JPS6340694A - Forming method for laser light - Google Patents

Forming method for laser light

Info

Publication number
JPS6340694A
JPS6340694A JP61183179A JP18317986A JPS6340694A JP S6340694 A JPS6340694 A JP S6340694A JP 61183179 A JP61183179 A JP 61183179A JP 18317986 A JP18317986 A JP 18317986A JP S6340694 A JPS6340694 A JP S6340694A
Authority
JP
Japan
Prior art keywords
laser beam
laser light
optical fiber
power distribution
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61183179A
Other languages
Japanese (ja)
Inventor
Kazuhiko Mori
和彦 森
Shinji Kato
真司 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP61183179A priority Critical patent/JPS6340694A/en
Publication of JPS6340694A publication Critical patent/JPS6340694A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0608Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams in the same heat affected zone [HAZ]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2817Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using reflective elements to split or combine optical signals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4249Packages, e.g. shape, construction, internal or external details comprising arrays of active devices and fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4296Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To optionally form the beam shape of a laser light and the power distribution by making a divided laser light incident on an optical fiber and optionally combining the outgoing end. CONSTITUTION:A laser light 2 is projected to a conical mirror 1 from a laser oscillator and radially reflected with the axial line of the conical mirror 1 as the center. The reflected laser light 2 is progressed into a condenser 4, progressing with performing a multireflection, is converged to one end of an optical fiber 6 by a condensing lens 5 and made incident on the optical fiber 6. The laser light 6 projected from the outgoing end of the optical fiber 6 is projected on the material to be worked as a parallel ray or so as to converge to one point after passing through the lens 7. Consequently the sectional shape of the laser light 2 complied with the shape and characteristic of the material to be worked and a power distribution can be obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、材料処理加工に使用されるレーザー光の形成
方法に係り、特に材料処理加工を行なうために被加工材
料の形状、及び特注に最適のレーザー光を得るためのレ
ーザー光の形成方法に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a method for forming a laser beam used in material processing, and in particular, to a method for forming a laser beam used in material processing, and in particular to a method for forming a laser beam used in material processing. This invention relates to a method of forming laser light to obtain optimal laser light.

(従来の技術) レーザー光を得るには、レーザー光発振器による方法が
一般的であるが、そのレーザー光のパワー分布は均一で
ない場合が多い、均一なパワー分布を得るためには高価
な装置を必要とし、また複雑な操作を伴うという欠点が
あった。
(Prior art) Laser light is generally obtained by using a laser light oscillator, but the power distribution of the laser light is often not uniform, and in order to obtain a uniform power distribution, expensive equipment is required. However, it also has the disadvantage of requiring complicated operations.

一般的かレーザー光発振器から得られるレーザー光の断
面形状は、円形、あるいは矩形でパワー分布もガウンア
ン分布であったり、複雑なマルチモードであることが多
い、第3図のようにガウシアン分布のレーザー光は、断
面がレーザー光の中心に対称で、中心が最も強く、中心
から離れるにつれて強度が減少することを特徴とし、こ
の分布の光線をガウス型光線と呼ぶ。
The cross-sectional shape of the laser beam obtained from a general laser beam oscillator is circular or rectangular, and the power distribution is often a Gaussian distribution, or a complex multi-mode laser, as shown in Figure 3. The cross section of the light is symmetrical about the center of the laser beam, and the intensity is strongest at the center and decreases as you move away from the center. A light beam with this distribution is called a Gaussian light beam.

ガウシアン分布のレーザー光から均一な分布を得る簡単
な方法としては、ビームオシレージ日ソ法、インテグレ
ーテドミラー法、カライドスコープ法などがある(第7
図ないし第9図参照)。
Simple methods for obtaining a uniform distribution from a Gaussian laser beam include the beam oscillation method, integrated mirror method, and kaleidoscope method (see Section 7).
(See figures 9 to 9).

