquid flow is always created in either direction in the conduit, regardless of the phase of the wave cycle. In the embodiment shown in FIG. 1, in addition to the liquid flow due to the pressure difference, the effect of the liquid level difference makes a large contribution, so the discharge side conduits 11 and 12, which are closer to the valve mechanism, are connected as shown in the figure. The relative thickness is effective in accelerating the liquid flow in conduits 9 and 10. The above explanation was given for two airtight pressurized chambers placed side by side, but by installing a large number of airtight pressurized chambers each having a liquid storage tank, the liquid level difference and pressure fluctuation caused from above and below the wave surface can be corrected. A liquid flow is created in a conduit with a valve mechanism from the liquid storage tank in the airtight pressurized chamber in the direction toward the liquid storage tank in the airtight pressurized chamber where the liquid level difference and pressure fluctuation are in the negative direction. If this liquid flow drives a liquid turbine, even greater amounts of energy can be extracted.

また、貯液槽をもつ気密与圧室の中を波動の1′金皮長
中とし、複数個のかかる気密与圧室を波動の1′2皮長
の間隔をへだて)浮設し、それぞれの気密与圧室内の貯
液槽からの導管を液体タービンに連結しても同機に良好
な結果を得ることができる。つぎに第2図に示す実施例
は、単一の気密与圧室を有するものであり、効率は前記
実施例に比べて劣るもの)、構成が簡単であり本発明装
置の範囲中に含まれるものである。
In addition, the inside of the airtight pressurized chamber with the liquid storage tank is made into a 1' gold skin length of the wave, and a plurality of such airtight pressurized chambers are floated at intervals of 1'2 skin length of the wave. Good results can also be obtained for the same aircraft by connecting a conduit from a liquid storage tank in an airtight pressurized chamber to a liquid turbine. Next, the embodiment shown in FIG. 2 has a single airtight pressurized chamber and is inferior in efficiency compared to the above embodiment), but has a simple configuration and is included within the scope of the device of the present invention. It is something.

第2図図中において、第1図と同じ機能を有する部分は
同じ符号が付してあり、第2図において2川ま緩衝用ば
ね、21は弾性体である。この実施例は、さきの第亀図
図示の実施例を仮に閉鎖型液体系と呼ぶならば、開放型
液体液ともいうべきものであり、気密与圧室内の気圧変
化という大気圧との間の気圧差と、気密与圧室内の貯液
槽中の液体面と外部の波動面との間の液面差の両方によ
り、第1図について説明したのと同じ作用を生じ」導管
中に液体流を作り液体タービンを駆動するものである。
第官図図示の実施例をブッシュ・ブル型とすれば、第2
図図示のものはシングル型であり、従って、ブッシュ・
ブル型のものほどは大量のエネルギーを取り出し得ない
が、構成が簡単であるという利点がある。なお、台風な
どのような荒天時には気密与圧室内の空気を抜いて装置
全体を水底に沈め、台風通過後空気を注入して浮上せし
めてそのま)運転を再開できる点においては、両者に差
異はない。緩衝用ばね20と弾性体21は、予想外の荒
天時に貯液槽が箱体の天井に当って装置の故障を起すこ
とを予防するためのものである。以上詳述したように、
本発明装置では波動水面の上下動により生ずる気密与圧
室内の気圧変化と、貯液槽内の液体の液面差とを利用し
て導管中に液体の高速流を作り、これによって液体ター
ビンを駆動して波動中のエネルギーを抽出するものであ
るから、以下に述べるような優れた効果を得ることがで
きる。
In FIG. 2, parts having the same functions as those in FIG. 1 are denoted by the same reference numerals, and in FIG. 2, two springs 21 are elastic bodies. If the example shown in the turtle diagram above is called a closed type liquid system, this example can also be called an open type liquid system, and the change in pressure between the atmospheric pressure and the pressure change in the airtight pressurized chamber is important. Both the pressure difference and the liquid level difference between the liquid level in the reservoir in the airtight pressurized chamber and the external wave surface produce the same effect as described with respect to Figure 1. It is used to create a liquid turbine and drive a liquid turbine.
If the embodiment shown in the official drawing is a Bush-Bull type, the second
The one shown in the figure is a single type, so the bush
Although it cannot extract as much energy as the bull type, it has the advantage of being simple in construction. The difference between the two is that during stormy weather such as a typhoon, the air in the airtight pressurized chamber is removed, the entire device is sunk to the bottom of the water, and once the typhoon has passed, air can be injected to bring it to the surface and resume operation. There isn't. The buffer spring 20 and the elastic body 21 are provided to prevent the liquid storage tank from hitting the ceiling of the box body and causing a malfunction of the device in the event of unexpected stormy weather. As detailed above,
In the device of the present invention, a high-speed flow of liquid is created in the conduit by using the pressure change in the airtight pressurized chamber caused by the vertical movement of the wave water surface and the difference in the liquid level in the liquid storage tank, and this creates a liquid turbine. Since it is driven to extract energy in waves, excellent effects as described below can be obtained.

