JPS6055025B2 - Potential detection device - Google Patents

Potential detection device

Info

Publication number
JPS6055025B2
JPS6055025B2 JP4238678A JP4238678A JPS6055025B2 JP S6055025 B2 JPS6055025 B2 JP S6055025B2 JP 4238678 A JP4238678 A JP 4238678A JP 4238678 A JP4238678 A JP 4238678A JP S6055025 B2 JPS6055025 B2 JP S6055025B2
Authority
JP
Japan
Prior art keywords
oxide film
potential detection
channel
layer
memory element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4238678A
Other languages
Japanese (ja)
Other versions
JPS54134679A (en
Inventor
一成 早淵
巳佐雄 内野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP4238678A priority Critical patent/JPS6055025B2/en
Publication of JPS54134679A publication Critical patent/JPS54134679A/en
Publication of JPS6055025B2 publication Critical patent/JPS6055025B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)

Description

【発明の詳細な説明】 本発明は電位の検出方式の改良に関するものである。[Detailed description of the invention] The present invention relates to an improvement in a potential detection method.

従来は第1図に示す如く電源1の電位検出素子として例
えば、P型エンハンスメント電界効果トランジスタ2を
介して負荷抵抗3を接続し、MOS電界効果トランジス
タ、2のON)OFFによつてMOS電界効果トランジ
スタのON抵抗と負荷抵抗、3の抵抗分割によつて、出
力電圧、4を検出しているが、この従来の電位検出方式
では、電位検出レベルがON)OFF時の2状態に対応
した値しか検出できす、電位の厳密な変動を検知するこ
とは不可能である。従つてMOS電界効果トラーンジス
タ、2のしきい値電圧を変えたMOS電界 効果トラン
ジスタを複数個作成し、マルチスレシヨールド(Vth
)を得ることによつて電位検出レベルを増すことが行わ
れている。 一般にMOS電界効果トランジスタのしき
い値電圧(Vth)は、Vth■(qNpB+QB)
tox/ を +2ΦF+ΦMSで表されるNpB:単
位面積当りの有効表面電荷数、QB・チャネル空乏層に
伴なう単位面積当りのバルク電荷、をox:ゲート絶縁
膜厚、E:ゲート絶縁膜の誘電率、ΦF:基板シリ”コ
ンのフェルミレベル、ΦM3:ゲート電極とシリコン基
板の仕事函数差、MOS電界効果トランジスタのしきい
値を決定するパラメーターは数多くあるが、製造上では
一般的にゲート酸化膜厚、基板濃度、ゲート絶縁膜の誘
電率等を変えることで行つて来た。
Conventionally, as shown in FIG. 1, for example, a load resistor 3 is connected via a P-type enhancement field effect transistor 2 as a potential detection element of a power source 1, and the MOS field effect is detected by turning ON/OFF the MOS field effect transistor 2. The output voltage, 4, is detected by dividing the ON resistance of the transistor and the load resistance by 3, but in this conventional potential detection method, the potential detection level is a value corresponding to two states: ON and OFF. It is impossible to detect exact changes in potential. Therefore, a plurality of MOS field effect transistors with different threshold voltages of MOS field effect transistors 2 were fabricated, and a multithreshold (Vth
) to increase the potential detection level. Generally, the threshold voltage (Vth) of a MOS field effect transistor is Vth■(qNpB+QB)
tox/ is expressed as +2ΦF+ΦMS. NpB: effective surface charge number per unit area, bulk charge per unit area due to QB/channel depletion layer, ox: gate insulating film thickness, E: dielectric of gate insulating film ΦF: Fermi level of substrate silicon, ΦM3: work function difference between gate electrode and silicon substrate, There are many parameters that determine the threshold of a MOS field effect transistor, but in manufacturing, generally the gate oxide film This has been achieved by changing the thickness, substrate concentration, dielectric constant of the gate insulating film, etc.