ビームオシレーション法は第7図に示すよう(こレーザ
ー光2を凹面鏡9で受け、その反射光を高速で揺動する
平面N10111に照射し、その反射光から均一な分布
を得るものである。従って、得られるレーザー光2の断
面形状は揺動幅で定められる。第7図の例は矩形の断面
を得る場合のものである。
The beam oscillation method, as shown in FIG. 7, is a method in which the laser beam 2 is received by a concave mirror 9, the reflected light is irradiated onto a plane N10111 that swings at high speed, and a uniform distribution is obtained from the reflected light. Therefore, the cross-sectional shape of the laser beam 2 obtained is determined by the swing width.The example shown in FIG. 7 is for obtaining a rectangular cross-section.

インテグレーテドミラー法は、第8図に示すように多数
の同形状小型平面鏡12かもの反射光が任意の位置に収
束するように該平面鏡12を放物面状に配置し、その凹
面鏡13にレーザー光2を照射することによシ均一なパ
ワー分布を得るものである。
In the integrated mirror method, as shown in FIG. 8, a large number of small flat mirrors 12 of the same shape are arranged in a parabolic shape so that the reflected light from the mirrors 12 is converged at an arbitrary position, and a laser beam is applied to the concave mirror 13. By irradiating the light 2, a uniform power distribution is obtained.

カライドスコープ法は第9図に示すように矩形の筒14
の内周壁を平面鏡15で形成し、レーザー光2を筒の一
端に収束させて入射し、平面鏡15による多重反射を利
用することによって筒14の他端から均一なパワー分布
を有するレーザー光を出射させるものである。尚、第8
図中16はレンズを示す。
The kaleidoscope method uses a rectangular cylinder 14 as shown in Figure 9.
The inner circumferential wall of the tube is formed by a plane mirror 15, the laser beam 2 is focused and incident on one end of the tube, and by utilizing multiple reflections by the plane mirror 15, a laser beam having a uniform power distribution is emitted from the other end of the tube 14. It is something that makes you Furthermore, the 8th
In the figure, 16 indicates a lens.

その他このガウス型光線に簡単な光学処理を施して均一
な又は、任意のパワー分布を備えた・  レーザー光を
得る方法、及び装置が多数案出てれ、特許出願がなされ
ている(特開昭55−50209号、特開昭60−44
192号、参照)。
Many other methods and devices for obtaining laser light with uniform or arbitrary power distribution by applying simple optical processing to this Gaussian light beam have been devised, and patent applications have been filed (Japanese Patent Laid-Open Publication No. No. 55-50209, JP-A-60-44
192, see).

例えば、特開昭55−50209号では、ガウス型光線
の中心軸を境として三角柱等からなる鏡でレーザー光を
二分割し、次いで二つの凹面鏡にそれぞれ二分割された
レーザー光を照射して、凹面鏡の焦点に二分割されたレ
ーザー光を収束てせる。従って、レーザー光は凹面鏡の
焦点でダメすることにな)、その又又部分の適当なレー
ザー光断面では、パワー分布における強度の大きい部分
と、小さい部分とが重なるために、#1ぼ均一なパワー
分布を得る。
For example, in Japanese Patent Application Laid-Open No. 55-50209, a laser beam is divided into two by a mirror made of a triangular prism or the like with the central axis of a Gaussian beam as a boundary, and then the two concave mirrors are each irradiated with the two divided laser beams. The two-split laser beam is focused on the focal point of the concave mirror. Therefore, the laser beam will be damaged at the focal point of the concave mirror), but in an appropriate cross-section of the laser beam at that point, the high-intensity portion and the low-intensity portion in the power distribution overlap, so that #1 is approximately uniform. Get the power distribution.

また、特開昭60−44192号は、任意のパワー分布
を得るだめのもので、回転軸)こ沿って導入したレーザ
ー光を複数の鏡面を有する鏡体の各鏡面に共通に照射し
、反射光を前記鏡面の数に応じた凹面鏡によって所定位
置に集光して多くのパワー分布を形成するものである。
Furthermore, Japanese Patent Application Laid-open No. 60-44192 discloses a method for obtaining an arbitrary power distribution, in which a laser beam introduced along the rotation axis is commonly irradiated onto each mirror surface of a mirror body having a plurality of mirror surfaces, and the reflected light is reflected. The light is focused on a predetermined position by concave mirrors corresponding to the number of mirror surfaces, thereby forming many power distributions.