まず第1に本発明装置におて、タービンを駆動するエネ
ルギー搬送媒体として使用するものは、空気に比べては
るかに密度の高い液体であるから、仮に導管中を動速度
で同量のエネルギー搬送媒体が流れるものとすれば、本
発明装置の方が公知の空気タービン方式に比し、はるか
に多量のエネルギーを搬送して効率良くタービンを駆動
し得ることになる。このことは、運動体のもつ運動量(
エネルギー)は1′2のV2(mは質量、Vは速度)の
公式で表さることからしても(海水の単位容量当りの質
量は空気に比べてほぼ80“苔以上にもなる)、エネル
ギー搬送媒体として液体を使用する本発明装置が、以下
に効率良くエネルギーを搬送してタービンを駆動し、波
動中にエネルギーを抽出し得るか明らかであろう。公知
の空気タービン方式は「気密与圧室内で圧縮された空気
と大気圧との間の気圧差を利用するものであるにすぎな
い。その意味で、前述した本発明装置の実施例に即して
いえば、それは効率の劣る第2図の例と同様のシングル
型であるが、本発明装置においては第2図図示の実施例
といえども「 タービン駆動のためのエネルギー搬送媒
体として液体を用いているため、空気タービン方式に比
して格段に効率良く作動するものである。
First of all, in the device of the present invention, the energy transfer medium used to drive the turbine is a liquid that has a much higher density than air, so if the same amount of energy is transferred at a dynamic speed through the conduit, Assuming that the medium flows, the device of the present invention can transport a much larger amount of energy and drive the turbine more efficiently than the known air turbine system. This means that the momentum of a moving body (
Considering that the energy) is expressed by the formula V2 (m is mass, V is velocity) of 1'2 (the mass per unit volume of seawater is about 80" moss or more compared to air), It will be clear that the device according to the invention, which uses a liquid as the energy-carrying medium, can efficiently transport energy to drive a turbine and extract energy in wave motions. It simply utilizes the pressure difference between the air compressed in the pressure chamber and the atmospheric pressure.In that sense, in accordance with the embodiment of the device of the present invention described above, it is a second method that is less efficient. Although it is a single type device similar to the example shown in the figure, in the device of the present invention, even though it is the embodiment shown in FIG. It operates much more efficiently.

つぎに、本発明装置では貯液槽相互間の液体の液面差、
あるし、は貯液槽内の液体面と外部波動面との間の液面
差によって生ずる導管中の液体流が大きな効果を発揮す
る。
Next, in the device of the present invention, the liquid level difference between the liquid storage tanks,
However, the liquid flow in the conduit caused by the difference in liquid level between the liquid level in the liquid storage tank and the external wave surface has a great effect.

