JPS6054838B2 - Laser processing equipment - Google Patents

Laser processing equipment

Info

Publication number
JPS6054838B2
JPS6054838B2 JP54024473A JP2447379A JPS6054838B2 JP S6054838 B2 JPS6054838 B2 JP S6054838B2 JP 54024473 A JP54024473 A JP 54024473A JP 2447379 A JP2447379 A JP 2447379A JP S6054838 B2 JPS6054838 B2 JP S6054838B2
Authority
JP
Japan
Prior art keywords
laser processing
reflecting mirror
laser beam
concave
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54024473A
Other languages
Japanese (ja)
Other versions
JPS55117587A (en
Inventor
正寿 稲垣
龍太郎 神保
富男 海野
朝彦 志田
徳郎 池本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP54024473A priority Critical patent/JPS6054838B2/en
Publication of JPS55117587A publication Critical patent/JPS55117587A/en
Publication of JPS6054838B2 publication Critical patent/JPS6054838B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)

Description

【発明の詳細な説明】 本発明は、レーザ光を被加工部材に照射して加工するレ
ーザ加工装置に関し、特に熱処理加工を行なう際に、均
一なエネルギ密度分布を有するレーザビームを得ること
のできるレーザ加工装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a laser processing device that processes a workpiece by irradiating it with a laser beam, and is capable of obtaining a laser beam having a uniform energy density distribution, particularly when performing heat treatment processing. This invention relates to laser processing equipment.

レーザ発振器から取り出されたレーザ光のエネルギ密度
は、発振器の特性に応じて種々のモードに従つた分布を
有する。
The energy density of laser light extracted from a laser oscillator has a distribution according to various modes depending on the characteristics of the oscillator.

TEMOO(ガウス形)のレーザ光の場合を例にとると
、第1図に示すごとく、ビーム断面10の中心部に高い
エネルギ密度を有し、中心から離れるに従つてエネルギ
密度は指数関数的に低下する。第2図に示すごとく、こ
のようなレーザ光9を集光レンズ12でいつたん集光し
たのち、集点面13からずれた位置の被加工部材14に
照射すると、第3図に拡大して示すように、等温度線1
6は、照射部中心から同心円的円弧部群となつて拡がる
。この等温度線の温度T1〜T4は周辺部になる程低く
(T1〈T2くT3くT4)、表面のある領域を一定温
度に均一に加熱することができない。例えば焼入れ加工
において、T2を焼入れ温度とすると、中心部のみ焼入
れすることができるが、焼入れ深さが均一にならず、ま
た周辺の部分18のレーザ光のエネルギは焼入れに寄与
しないため、熱処理効率(焼入れ体積/(出力×時間)
が低下するという欠点を有している。上記熱処理加工の
欠点を解消する方法として、第4図Aに示すごとく、レ
ーザ光を2分割し、個々のレーザ光を、エネルギ密度分
布がX方向で均一になるように円筒状凹面鏡で集光させ
る方法が本発明者らによつて提案されている(特願昭5
3−23525号)。
Taking the case of a TEMOO (Gaussian) laser beam as an example, as shown in Figure 1, the energy density is high at the center of the beam cross section 10, and the energy density increases exponentially as you move away from the center. descend. As shown in FIG. 2, once such laser light 9 is focused by the condensing lens 12, it is irradiated onto the workpiece 14 at a position shifted from the converging surface 13, which is enlarged as shown in FIG. As shown, isothermal line 1
6 extends from the center of the irradiation part as a group of concentric circular arc parts. The temperatures T1 to T4 of this isothermal line are lower toward the periphery (T1 < T2 * T3 * T4), and it is not possible to uniformly heat a certain area of the surface to a constant temperature. For example, in hardening processing, if T2 is the hardening temperature, only the center part can be hardened, but the hardening depth is not uniform, and the energy of the laser beam in the peripheral part 18 does not contribute to hardening, so the heat treatment efficiency is (Quenching volume/(output x time)
It has the disadvantage of decreasing. As a method to eliminate the drawbacks of the heat treatment process described above, as shown in Figure 4A, the laser beam is divided into two, and each laser beam is focused using a cylindrical concave mirror so that the energy density distribution is uniform in the X direction. The present inventors have proposed a method for
No. 3-23525).