更に、前記回転軸を中心として鏡体、及び凹面鏡を一体
に回転させることでよシ多種のパワー分布形成を行なう
ものである。
Further, by rotating the mirror body and the concave mirror together about the rotation axis, various kinds of power distributions can be formed.

(発明が解決しようとする問題点) しかしながら、上記方法番こよって得られるパワー分布
を有するレーザー光は、湾曲面あるいは、凹凸面を有す
る複雑な形状を有する被加工材料ζこは充分に対応でき
ない、すなわちレーザー光から被加工材料へのエネルギ
ーの伝達効率が悪いからである。
(Problems to be Solved by the Invention) However, the laser beam with the power distribution obtained by the above method cannot be used sufficiently for processing workpieces having complicated shapes with curved surfaces or uneven surfaces. That is, this is because the energy transmission efficiency from the laser beam to the workpiece material is poor.

ビームオシレーション法、インテグレーテドミラー法、
カライドスコープ法は、レーザー光のパワー分布、及び
断面形状を任意に変更することは困難である。
Beam oscillation method, integrated mirror method,
In the kaleidoscope method, it is difficult to arbitrarily change the power distribution and cross-sectional shape of the laser beam.

また、特開昭55−50209号においても同様である
The same applies to JP-A No. 55-50209.

特開昭60−44192号においては、多種多様なパワ
ー分布に対応可能であるが、レーザー光の断面形状を任
意に形成することは困難である。
Although JP-A No. 60-44192 can accommodate a wide variety of power distributions, it is difficult to arbitrarily form the cross-sectional shape of the laser beam.

(問題を解決するだめの手段) 一本考案は上記問屋点を解決するために、レーザー光を
複数に分割した後、分割後のレーザー光をレーザー光の
分割数に厄じて設けられた光ファイバに入射させ、光フ
ァイバの出射端を任意に組合わせて光ファイバから出射
するレーザー光のビーム形状、及びパワー分布を任意に
設定することでおる。
(Means to Solve the Problem) In order to solve the above-mentioned problem, this invention splits the laser beam into multiple parts, and then splits the laser beam into a plurality of light beams. This can be achieved by arbitrarily setting the beam shape and power distribution of the laser beam that is incident on the fiber and output from the optical fiber by arbitrarily combining the output ends of the optical fiber.

(作用〕 上記構成によシ、分割したレーザー光を光ファイバに入
射させ、出射端を任意に組合わせて元ファイバから出射
するレーザー光のビーム形及びパワー分布を任意に組合
わせることによって、被加工材料の形状、及び特注に最
適のレーザー光を容易に得ることが可能になる。
(Function) According to the above configuration, the split laser beam is made incident on the optical fiber, and the output ends are arbitrarily combined to arbitrarily combine the beam shape and power distribution of the laser beam emitted from the original fiber. It becomes possible to easily obtain the optimal laser beam for the shape of the processed material and for custom orders.

(実施例〕 以下、本発明に係るレーザー光の形成方法の一実施例を
図面を参照しながら詳細Iこ説明する。
(Example) Hereinafter, an example of the method for forming a laser beam according to the present invention will be described in detail with reference to the drawings.

1は円錐鏡でその縦断面形状は頂角が直角をなす直角二
等辺三角形に形成されている。円錐f#、1は、図示し
ないレーザー発振器がら発去されレーザー光2を90@
に屈曲させるためのものでその軸atはレーザー光2の
中心に一致し、かっ曲面部が上記レーザー発振器に向く
ように設置しである。このように配置することにより、
レニザー光2の進路は90°屈曲されると共に、円!挑
1の頂点を中心としてレーザー光は放射状に反射される
Reference numeral 1 denotes a conical mirror whose vertical cross-section is formed into a right isosceles triangle with a right angle apex. The cone f#, 1 emits laser light 2 from a laser oscillator (not shown) at 90@
Its axis at coincides with the center of the laser beam 2, and it is installed so that the curved portion faces the laser oscillator. By arranging it like this,
The path of Lenizar light 2 is bent by 90 degrees, and it becomes a circle! The laser beam is reflected radially from the top of Challenge 1.