この液面差による液体流は、空気タービン方式にあって
は望み得ないものであり、本発明装置に特有のものであ
る。この液面差による液体流は、気密与圧室によって生
ずる気圧差のため、導管中に流れる液体流の速度を重量
的に加速する作用を有するばかりでなく、さらに重量な
効果は、波動のような一種の振動現象が、一方の向きか
ら逆の向きにその運動を変える際の若干の休止期間とい
えども、液体タービンの回転を止めることがないという
ことである。そのため、液体タービに付設するフライホ
イールはそれだけ小さいものですむから、運転開始時の
イナーシャは小さくてすみ、また速やかに定速回転に入
れることになるのみならず、円滑なタービン回転を得る
ことができる。さらに、第1図に示した複数の与圧気密
室を有するような態様で本発明装置を実施するときは、
複数の気密与圧室内の空気の加圧、減圧の気圧差が相乗
的に働くため、導管中を流れる液体流の速度はさらに加
速され、運動エネルギーは速度の2乗に比例するため液
体タービンを駆動する力はそれだけ大きくなる。
This liquid flow due to the liquid level difference cannot be expected in an air turbine system, and is unique to the apparatus of the present invention. The liquid flow due to this liquid level difference not only has the effect of accelerating the speed of the liquid flow flowing in the conduit due to the pressure difference caused by the airtight pressurized chamber, but also has an even heavier effect, like a wave motion. A type of oscillatory phenomenon is that the liquid turbine does not stop rotating, even for a short period of rest when changing its motion from one direction to the other. Therefore, the flywheel attached to the liquid turbine can be small, so the inertia at the start of operation is small, and not only can constant speed rotation be quickly started, but also smooth turbine rotation can be obtained. can. Furthermore, when implementing the apparatus of the present invention in an embodiment having a plurality of pressurized airtight chambers as shown in FIG.
Because the pressure differences between the pressurization and depressurization of the air in multiple airtight pressurized chambers act synergistically, the speed of the liquid flow flowing through the conduit is further accelerated, and the kinetic energy is proportional to the square of the speed, so the liquid turbine is activated. The driving force increases accordingly.

また、この実施態様は閉鎖型液体系であるから、貯液槽
中に腐蝕性の少ない比重の大きい液体を収蔵すれば、液
面差による液体流の速度をその分だけ加速できる。本発
明に使用する装置は、液体タービン以外は特にとり立て
ていうほど機械的部分がないから、機械的機構によるエ
ネルギー損失は皆無に近く、また一旦談遺した後は特別
な保守を必要とせず運転も簡単である。
Furthermore, since this embodiment is a closed liquid system, if a liquid with low corrosivity and high specific gravity is stored in the liquid storage tank, the speed of the liquid flow due to the difference in liquid level can be accelerated by that amount. Since the device used in the present invention has no mechanical parts other than the liquid turbine, there is almost no energy loss due to mechanical mechanisms, and once it is installed, it can be operated without any special maintenance. is also easy.