しカルながら同−ICチップ内に異なつたしきい値電圧
を得る為には、基板濃度を変える場合を例にとると、一
般的にはチャネル部の基板濃度を変える為にマスク等を
用いてイオン打ち込み方法等で打ち込み量を変え、チャ
ネル基板濃度を変化させる方法がある。ゲート酸化膜厚
や誘電率等を変える場合も同様にマスク合せなどの工程
の組合せで工程が非常に複雑で、作業性が著しく悪く又
熱履歴も増す為再現性が悪く歩留り向上に問題が生ずる
という欠点があつた。 本発明はこれらの欠点を除去す
る為に、マスク合せや熱履歴工程を増すことなしに、時
計内電池等の電位の変動を厳密に検知できる電位検出素
子を内蔵した電子時計を提供するものである。
However, in order to obtain different threshold voltages within the same IC chip, for example, when changing the substrate concentration, a mask etc. is generally used to change the substrate concentration in the channel part. There is a method of changing the concentration of the channel substrate by changing the amount of implantation using an ion implantation method or the like. Similarly, when changing the gate oxide film thickness, dielectric constant, etc., the process is extremely complicated due to the combination of steps such as mask alignment, and workability is extremely poor, and thermal history increases, resulting in poor reproducibility and problems in improving yield. There was a drawback. In order to eliminate these drawbacks, the present invention provides an electronic timepiece with a built-in potential detection element that can accurately detect changes in the potential of a watch battery, etc., without increasing mask alignment or heat history processes. be.