3はビーム分割装置で、第2図にも示すように、円錐鏡
1により放射状に反射されたレーザー光2を集光して光
ファイバ6の入射端に入射させるためのものである。つ
!!シ、ビーム分割装置3は、円錐鏡1の周囲に配置さ
れた榎状の装置本体5aと、複数の光ファイバ6とから
なシ、装置本体3aには複数の円錐形状の孔3bが形成
されている。孔3bは装置本体3aの周方向に等間隔で
配置され、かつその底面は装置本体3aの内周面に開口
すると共にその軸線は、円錐鏡1の軸線tと直焚してい
る。孔3bの内周面には集光g;lA4が添設され、円
錐形状をなす集光鏡4の頂部は開口され、この開口部に
は開口部よシも径大の凸レンズからなる集光レンズ5が
設置され、集光レンズ5の光軸は円錐鏡1によって反射
されたレーザー光2の中心軸にほぼ一致すると共に、集
光鏡4の中心軸にほぼ一致している。
Reference numeral 3 denotes a beam splitting device, which, as shown in FIG. One! ! The beam splitting device 3 consists of a device main body 5a in the shape of an armature arranged around the conical mirror 1 and a plurality of optical fibers 6. A plurality of conical holes 3b are formed in the device main body 3a. ing. The holes 3b are arranged at regular intervals in the circumferential direction of the device main body 3a, and their bottom faces open to the inner circumferential surface of the device main body 3a, and their axes are directly aligned with the axis t of the conical mirror 1. A condensing mirror 4 is attached to the inner peripheral surface of the hole 3b, and the top of the conical condensing mirror 4 is opened. A lens 5 is installed, and the optical axis of the condenser lens 5 substantially coincides with the central axis of the laser beam 2 reflected by the conical mirror 1, and also substantially coincides with the central axis of the condenser mirror 4.

6は光ファイバで、その入射端は集光鏡4の頂部に形成
された開口部に挿入され、集光レンズ5によって収束さ
れたレーザー光2は光ファイバ6の入射端から入射する
。レンズ7を設けた光ファイバ6の出射端では、再び凸
レンズで絞シ、平行光線として出てゆく元ファイバ6の
数に応じて形成された挿入孔8aを有する枠体8の挿入
孔8aに挿入孔に挿入されることによって束ねられてい
る。光ファイバ6をこのようをこ束ねる際、光ファイバ
6を適当に組合せて配列すれば、所望のパワー分布を得
ることができ、また第4図に示すように配列すれば断面
コの字状のビーム形状にすることができ、第5図に示す
ように光ファイバ6の出射端を傾斜させればレーザー光
2を一点に収束烙せることができる。
Reference numeral 6 denotes an optical fiber, the input end of which is inserted into an opening formed at the top of the condenser mirror 4, and the laser beam 2 converged by the condenser lens 5 enters from the input end of the optical fiber 6. The output end of the optical fiber 6 provided with the lens 7 is again apertured with a convex lens and inserted into the insertion hole 8a of the frame 8, which has insertion holes 8a formed according to the number of original fibers 6 that exit as parallel light beams. They are bundled by being inserted into holes. When the optical fibers 6 are bundled in this way, the desired power distribution can be obtained by appropriately combining and arranging the optical fibers 6, and if the optical fibers 6 are arranged as shown in FIG. The laser beam 2 can be shaped into a beam, and by tilting the output end of the optical fiber 6 as shown in FIG. 5, the laser beam 2 can be focused on one point.

尚、元ファイバ6の出射端1こレンズ7を設ける代わシ
に、端部をレンズ状に形成加工しても同様の効果を得る
。ち々みに、第4図は平坦な材料をこ広範囲な焼入れを
施す場合に適したパワー分布を得るための例で、第5図
はエネルギー密度が大きいレーザー光を得るための例で
ある。
Incidentally, instead of providing the lens 7 at the output end of the original fiber 6, the same effect can be obtained by forming the end into a lens shape. Incidentally, Fig. 4 shows an example for obtaining a power distribution suitable for hardening a flat material over a wide range, and Fig. 5 shows an example for obtaining a laser beam with a high energy density.