なお、貯液槽中の液体として海水を用いれば「台風等の
異状時には気密与圧室内の空気を抜いて装置全体を海中
に潜没させ、天候回復後空気を注入して再浮上されて、
そのま)容易に再び正常な作動を開始できる効果がある
。さらに、本発明に用いる装置を適当な沖合し・に設置
して本発明装置を実施するときは、波動中に含まれて波
動を生ぜしめているエネルギーは、効率良く該装置によ
って吸収抽出されてタービンの回転エネルギーに変り、
さらに電力のような有用な他のエネルギーに変換される
結果、本発明実施の副時的効果として、装置を設置した
箇所を通過した波動は、その有する大部分のエネルギー
を失い減衰してしまうことである。従って、本発明に用
いる装置を設置した箇所から浜辺までの吸面は極めて波
静かな静吸面となり、海上プラント等の構造物の設置、
水産養殖事業、ヨットハーバーその他の用途に供するこ
とができる。勿論、波動は水面から完全に消滅してしま
うものではなく、装置の下方をくぐりぬけて来た波動運
動のもととなる水粒子の円運動のため、若干の波動はな
お残存することになる。これをさらに防ぐため、各実施
例の図に見られるように、装置後方の下端に箱体1の長
手方向に沿つ、適宜の長さを有する金網22をその下端
に車錐23を付して吊せば、装置下方をくぐりぬけてく
る水粒子の円運動は断ち切られ、あるいはかく乱され「
その結果として装置後方水面に残存する波動はさらに小
さくなる。この金網22は消波に役立つばかりでなく、
かき等の貝類やのりなどの養殖媒体としても有効に使用
し得るものである。以上、本発明についていくつかの実
施例をあげてその作用と効果を詳述したが、本発明の実
施態様は以上の実施例に限られるものではなく、いうま
でもなく請求範囲内での各種の態様で実施し得ること勿
論である。
Furthermore, if seawater is used as the liquid in the storage tank, ``In the event of an emergency such as a typhoon, the air in the airtight pressurized chamber is removed, the entire device is submerged underwater, and when the weather improves, air is injected and the system is resurfaced.
This has the effect of allowing you to easily resume normal operation. Furthermore, when the device used in the present invention is installed in a suitable location offshore and the device of the present invention is implemented, the energy contained in the wave motion and causing the wave motion is efficiently absorbed and extracted by the device and the turbine It turns into rotational energy,
Furthermore, as a result of being converted into other useful energy such as electric power, a side effect of implementing the present invention is that the waves that pass through the location where the device is installed lose most of their energy and become attenuated. It is. Therefore, the suction surface from the place where the device used in the present invention is installed to the beach becomes a static suction surface with extremely calm waves, which can be used for installation of structures such as offshore plants, etc.
It can be used for aquaculture operations, yacht harbors, and other uses. Of course, the waves do not completely disappear from the water surface; some waves still remain due to the circular motion of the water particles that are the source of the wave motion that has passed under the device. In order to further prevent this, as seen in the figures of each embodiment, a wire mesh 22 having an appropriate length is attached to the rear lower end of the device along the longitudinal direction of the box 1, and a wheel awl 23 is attached to the lower end of the wire mesh 22. If the device is suspended, the circular motion of water particles passing through the bottom of the device will be interrupted or disturbed.
As a result, the waves remaining on the water surface behind the device become even smaller. This wire mesh 22 is not only useful for wave dissipation, but also
It can also be effectively used as a culture medium for shellfish such as oysters and seaweed. As mentioned above, several embodiments of the present invention have been given and the functions and effects thereof have been described in detail, but the embodiments of the present invention are not limited to the above embodiments, and it goes without saying that various embodiments within the scope of the claims may be implemented. Of course, it can be implemented in the following manner.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る波動エネルギーの変換装置の一実
施例を示す断面説明図、第2図は他の実施例を示す断面
説明図である。 1は箱体、2は中仕切板、3と4は気密与圧室、5と6
は貯液槽、7は浮力付与体、8は滑車、9〜12は導管
、13〜16は弁機構、17は液体タービン、18は鋼
素、19は水底、20は緩衝用ばね、21は弾性体、2
2は金網、23は垂錐である。 第1図 第2図
FIG. 1 is an explanatory cross-sectional view showing one embodiment of a wave energy conversion device according to the present invention, and FIG. 2 is an explanatory cross-sectional view showing another embodiment. 1 is a box body, 2 is a partition plate, 3 and 4 are airtight pressurized chambers, 5 and 6
1 is a liquid storage tank, 7 is a buoyancy imparting body, 8 is a pulley, 9 to 12 are conduits, 13 to 16 are valve mechanisms, 17 is a liquid turbine, 18 is steel, 19 is a water bottom, 20 is a buffer spring, 21 is a Elastic body, 2
2 is a wire mesh, and 23 is a vertical cone. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1 底部を水中に開口して波動水面上に浮設された気密
与圧室中に、液体を収蔵する貯液槽を上下動自在に浮設
し、該気密与圧室内貯液槽と、この気密与圧室外に存す
る液体又は他の気密与圧室内に設けられる貯液槽内液体
との間に連通した導管中に液体流を生ぜしめるようにな
すと共に該液体流をもって液体タービンを駆動せしめる
ようにしたことを特徴とする液体タービンを用いる波動
エネルギーの変換装置。
1. A liquid storage tank for storing liquid is vertically movable floating in an airtight pressurized chamber whose bottom part is open in the water and floats on the waving water surface, and the liquid storage tank in the airtight pressurized chamber and this A liquid flow is generated in a conduit communicating with a liquid existing outside the airtight pressurized chamber or a liquid in a liquid storage tank provided in another airtight pressurized chamber, and the liquid turbine is driven by the liquid flow. A wave energy conversion device using a liquid turbine, characterized in that:
JP52069932A 1977-06-15 1977-06-15 Wave energy conversion device using liquid turbine Expired JPS605790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52069932A JPS605790B2 (en) 1977-06-15 1977-06-15 Wave energy conversion device using liquid turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52069932A JPS605790B2 (en) 1977-06-15 1977-06-15 Wave energy conversion device using liquid turbine