図示された装置は、レーザ光を異なる方向に2分割して
反射させる反射鏡43と、これらの分割されたレーザ光
をそれぞれ反射させる.円筒状凹面鏡41および42と
からなり、該凹面鏡41および42から反射した分割レ
ーザ光100および101を被加工部材14上の所定個
所52に集光させて加工するものである。この場合のエ
ネルギ密度分布を第4図Bに示すが、エネルギ密度分布
は、分割された各レーザ光のX方向エネルギ密度分布1
00Aおよび100Bの和となり、X方向に均一なもの
となる。また等温度線16も被加工部材14の表面と平
行になり、従つて均一な焼入れ加工が可能になり、かつ
熱処理効率も改善される。しかし、このような装置は、
レーザ光を分割するため、分割された個々のレーザ光に
つき反射鏡を必要とし、比較的大きな空間を必要とする
。このため、例えば細いバイブの内面、またはピストン
と摺動接触するシリンダ内面等のように空間的に制約の
ある場合、その使用が困難であるという欠点を有してい
る。本発明の目的は、少数の反射鏡を使用して可及″的
に均一なエネルギ密度分布を有するレーザ光を得ること
ができ、かつ空間的にもコンパクトな構成のレーザ加工
装置を提供することにある。
The illustrated device includes a reflecting mirror 43 that divides the laser beam into two parts and reflects them in different directions, and reflects each of these divided laser beams. It consists of cylindrical concave mirrors 41 and 42, and split laser beams 100 and 101 reflected from the concave mirrors 41 and 42 are focused on a predetermined location 52 on the workpiece 14 for processing. The energy density distribution in this case is shown in FIG. 4B, and the energy density distribution is the X direction energy density distribution 1 of each divided laser beam.
This is the sum of 00A and 100B, which is uniform in the X direction. In addition, the isothermal lines 16 are also parallel to the surface of the workpiece 14, so that uniform hardening is possible and the heat treatment efficiency is also improved. However, such a device
In order to divide the laser beam, a reflecting mirror is required for each divided laser beam, which requires a relatively large space. For this reason, it has the disadvantage that it is difficult to use when there are spatial restrictions, such as the inner surface of a thin vibrator or the inner surface of a cylinder that makes sliding contact with a piston. An object of the present invention is to provide a laser processing device that can obtain a laser beam having as uniform an energy density distribution as possible using a small number of reflecting mirrors and has a spatially compact configuration. It is in.

本発明は、レーザ光を被加工部材に照射して加工するレ
ーザ加工装置において、レーザ光を複数に分割せず、1
枚または2枚の反射鏡により、エネルギ密度分布を反転
合成して少なくとも一方向に均一なエネルギ密度分布を
有するレーザ光に整形し、前記目的を達成するようにし
たものである。すなわち、本発明の典形例によれば、レ
ーザ・光を反射鏡を介して被加工部材上に集光させるレ
ーザ加工装置において、反射鏡は、所定の角度で交叉す
る折線を、該折線と直交し、該折線の凹部側に凹な2次
曲線に沿つて平行移動させたときに形成される凹面(以
下、交叉2次曲線と称する)を反射面として有すること
を特徴とするレーザ加工装置が提供される。以下、本発
明を図面によりさらに詳細に説明する。
The present invention provides a laser processing apparatus that processes a workpiece by irradiating it with a laser beam, without dividing the laser beam into multiple parts.
The above object is achieved by inverting and synthesizing the energy density distribution using one or two reflecting mirrors and shaping the laser beam into a laser beam having a uniform energy density distribution in at least one direction. That is, according to a typical example of the present invention, in a laser processing apparatus that focuses laser light onto a workpiece through a reflecting mirror, the reflecting mirror is configured to form a fold line that intersects at a predetermined angle with the fold line. A laser processing device characterized by having, as a reflective surface, a concave surface (hereinafter referred to as a crossed quadratic curve) that is formed when parallel movement is made along a quadratic curve that intersects perpendicularly and is concave to the concave side of the broken line. is provided. Hereinafter, the present invention will be explained in more detail with reference to the drawings.