以下図面に基づき説明する。第2図は一般的に用いられ
ているPチャネルMNOS(金属一窒化膜−酸化膜−S
1基板)記憶素子の断面図イと通常描かれるVth−V
O(VOはゲート電圧)ヒステリシスカーブ、口を示す
。第2図、2で示される通常の■東B記憶素子はゲート
電極、5とSi基板、6間に電圧(V)を印加すること
により窒化膜、7と酸化膜、8の界面のトラップセンタ
ーにSi基板、6から電子を注入し、S1基板表面に正
電荷を誘起することによつて得られる、Pチヤネルデプ
レツシヨンモードを示す“O゛状態と、反対にSi基板
、6に電子を追いやり、窒化膜、7と酸化膜、8の界面
に実効的に正電荷をトラップすることによつて得られる
、Pチャネルエンハンスメントモードを示す“1゛状態
の2状態に対応する状態しか得られない。本発明はゲー
ト酸化膜を二層構造にすることにより、MOS電界効果
トランジスタ内のチャネル部分に、デプレツシヨン又は
エンハンスメント領域を不揮発的に任意の長さに形成さ
せて、MOS電界効果トランジスタのチャネル領域の抵
抗を任意に変える様にしたもので、実効的にMOS電界
効果トランジスタのしきい値電圧を変えたことと効果を
等しくしたもので、従つて電位検出レベルを多段にでき
電位の変動を厳密に検知できるばかりか、複雑なマスク
合せ工程を径ることなく、一度のゲート電極、5とSi
基板6間の電圧印加により、同時に検出レベルの異なる
検出素子を製造することが可能である。第3図は一本発
明に使われた、ゲート酸化膜が二層構造を有するPチャ
ネル検出素子の場合の実施例を示す。第3図の実施例に
於いて、5は、ゲート電極、6はSI基板、7は窒化膜
、8″は第一層ゲート酸化膜、9は第二層ゲート酸化膜
、10はソース電極.を示す。ゲート電極、5に、Si
基板6、ソース電極10に対して正電荷(例えば+25
V)を印加すると、第一層の薄い酸化膜、8″を通して
電子がトンネル効果等を起して、窒化膜7と薄酸化膜8
″の界面近くのトラップセンターに注入され、一方第二
層酸化膜9は膜厚が厚い為、この現象は生ぜず、チャネ
ルの第一層酸化膜8″下のSi基板、6の表面のみ、こ
のトラップされた電子の為、表面が反転しPチャネルの
場合は、この領域がデプレツシヨン領域を不揮発的に形
成し、チャネル部分の抵抗値は、抵抗値の異なるチャネ
ル領域の結合と相等しい。従つて第3図の口で示される
様に、第一層酸化膜8″領域の長さを変えてやると、こ
の不揮発的なデプレツシヨン領域の長さが異なる為、イ
とは異なつたチャネル抵抗値をもち、実効的にはイ,口
とは相異なるしきい値電圧値を得ることと効果は等しい
、従つてマスク上でチャネル部分の不揮発的デプレツシ
ヨン領域を示”す第一層酸化膜長を可変にしておけば、
多くの異なつた電位検出レベルを設定することが可能で
あるばかりか、工程上第一層酸化膜長を可変にした一度
のマスク合せ工程を経て、ゲート電圧5と基板Si6間
にバイアスを印加するだけでよく、工程が著しく簡潔化
し又熱履歴も増えることがなく製造できる為、再現性等
も著しく向上する。第4図は、本発明に使われたチャネ
ル部分に、エンハンスメント領域をもつことで同一の効
果を、もたせたものである。
This will be explained below based on the drawings. Figure 2 shows a commonly used P-channel MNOS (metal mononitride film-oxide film-S
1 Substrate) Cross-sectional view of memory element A and normally drawn Vth-V
O (VO is the gate voltage) hysteresis curve, the opening is shown. The conventional ■East B memory element shown in FIG. The "O" state, which indicates the P channel depletion mode, is obtained by injecting electrons from the Si substrate 6 to induce positive charges on the surface of the S1 substrate. By effectively trapping positive charges at the interface between the nitride film 7 and the oxide film 8, only two states corresponding to the "1" state, which indicates the P channel enhancement mode, can be obtained. . The present invention forms a depletion or enhancement region in a non-volatile manner to a desired length in the channel region of the MOS field effect transistor by forming the gate oxide film into a two-layer structure. This allows the resistance to be changed arbitrarily, and the effect is effectively the same as changing the threshold voltage of a MOS field effect transistor. Therefore, the potential detection level can be multi-staged, and potential fluctuations can be strictly controlled. Not only can it be detected, but also the gate electrode, 5 and Si
By applying voltage between the substrates 6, it is possible to simultaneously manufacture detection elements with different detection levels. FIG. 3 shows an embodiment of a P-channel detection element in which the gate oxide film has a two-layer structure, which is used in the present invention. In the embodiment shown in FIG. 3, 5 is a gate electrode, 6 is an SI substrate, 7 is a nitride film, 8'' is a first layer gate oxide film, 9 is a second layer gate oxide film, 10 is a source electrode. The gate electrode 5 is made of Si.
A positive charge (for example, +25
When V) is applied, electrons cause a tunnel effect etc. through the first layer of thin oxide film 8'', and the nitride film 7 and thin oxide film 8
On the other hand, because the second layer oxide film 9 is thick, this phenomenon does not occur, and only the surface of the Si substrate 6 under the first layer oxide film 8'' of the channel. Due to the trapped electrons, the surface is inverted, and in the case of a P channel, this region forms a depletion region in a nonvolatile manner, and the resistance value of the channel portion is equal to the combination of channel regions having different resistance values. Therefore, as shown in Figure 3, if the length of the first layer oxide film 8'' region is changed, the length of this non-volatile depletion region will be different, resulting in a different channel resistance. The effect is the same as obtaining a threshold voltage value that is different from A and A, therefore, the length of the first layer oxide film that indicates the non-volatile depletion region of the channel portion on the mask. If you make it variable,
Not only is it possible to set many different potential detection levels, but also a bias can be applied between the gate voltage 5 and the substrate Si 6 through a single mask alignment process in which the length of the first layer oxide film is made variable. This greatly simplifies the process and allows production without increasing heat history, which significantly improves reproducibility. FIG. 4 shows the same effect obtained by adding an enhancement region to the channel portion used in the present invention.