第6図は第5図の別例で、17は加工レンズを示す。FIG. 6 is another example of FIG. 5, and 17 indicates a processed lens.

従って、被加工材料の形状、特性に応じたレーザー光2
の断面形状、及びパワー分布を得ることができる。
Therefore, the laser beam 2 depending on the shape and characteristics of the material to be processed
The cross-sectional shape and power distribution can be obtained.

18は被加工品を示す。18 indicates a workpiece.

次に、上記構成に係るレーザー光の形成方法について説
明する。
Next, a method for forming laser light according to the above configuration will be explained.

図示し々いレーザー発振器からレーザー光2を円錐鏡1
に照射すると、レーザー光2は円錐 1fJ81の軸線
を中心として放射状に反射する。反射したレーザー光2
は集光鏡4内に進み、ここで多重反射しながら進tテし
、更に集光レンズ5によって光ファイバ6の一端に収束
され、光ファイバ6に入射する。光ファイバ6の出射端
から出射したレーザー光6は、レンズ7を通過後、第4
図の場合は平行光線として、また第5図の場合は一点に
収束するように被加工材料に照射される。
A laser beam 2 is transmitted from a laser oscillator (not shown) to a conical mirror 1.
, the laser beam 2 is reflected radially around the axis of the cone 1fJ81. reflected laser light 2
The light beam advances into the condenser mirror 4, where it travels through multiple reflections, is further converged by the condenser lens 5 onto one end of the optical fiber 6, and enters the optical fiber 6. The laser beam 6 emitted from the output end of the optical fiber 6 passes through the lens 7 and then passes through the fourth lens.
The material to be processed is irradiated with parallel light beams in the case shown in the figure, and so as to converge to a single point in the case of FIG.

(発明の効果) 以上から明らかなように、本発明はレーザー光を分割後
、光ファイバに入射させるので、レーザー光のパワー分
布、及び断面形状を任意に形成することができる。従っ
て、多1重多様な被加工材料の形状、%註、加工用途に
応じ、効率よくレーザー光のエネルギーを被加工材料に
照射でき、このため作業能率が向上すると共に、加工作
業の有効範囲が著しく拡大することになる。
(Effects of the Invention) As is clear from the above, in the present invention, the laser beam is split and then input into the optical fiber, so that the power distribution and cross-sectional shape of the laser beam can be arbitrarily formed. Therefore, laser light energy can be efficiently irradiated to the workpiece material according to the shape, percentage, and processing purpose of multiple and diverse workpiece materials, which improves work efficiency and widens the effective range of the workpiece. It will expand significantly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を示す断面図、第2図は、
第1図のビーム分割装置の詳細図、第3図は、ガウス型
光i=Mのレーザー光におけるパワー分布を示す説明図
、 第4図は、第1図の枠体の断面図、 第5図は、第4図の枠体の他の例を示す断面図である。 第6図は、第5図の別例を示す断面図、第7図は、ビー
ムオシレーション法を示す説明図、 第8図は、インテグレーテドミラー法を示す説明図、 第9図はカライドスコープ法を示す説明図である。 2・・・レーザー光    る−・・光フアイバ特許出
願人    トヨタ自動車株式会社第1 図
FIG. 1 is a sectional view showing one embodiment of the present invention, and FIG. 2 is a sectional view showing an embodiment of the present invention.
A detailed view of the beam splitting device shown in FIG. 1, FIG. 3 is an explanatory diagram showing the power distribution in the laser beam of Gaussian light i=M, FIG. 4 is a cross-sectional view of the frame shown in FIG. 1, and FIG. This figure is a sectional view showing another example of the frame shown in FIG. 4. Fig. 6 is a sectional view showing another example of Fig. 5, Fig. 7 is an explanatory drawing showing the beam oscillation method, Fig. 8 is an explanatory drawing showing the integrated mirror method, and Fig. 9 is an explanatory drawing showing the integrated mirror method. It is an explanatory diagram showing a scope method. 2... Laser light... Optical fiber patent applicant Toyota Motor Corporation Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)レーザー光を複数に分割した後、分割後のレーザ
ー光をその分割数に応じて設けられた光ファイバに入射
させ、該光ファイバから出射するレーザー光のビーム形
状及びパワー分布を、該光ファイバの出射端を任意に組
合わせることにより任意に設定することを特徴とするレ
ーザー光の形成方法。
(1) After dividing the laser beam into a plurality of parts, the divided laser beam is made to enter an optical fiber provided according to the number of divisions, and the beam shape and power distribution of the laser beam emitted from the optical fiber are determined according to the number of divisions. A method for forming laser light, characterized in that the output ends of optical fibers are arbitrarily set by arbitrarily combining them.
JP61183179A 1986-08-04 1986-08-04 Forming method for laser light Pending JPS6340694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61183179A JPS6340694A (en) 1986-08-04 1986-08-04 Forming method for laser light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61183179A JPS6340694A (en) 1986-08-04 1986-08-04 Forming method for laser light