第5図は、本発明に用いる反射鏡の一実施例を示す斜視
図である。この反射鏡は、折線COlDを円または楕円
の一部である曲線0102に沿つて平行移動したときて
きる凹曲面を反射面にもつもの(交叉2次曲面反射鏡と
称する)である。この反射鏡51を第6図に示すように
、水平面からある角度傾斜させて、TEMOOモードの
レーザ光9を垂直に入射させると、細長い集光部52を
得ることができる。この集光のようすを矢印A1矢印B
方向から見た図を第7図、第8図に示す。集光部52に
おいて、エネルギ光度の高い入射ビーム中心部は集光部
の両端に導びかれると同時に反射面がY1−Y2方向に
円または楕円の曲率を有するため、Y,−Y2方向に狭
くなり、従来例(第4図)のエネルギ密度分布102と
同様にX方向にほぼ均一なエネルギ密度分布を有するレ
ーザ光を得ることができる。このような装置において、
集光部52に被加工部材を置き移動させると、深さが均
一で熱効率の高い熱処理加工を行なうことができる。次
に第9図は、本発明の他の実施例を示すもので、第6図
の実施例と同様にレーザ光9を交叉2次曲面反射鏡51
に反射させた後、さらに平面鏡53を介して集光部52
を被加工部材14上に導びくようにしたものである。
FIG. 5 is a perspective view showing one embodiment of a reflecting mirror used in the present invention. This reflecting mirror has a concave curved surface (referred to as a crossed quadratic curved reflecting mirror) that is formed when the polygonal line COID is translated along a curve 0102 that is a part of a circle or an ellipse. As shown in FIG. 6, if the reflecting mirror 51 is tilted at a certain angle from the horizontal plane and the TEMOO mode laser beam 9 is vertically incident thereon, an elongated condensing section 52 can be obtained. Arrow A1 Arrow B shows how this light is focused.
Figures 7 and 8 show views from this direction. In the condensing section 52, the center part of the incident beam with high energy luminous intensity is guided to both ends of the condensing section, and at the same time, since the reflecting surface has a circular or elliptical curvature in the Y1-Y2 direction, it is narrowed in the Y and -Y2 directions. Thus, it is possible to obtain laser light having a substantially uniform energy density distribution in the X direction, similar to the energy density distribution 102 of the conventional example (FIG. 4). In such a device,
When a workpiece is placed in the condensing section 52 and moved, it is possible to perform heat treatment with a uniform depth and high thermal efficiency. Next, FIG. 9 shows another embodiment of the present invention, in which the laser beam 9 is crossed by a quadratic curved reflecting mirror 51 as in the embodiment of FIG.
After the light is reflected by the plane mirror 53, the light is reflected by the condenser
is guided onto the workpiece 14.

被加工部材14の熱加工は集光部52を被加工材上に移
動させて行なうが、この場合、被加工材14を移動させ
てもよいし、またはレーザ光の照射装置全体を移動させ
てもよい。この実施例においても、ほぼ均一なエネルギ
密度分布を有する集光部52を得ることができ、従つて
加工深さの均一な、熱効率の高い熱処理加工を行なうこ
とができる。第10図は、本発明のさらに他の実施例を
示すもので、交叉1次曲面平面鏡54と円筒状(または
楕円筒状凹面鏡)55とを用いて集光面52を得るもの
である。
Thermal processing of the workpiece 14 is performed by moving the condensing section 52 onto the workpiece. In this case, the workpiece 14 may be moved, or the entire laser beam irradiation device may be moved. Good too. In this embodiment as well, it is possible to obtain a condensing portion 52 having a substantially uniform energy density distribution, and therefore it is possible to perform heat treatment with a uniform processing depth and high thermal efficiency. FIG. 10 shows still another embodiment of the present invention, in which a condensing surface 52 is obtained using a crossed linearly curved plane mirror 54 and a cylindrical (or elliptical cylindrical concave mirror) 55.