第5図は、第一層酸化膜の形状を変えた場合の例で、第
一層酸化膜11と第二層酸化膜12の形状をいろいろ変
えることで、同一の効果をもつことができる。又Nチャ
ネルの場合も同様の効果をもつことができ、他の例えば
MAOS(金属−アルミナー酸化膜−Si基板)構造に
ついても同様に応用できる。第6図は、実際の電子時計
に応用した実施例である。
FIG. 5 shows an example in which the shape of the first layer oxide film is changed, and the same effect can be obtained by changing the shapes of the first layer oxide film 11 and the second layer oxide film 12. Further, the same effect can be obtained in the case of an N channel, and it can be similarly applied to other structures such as MAOS (metal-alumina oxide film-Si substrate). FIG. 6 shows an example applied to an actual electronic watch.

第6図に於いて13,14,15はチャネル抵抗が異な
る二層ゲート構造を有する記憶素子、16は固定抵抗1
7は記憶ブロック、18一A,b,cは表示部を示す。
チャネル抵抗値が異なる不揮発性記憶素子を含むMOS
電界効果トランジスタ13,14,15はゲート部に検
出電圧(V)22が印加されると、各MOS電界効果ト
ランジスタは、みかけ上しきい値電圧が異なると同様の
効果をもつ為、電位レベルに応じて各MOS電界効果ト
ランジスタは0N状態になり、固定抵抗16を介して記
憶ブロック17に記憶される。
In FIG. 6, 13, 14, and 15 are storage elements having a two-layer gate structure with different channel resistances, and 16 is a fixed resistor 1.
Reference numeral 7 indicates a storage block, and 181A, b, and c indicate a display section.
MOS including nonvolatile memory elements with different channel resistance values
When a detection voltage (V) 22 is applied to the gates of the field-effect transistors 13, 14, and 15, each MOS field-effect transistor has a similar effect when the threshold voltages are different, so the potential level changes. In response, each MOS field effect transistor becomes an ON state and is stored in the memory block 17 via the fixed resistor 16.