Publications (2)

Publication Number Publication Date
JPS545147A JPS545147A (en) 1979-01-16
JPS605790B2 true JPS605790B2 (en) 1985-02-14

Family

ID=13416930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52069932A Expired JPS605790B2 (en) 1977-06-15 1977-06-15 Wave energy conversion device using liquid turbine

Country Status (1)

Country Link
JP (1) JPS605790B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5638570A (en) * 1979-09-03 1981-04-13 Beritasu Kk Method of converting wave energy by use of hydraulic turbine
JPS5652582A (en) * 1979-10-08 1981-05-11 Satoru Suzuki Wave power plant
JPS608475A (en) * 1983-06-20 1985-01-17 ルシオ・ブイ・リ−ル Power generating apparatus
JPS6098175A (en) * 1983-11-04 1985-06-01 Shunji Oba Tidal power plant
JPS6098174A (en) * 1983-11-04 1985-06-01 Shunji Oba Tidal power plant
JPS6131673A (en) * 1984-07-25 1986-02-14 Masato Sato Power plant
JP2012514708A (en) * 2009-01-05 2012-06-28 デールセン・アソシエイツ・エルエルシイ Method and apparatus for converting ocean wave energy into electricity

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51148131A (en) * 1975-06-16 1976-12-20 Fuji Electric Co Ltd Apparatus to utilize wave energy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51148131A (en) * 1975-06-16 1976-12-20 Fuji Electric Co Ltd Apparatus to utilize wave energy

Also Published As

Publication number Publication date
JPS545147A (en) 1979-01-16

Similar Documents

Publication Publication Date Title
US4603551A (en) Wave power converter
US7980832B2 (en) Wave energy converter
US7339285B2 (en) Hydroelectric wave-energy conversion system
KR101721239B1 (en) System for producing energy through the action of waves
US6647716B2 (en) Ocean wave power generator (a “modular power-producing network”)
CN101490341B (en) Wave energy converter
EP1915528B1 (en) Free floating wave energy converter
CN102149918A (en) Wave powered generator
JPS6332986B2 (en)
EP2496828A2 (en) Wave energy conversion device
US20100244451A1 (en) Ocean wave energy to electricity generator
US20090261593A1 (en) Tidal pump generator
CN202756167U (en) Floating platform wave energy storage system and wave energy power generation system
CN113898521B (en) Marine floating platform stand damping heave plate and wave energy collection device
CN102900592A (en) Floating platform wave energy storage system and wave energy power generation system
US7549288B1 (en) Wave energy power extraction system
JPS605790B2 (en) Wave energy conversion device using liquid turbine
CN103994018A (en) Wave energy comprehensively harvesting and conversion power generation device
JPS6394081A (en) Power generating device utilizing waveforce energy
CN105484932A (en) Wind-surf-driven engine
KR102576335B1 (en) Wave Power Platform Equipped with Wave-Driven Energy Amplifier
GB2108590A (en) Liquid wave energy absorber
RU2080478C1 (en) Wave-electric power plant
GB2350866A (en) Buoyant piston and reservoir wave energy converter
CN116857110A (en) Movable wave power generation system