図において、垂直入射光9は水平面とある角度αを傾斜
させて置かれた反射鏡54で反射され、前記凹面反射鏡
55に導びかれる。交叉1次曲面反射鏡54は、第11
図に示すことく、折線COlDを直線0102に沿つて
平行移動したときにてきる■字型凹面を有する。また、
凹面反射鏡55は、円筒または楕円筒の1部を切り出し
た内面を反射面とし、Y1−Y2方向に曲率を有する反
射鏡である。入射光がTEMOOモードのレーザ光の場
合、エネルギ密度の高い中心部は交叉1次曲面反射鏡5
4により凹面反射鏡55の両端に導びかれるが、反射鏡
55がY1−Y2方向に曲率を有するため、Y1−Y2
方向の曲面で集光され、前記実施例と同様に被加工部材
14上のX方向にほぼ均一なエネルギ密度分布を有する
集光部52を与える。この集光部52を被加工部材14
上にY方向に移動することにより、加工深さがほぼ均一
な焼入れ加工面を得ることができる。本発明は、上記第
5図ないし第11図に示した実施例に限定されす、種々
の変形例が考慮される。例えば、第6図、第9図、第1
0図の実施例において、矢印乙一乙方向に反射鏡のいず
れか一方または両方を振動させることにより、集光部5
2をY方向に振動させることができ、広い領域の加工面
52Aを得ることができる。振動付与手段としては、通
常の機械的手段を用いることができる。また第5図に示
す交叉2次曲面の01C101D方向にも凹または凸の
曲率をもたせ、このようにして第6図、または第9図の
集光部52のx方向幅を縮小または拡大することができ
る。また第11図に示す交叉1次曲面の01C..01
D方向にも曲率(凹または凸)をもたせることにより、
第9図の集光部52のx方向幅を縮小または拡大するこ
とができる。さらに第9図における反射鏡53の少なく
とも1方向を凹面または凸面にすることにより、集光部
52のX方向幅を縮小または拡大することができる。
In the figure, vertically incident light 9 is reflected by a reflecting mirror 54 placed at an angle α with respect to the horizontal plane, and guided to the concave reflecting mirror 55 . The crossed linear curved reflector 54 is the 11th
As shown in the figure, it has a ■-shaped concave surface that appears when the broken line COID is translated in parallel along the straight line 0102. Also,
The concave reflecting mirror 55 is a reflecting mirror that has an inner surface cut out from a portion of a cylinder or an elliptical cylinder as a reflecting surface, and has a curvature in the Y1-Y2 direction. When the incident light is a TEMOO mode laser beam, the central part with high energy density is a crossed linear curved reflector 5.
4 to both ends of the concave reflecting mirror 55, but since the reflecting mirror 55 has a curvature in the Y1-Y2 direction,
The light is focused on a curved surface in the direction, and a light focusing portion 52 having a substantially uniform energy density distribution in the X direction on the workpiece 14 is provided as in the previous embodiment. This light condensing part 52 is connected to the workpiece 14
By moving upward in the Y direction, a hardened surface with a substantially uniform machining depth can be obtained. The present invention is limited to the embodiments shown in FIGS. 5 to 11 above, but various modifications may be considered. For example, Fig. 6, Fig. 9, Fig. 1
In the embodiment shown in FIG.
2 can be vibrated in the Y direction, and a wide area of the machining surface 52A can be obtained. As the vibration applying means, ordinary mechanical means can be used. Furthermore, the cross quadratic curved surface shown in FIG. 5 may also have a concave or convex curvature in the 01C101D direction, thereby reducing or expanding the x-direction width of the condensing section 52 in FIG. 6 or 9. I can do it. Moreover, 01C of the crossed linear curved surface shown in FIG. .. 01
By giving curvature (concave or convex) also in the D direction,
The x-direction width of the condensing section 52 in FIG. 9 can be reduced or expanded. Furthermore, by making at least one direction of the reflecting mirror 53 in FIG. 9 a concave or convex surface, the width of the light condensing section 52 in the X direction can be reduced or expanded.