そしてドライバを経て、表示部21に表示される。従つ
て各チャネル抵抗値の異なる不揮発性記憶素子を含むM
OS電界効果トランジスタの抵抗値を13→14→15
の順に小さく設計すれば、例えばMOS電界効果トラン
ジスタ13が0N状態の場合、14,15は、OFFの
為、論理回路を経てドライバ端子18、19,20は1
8のみ“゜1゛を示し、他は゛0゛状態の為、表示部2
1には、ドライバー端子18に対応したa部のみ表示さ
れる。又例えばMOS電界効果トランジスタ13,14
が0N状態の場合、同様にドライバー端子19のみ″1
,,状態を示し表示部bのみが表示される。又電界効果
トランジスタ13,14,15が0N状態の場合も全く
同様に、表示部cのみが表示される。以上の説明により
明らかの様に本発明によれぱ、製造工程で複雑なマスク
合せの工程回数を増すこともなく、ゲート酸化膜を二層
構造にし、トラップセンターへの注入電荷幅を可変にす
ることで、チャネル部分のSl基板表面のオン抵抗を可
変にでき、みかけ上MOS電界効果トランジスタのしき
い値電圧を変える効果をもつことができる。従つて本発
明によれば、電子時計内の電位の変動を厳密に検知でき
るばかりか、製造工程も非常も簡略化し、その効果が非
常に大である。
Then, it is displayed on the display section 21 via the driver. Therefore, M including nonvolatile memory elements with different channel resistance values
The resistance value of the OS field effect transistor was changed from 13 to 14 to 15.
For example, when the MOS field effect transistor 13 is in the 0N state, the driver terminals 18, 19, and 20 are set to 1 through the logic circuit because 14 and 15 are OFF.
Since only 8 shows "゜1゛" and the others are in "0" state, display section 2
1, only the section a corresponding to the driver terminal 18 is displayed. For example, MOS field effect transistors 13, 14
When is in the 0N state, similarly, only the driver terminal 19 is ``1''.
,, only display section b is displayed. Also, when the field effect transistors 13, 14, and 15 are in the ON state, only the display portion c is displayed in exactly the same manner. As is clear from the above explanation, according to the present invention, the gate oxide film has a two-layer structure and the width of the charge injected into the trap center can be made variable without increasing the number of complicated mask alignment steps in the manufacturing process. As a result, the on-resistance of the surface of the Sl substrate in the channel portion can be made variable, and it is possible to have the effect of changing the apparent threshold voltage of the MOS field effect transistor. Therefore, according to the present invention, not only can fluctuations in potential within an electronic timepiece be accurately detected, but also the manufacturing process can be greatly simplified, resulting in very large effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は基本的な電位検出回路図、第2図イは従来のP
チャネルMNOS記憶素子の断面図、第2図口は典型的
な■Th−■Gヒステリシスカーブを示す説明図、第3
,4,5図は本発明に使用されたPチャンネルMNOS
記憶素子の断面図であり、第3図イ,口はデプロツシヨ
ンモードを示し、第3図イは第一層ゲート酸化膜が長い
場合、第3図口は第一層ゲート酸化膜が短い場合で、共
に第一層ゲート酸化膜下のSi基板はデプレツシヨンモ
ードを示す。 第4図は第一層酸化膜下がエンハンスメントモードを示
す断面図、第5図はゲート酸化膜二層構造の形状を変え
た場合の断面図、第6図は、電子時計内に組込んだ場合
の実際の応用例を示す断面図である。1・・・・・・電
源、2・・・・・・PチャネルMOS電界効果トランジ
スタ、3・・・・・・固定抵抗、4・・・・・・出力電
圧、5・・・・・・ゲート電極、6・・・・・・Si基
板、7・・・・・・窒化膜、8,8″8″・・・・・・
第一層酸化膜、9・・・・・・第二層酸化膜、10・・
・・・・ソース電極、11・・・・・・第一層酸化膜、
12・・・・・・第二層酸化膜、13,14,15・・
・・・・ゲート酸化膜二層構造記憶素子、16・・・・
・・固定抵抗、17記憶ブロック、18,19,20・
・・・・・ドライバ端子、21・・・・・・表示部、2
2・・・・・・検出電圧。
Figure 1 is a basic potential detection circuit diagram, Figure 2 A is a conventional P
A cross-sectional view of a channel MNOS storage element, Figure 2 is an explanatory diagram showing a typical ■Th-■G hysteresis curve, and Figure 3 is an explanatory diagram showing a typical ■Th-■G hysteresis curve.
, 4 and 5 show the P-channel MNOS used in the present invention.
These are cross-sectional views of a memory element. Figure 3A shows the deployment mode, Figure 3B shows the case where the first layer gate oxide film is long, and Figure 3B shows the case where the first layer gate oxide film is short. In both cases, the Si substrate under the first layer gate oxide film exhibits depletion mode. Figure 4 is a cross-sectional view showing the enhancement mode under the first layer oxide film, Figure 5 is a cross-sectional view when the shape of the two-layer gate oxide film structure is changed, and Figure 6 is a cross-sectional view of the structure incorporated into an electronic watch. FIG. 1...Power supply, 2...P channel MOS field effect transistor, 3...Fixed resistance, 4...Output voltage, 5... Gate electrode, 6...Si substrate, 7...Nitride film, 8,8''8''...
First layer oxide film, 9... Second layer oxide film, 10...
...Source electrode, 11...First layer oxide film,
12... Second layer oxide film, 13, 14, 15...
...Gate oxide film double layer structure memory element, 16...
・・Fixed resistance, 17 memory blocks, 18, 19, 20・
...Driver terminal, 21...Display section, 2
2...Detection voltage.