同様に第10図において、反射鏡55のX1−X2方向
にも曲率(凹または凸)をもたせ、集光部52のX方向
幅を縮小または拡大することができる。次に本発明装置
の使用例を図面に基づいて説明する。
Similarly, in FIG. 10, the reflecting mirror 55 is also provided with a curvature (concave or convex) in the X1-X2 direction, so that the width of the condensing portion 52 in the X direction can be reduced or expanded. Next, an example of use of the device of the present invention will be explained based on the drawings.

第12図は、入射レーザ光9の径が管径よりも大きい場
合の細管15の内面の焼入れ加工状態を示す説明図であ
る。図において、レーザ光9はビームエキスパンダー5
6によつて管径より小さい径の平行レーザ光9Aに転換
され、細管15内の本発明に係る交叉2次面反射鏡51
により反射され、管内面上に集光されるが、交叉2次曲
面反射鏡51を速度■て移動させることにより、管内面
を連続的に焼入れ加工することができる。図面ては反射
鏡51を矢印方向に移動させる場合を示したが、反射鏡
51を固定して細管15を移動させてもよい。本実施例
においては、管への入射レーザ光9Aが管の長さ方向と
平行であるため、管長か長くても管内面の任意の位置の
焼入れが可能である利点を有する。また、交叉2次曲面
反射鏡51は、レーザ光9Aの径程度の大きさでよいた
め、細径管内面の任意の個所の焼入れ加工が可能となる
。第13図に細管15の焼入れ部15Aの断面形状を示
すが、焼入れ深さが均一な焼入れ部断面形状59が得ら
れる。第14図は、第10図のレーザ加工装置を用いて
被加工材(ゴム)14の切断を行なう場合の使用例を示
す断面図である。
FIG. 12 is an explanatory diagram showing the state of hardening of the inner surface of the thin tube 15 when the diameter of the incident laser beam 9 is larger than the tube diameter. In the figure, the laser beam 9 is transmitted to the beam expander 5.
6 into a parallel laser beam 9A having a diameter smaller than the tube diameter, and the crossed secondary surface reflecting mirror 51 according to the present invention in the thin tube 15
By moving the crossed quadratic curved reflecting mirror 51 at a speed of 1, the inner surface of the tube can be continuously hardened. Although the drawing shows a case in which the reflecting mirror 51 is moved in the direction of the arrow, the reflecting mirror 51 may be fixed and the thin tube 15 may be moved. In this embodiment, since the laser beam 9A incident on the tube is parallel to the length direction of the tube, there is an advantage that even if the tube length is long, any position on the inner surface of the tube can be hardened. Further, since the cross quadratic curved reflecting mirror 51 may have a size approximately equal to the diameter of the laser beam 9A, it is possible to harden any part of the inner surface of the small diameter tube. FIG. 13 shows the cross-sectional shape of the hardened portion 15A of the thin tube 15, and a hardened portion cross-sectional shape 59 having a uniform hardening depth can be obtained. FIG. 14 is a sectional view showing an example of the use of the laser processing apparatus shown in FIG. 10 to cut a workpiece (rubber) 14.

この加工装置には、ガ・ス吹付装置60が備えられ、レ
ーザ光の集光部に(矢印方向に)アルゴン等の不活性ガ
ス61が吹き付けられる。このような装置を用い、レー
ザ光のビーム出力2KW1走査速度10w1,Imin
で3?厚さの合成ゴムを切断したところ、良好な切断面
を得ることができた。以上、本発明によれば、反射鏡が
1個ないし2個で少なくとも1方向のエネルギ密度が均
一なレーザ集光部を容易に得ることができ、また装置の
主要構成が反射鏡からなるので、レンズのように破損の
おそれがなく、レーザ光の高出力化を図ることができる
This processing apparatus is equipped with a gas spraying device 60, which sprays an inert gas 61 such as argon (in the direction of the arrow) onto the laser beam condensing section. Using such a device, the beam output of laser light is 2KW1, and the scanning speed is 10W1, Imin.
So 3? When cutting the thick synthetic rubber, a good cut surface was obtained. As described above, according to the present invention, it is possible to easily obtain a laser condensing section with uniform energy density in at least one direction using one or two reflecting mirrors, and since the main component of the device is composed of the reflecting mirrors, Unlike lenses, there is no risk of damage, and it is possible to increase the output of laser light.

さらに構造がコンパクトであるため、取扱いが容易であ
り、従来困難であつた狭隘な加工部位でもレーザ加工が
可能となる。
Furthermore, since the structure is compact, it is easy to handle, and laser processing can be performed even in narrow processing areas, which has been difficult in the past.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、ガウス型エネルギ密度分布を有するレーザ光
の断面形状およびエネルギ密度分布を示す線図、第2図
は、従来のレーザ加工方法の原理を示す概略構成図、第
3図は、第2図の方法による加熱状況を示す断面図、第
4図Aは、従来のレーザ加工方法の原理を示す概略構成
図、第4図Bは、その加熱状況の断面図、第5図は、本
発明の実施例に用いる反射鏡の斜視図、第6図は、本発
明に係るレーザ加工方法の実施例を説明する概略説明図
、第7図は、第6図のA矢視図、第8図は、第5図のB
矢視図、第9図は、本発明の他の実施例を説明するレー
ザ加工装置の概略構成図、第10図は、本発明のさらに
他の実施例を説明するレーザ加工装置の概略構成図、第
11図は、本発明の実施例に用いた他の反射鏡の斜視図
、第12図は、本発明装置の使用例を示す図、第13図
は、第12図のレーザ加工装置により焼入れ加工された
管の内面の焼入れ状態を示す断面図、第14図は、本発
明装置の他の使用例を説明する図である。 9,9A・・・・・ルーザ光、10・・・・・ルーザ光
断面形状、11・・・・・・エネルギ密度分布、12・
・・・・・凸レンズ、13・・・・・・焦点面、14・
・・・・・被加工部材、15・・・・・・管内面、16
・・・・・・等温度線、18・・・・・ルーザ焼入れに
寄与しないレーザ光、41,42・・・・・・円筒状凹
面鏡、43・・・・・・2分割反射鏡、51・・・・・
・交叉2次曲面反射鏡、52・・・・・・集光部、53
・・・・・・平面反射鏡、54・・・・・・交叉1次曲
面反射鏡、55・・・・・・円筒状または楕円筒状凹面
鏡、56・・・・・・ビームエキスパンダ、59・・・
・・・焼入れ部、100,101・・・・・・分割され
たレーザ光。
Fig. 1 is a diagram showing the cross-sectional shape and energy density distribution of a laser beam having a Gaussian energy density distribution, Fig. 2 is a schematic diagram showing the principle of a conventional laser processing method, and Fig. 3 is a diagram showing the energy density distribution. 2 is a cross-sectional view showing the heating situation according to the method, FIG. 4A is a schematic configuration diagram showing the principle of the conventional laser processing method, FIG. 4B is a cross-sectional view of the heating situation, and FIG. FIG. 6 is a perspective view of a reflecting mirror used in an embodiment of the invention; FIG. 6 is a schematic explanatory diagram illustrating an embodiment of a laser processing method according to the invention; The figure is B in Figure 5.
9 is a schematic configuration diagram of a laser processing device illustrating another embodiment of the present invention, and FIG. 10 is a schematic configuration diagram of a laser processing device illustrating still another embodiment of the present invention. , FIG. 11 is a perspective view of another reflecting mirror used in the embodiment of the present invention, FIG. 12 is a diagram showing an example of use of the device of the present invention, and FIG. 13 is a perspective view of another reflecting mirror used in the embodiment of the present invention. FIG. 14, a cross-sectional view showing the hardened state of the inner surface of the hardened tube, is a diagram illustrating another usage example of the apparatus of the present invention. 9,9A... Loser light, 10... Loser light cross-sectional shape, 11... Energy density distribution, 12.
... Convex lens, 13 ... Focal plane, 14.
...Workpiece member, 15...Pipe inner surface, 16
...Isothermal line, 18 ... Laser light that does not contribute to loser hardening, 41, 42 ... Cylindrical concave mirror, 43 ... Two-split reflecting mirror, 51・・・・・・
・Cross quadratic curved reflector, 52...Condensing section, 53
...Flat reflecting mirror, 54... Cross linear curved reflecting mirror, 55... Cylindrical or elliptic cylindrical concave mirror, 56... Beam expander, 59...
...Hardened part, 100, 101... Divided laser beam.