Claims (1)

【特許請求の範囲】 1 同一基板上に集積された計時回路を含む論理回路と
該論理回路の計時内容を表示する表示装置と、該論理回
路にデータを与える電気的に書込、消去可能な不揮発性
記憶素子を有する集積回路に於いて、該不揮発性記憶素
子のしきい値電圧を可変にすることにより、電位検出レ
ベルを設けたことを特徴とする電位検出装置。 2 不揮発性記憶素子は、ゲート絶縁膜が異なる厚さの
膜で構成されており、該異なる厚さの膜の長さの比を任
意に変える事によりしきい値電圧を設定することを特徴
とする特許請求の範囲第1項記載の電位検出装置。
[Scope of Claims] 1. A logic circuit including a clock circuit integrated on the same substrate, a display device that displays the time measurement contents of the logic circuit, and an electrically writable and erasable device that provides data to the logic circuit. 1. A potential detection device, characterized in that, in an integrated circuit having a nonvolatile memory element, a potential detection level is provided by making the threshold voltage of the nonvolatile memory element variable. 2. A nonvolatile memory element is characterized in that the gate insulating film is composed of films with different thicknesses, and the threshold voltage is set by arbitrarily changing the ratio of the lengths of the films with different thicknesses. A potential detection device according to claim 1.
JP4238678A 1978-04-11 1978-04-11 Potential detection device Expired JPS6055025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4238678A JPS6055025B2 (en) 1978-04-11 1978-04-11 Potential detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4238678A JPS6055025B2 (en) 1978-04-11 1978-04-11 Potential detection device

Publications (2)

Publication Number Publication Date
JPS54134679A JPS54134679A (en) 1979-10-19
JPS6055025B2 true JPS6055025B2 (en) 1985-12-03

Family

ID=12634621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4238678A Expired JPS6055025B2 (en) 1978-04-11 1978-04-11 Potential detection device

Country Status (1)

Country Link
JP (1) JPS6055025B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58197587A (en) * 1982-05-12 1983-11-17 富士電機株式会社 Printed matter identifier

Also Published As

Publication number Publication date
JPS54134679A (en) 1979-10-19

Similar Documents

Publication Publication Date Title
US5253196A (en) MOS analog memory with injection capacitors
US4355375A (en) Semiconductor memory device
US5763912A (en) Depletion and enhancement MOSFETs with electrically trimmable threshold voltages
JP3505758B2 (en) Non-volatile semiconductor memory
US5006974A (en) On-chip high voltage generator and regulator in an integrated circuit
US4019198A (en) Non-volatile semiconductor memory device
US5014097A (en) On-chip high voltage generator and regulator in an integrated circuit
US5019881A (en) Nonvolatile semiconductor memory component
JPS6055025B2 (en) Potential detection device
TWI635496B (en) Method for erasing single-gate non-volatile memory
JPS6129471B2 (en)
JPH09260613A (en) Film quality evaluation method of tunnel insulating film
Gerber et al. Low-voltage single supply CMOS electrically erasable read-only memory
JP3149036B2 (en) Thin film memory device
JPS62200769A (en) Semiconductor memory
JP2577383B2 (en) Method of manufacturing nonvolatile semiconductor memory device
JP2989205B2 (en) Method of manufacturing nonvolatile semiconductor memory device
US5324677A (en) Method of making memory cell and a peripheral circuit
JPS5812367A (en) Semiconductor memory unit
JPH0590374A (en) Measurement method of charge-up rate in semiconductor device manufacturing process
JPH0334671B2 (en)
JPS60254663A (en) Semiconductor memory device and manufacture thereof
JPS63153865A (en) Semiconductor storage device
JPH0653521A (en) Non-volatile semiconductor memory device
JPH0521809A (en) Semiconductor device