Claims (1)

【特許請求の範囲】 1 光束断面がほぼ円形のレーザ光を反射鏡を介して被
加工部材上に集光させるレーザ加工装置において、前記
反射鏡は、所定の角度で交叉する折線を、該折線と直交
し、該折線の凹部側に凹な2次曲線に沿つて平行移動さ
せたときに形成される凹面(以下、交叉2次曲線と称す
る)を反射面として有し、前記レーザ光の光束断面の中
心が前記凹面の屈曲線上に位置づけられ、これによつて
分割して反射される光束断面半円形の各光束が、その光
束断面半円形の円弧部が互いに交叉しかつ直線部がほぼ
平行となつて重ね合わされるように集光されてなること
を特徴とするレーザ加工装置。 2 特許請求の範囲第1項において、前記反射鏡からの
レーザ光をさらに平面反射鏡を介して被加工部材上に集
光させるように構成したことを特徴とするレーザ加工装
置。 3 特許請求の範囲第1項において、被加工部材上のレ
ーザ光を振動させるために、前記反射鏡の少なくとも1
つに振動付与手段を設けたことを特徴とするレーザ加工
装置。 4 光束断面がほぼ円形のレーザ光を反射鏡を介して被
加工部材上に集光させるレーザ加工装置において、前記
反射鏡は、所定の角度で交叉する折線を該折線の交点と
直交する直線に沿つて平行移動させたときに形成される
凹の反射面(以下、交叉1次曲面と称する)を有するも
のと、前記レーザ光の光束断面の中心が前記凹面の屈曲
線上に位置づけられ、これによつて分割し反射される光
束断面半円形の各光束が、その光束断面半円形の円弧部
が互いに交叉しかつ直線部がほぼ平行となつて重ね合わ
されるように集光される少なくとも1方向が2次曲線の
曲率を有する凹面鏡との組合せからなることを特徴とす
るレーザ加工装置。 5 特許請求の範囲第4項において、加工部材上のレー
ザ光を振動させるために、前記反射鏡の少なくとも1つ
に振動付与手段を設けたことを特徴とするレーザ加工装
置。
[Scope of Claims] 1. In a laser processing device that focuses a laser beam having a substantially circular beam cross section onto a workpiece through a reflecting mirror, the reflecting mirror converts a folded line that intersects at a predetermined angle into the folded line. It has a concave surface (hereinafter referred to as a crossed quadratic curve) that is formed when parallel movement is made along a quadratic curve that is orthogonal to the curve and is concave to the concave side of the broken line (hereinafter referred to as a crossed quadratic curve) as a reflecting surface, and the luminous flux of the laser beam The center of the cross section is positioned on the bending line of the concave surface, and each light beam with a semicircular cross section is divided and reflected thereby, so that the arcuate parts of the semicircular cross section intersect each other and the straight parts are almost parallel. A laser processing device characterized by condensing light so as to overlap each other. 2. A laser processing apparatus according to claim 1, characterized in that the laser beam from the reflecting mirror is further condensed onto a workpiece via a plane reflecting mirror. 3. In claim 1, at least one of the reflecting mirrors is used to vibrate the laser beam on the workpiece.
A laser processing device characterized in that a vibration imparting means is provided in the laser processing device. 4. In a laser processing device that focuses a laser beam having a substantially circular beam cross section onto a workpiece via a reflecting mirror, the reflecting mirror converts a folded line that intersects at a predetermined angle into a straight line perpendicular to the intersection of the folded lines. a concave reflective surface (hereinafter referred to as a crossed linear curved surface) formed when the laser beam is moved in parallel along the curve; At least one direction in which each of the light beams having a semicircular cross section that is divided and reflected is focused such that the arc parts of the semicircular cross section of the light beam cross each other and the linear parts are substantially parallel to each other and are superimposed. A laser processing device comprising a concave mirror having a quadratic curvature. 5. A laser processing apparatus according to claim 4, characterized in that at least one of the reflecting mirrors is provided with a vibration imparting means in order to vibrate the laser beam on the workpiece.
JP54024473A 1979-03-05 1979-03-05 Laser processing equipment Expired JPS6054838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54024473A JPS6054838B2 (en) 1979-03-05 1979-03-05 Laser processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54024473A JPS6054838B2 (en) 1979-03-05 1979-03-05 Laser processing equipment

Publications (2)

Publication Number Publication Date
JPS55117587A JPS55117587A (en) 1980-09-09
JPS6054838B2 true JPS6054838B2 (en) 1985-12-02

Family

ID=12139127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54024473A Expired JPS6054838B2 (en) 1979-03-05 1979-03-05 Laser processing equipment

Country Status (1)

Country Link
JP (1) JPS6054838B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW558861B (en) * 2001-06-15 2003-10-21 Semiconductor Energy Lab Laser irradiation stage, laser irradiation optical system, laser irradiation apparatus, laser irradiation method, and method of manufacturing semiconductor device

Also Published As

Publication number Publication date
JPS55117587A (en) 1980-09-09

Similar Documents

Publication Publication Date Title
JPS583478B2 (en) Laser heating method and device
US4692583A (en) Surface heat treating apparatus
EP0282593B1 (en) Laser beam forming apparatus
JPH07227686A (en) Optical transmitter device and light irradiation method
JP2009178725A (en) Laser beam machining apparatus and method
KR20130085796A (en) Laser processing apparatus and method
JP2000005892A (en) Laser processing
JP2005028428A (en) Laser beam machining device
JP2011104605A (en) Laser forming method and laser forming apparatus
JPH02137687A (en) Laser light condensing device
JPS57193291A (en) Laser working device
JP2002217126A (en) Laser annealing method and its apparatus
JPS6046892A (en) Irradiating method of laser light
JP2000334594A (en) Laser beam machine and method for laser beam machining
JPS6054838B2 (en) Laser processing equipment
JPH01186293A (en) Laser welding method
JP2688547B2 (en) Device for recovering energy of laser beam and method of using the device
JPH04143092A (en) Laser beam machine
JPS6368288A (en) Linear beam taking off device
JP2003033893A (en) Method and device for laser beam machining
RU2151674C1 (en) Method for making honeycomb structures with superthin-wall filler by diffusion welding
JPH079177A (en) Device for forming by laser beam
GB2012065A (en) Mirrors
JPS6340694A (en) Forming method for laser light
JP2851370B2 (en) Laser processing equipment