Publications (1)

Publication Number Publication Date
JPS6340694A true JPS6340694A (en) 1988-02-22

Family

ID=16131155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61183179A Pending JPS6340694A (en) 1986-08-04 1986-08-04 Forming method for laser light

Country Status (1)

Country Link
JP (1) JPS6340694A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07244208A (en) * 1994-03-02 1995-09-19 Keete Syst Service:Kk Light reflection device, measuring method therefor and optical system using light reflection device
WO2001026859A1 (en) * 1999-10-13 2001-04-19 Kleinhuber Harald G Device with at least one light source, comprising several individual light sources
JP2001244213A (en) * 1999-12-24 2001-09-07 Semiconductor Energy Lab Co Ltd Laser beam irradiating device and method of manufacturing semiconductor device
WO2009065373A1 (en) * 2007-11-21 2009-05-28 Lpkf Laser & Electronics Ag Device for machining a workpiece by means of parallel laser beams

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07244208A (en) * 1994-03-02 1995-09-19 Keete Syst Service:Kk Light reflection device, measuring method therefor and optical system using light reflection device
WO2001026859A1 (en) * 1999-10-13 2001-04-19 Kleinhuber Harald G Device with at least one light source, comprising several individual light sources
US6934014B1 (en) 1999-10-13 2005-08-23 Myos My Optical System Gmbh Device with at least one light source, comprising several individual light sources
JP2001244213A (en) * 1999-12-24 2001-09-07 Semiconductor Energy Lab Co Ltd Laser beam irradiating device and method of manufacturing semiconductor device
WO2009065373A1 (en) * 2007-11-21 2009-05-28 Lpkf Laser & Electronics Ag Device for machining a workpiece by means of parallel laser beams
JP2011505253A (en) * 2007-11-21 2011-02-24 エル・ピー・ケー・エフ・レーザー・ウント・エレクトロニクス・アクチエンゲゼルシヤフト Equipment for processing workpieces using parallel laser light
US8314362B2 (en) 2007-11-21 2012-11-20 Lpkf Laser & Electronics Ag Device for machining a workpiece by means of parallel laser beams

Similar Documents

Publication Publication Date Title
US5684642A (en) Optical transmission system and light radiating method
US5055653A (en) Laser beam machining device
EP0106336B1 (en) Laser source apparatus
JPS5891422A (en) Light beam equalizer
KR100491558B1 (en) Light projecting device and light projecting method
JPH01306088A (en) Variable beam laser processing device
US5477384A (en) Laser optical device
KR100659438B1 (en) Apparatus and method for laser processing
CN110753596B (en) Device and method for laser-based separation of transparent and fragile workpieces
JPS6340694A (en) Forming method for laser light
JP2000275568A (en) Beam mode converting optical system
JPH02187294A (en) Laser beam shaping apparatus
JPS605394B2 (en) Laser irradiation device
JP2748853B2 (en) Beam expander, optical system and laser processing device
KR20210075030A (en) Apparatus for laser processing using laser beams of different wavelength and method thereof
JPH0722685A (en) Focus composition method of beam and its focus composition device
JPH02299791A (en) Workpiece irradiating method with laser beam
JPH0498214A (en) Device for irradiating with laser beam
JPS63108318A (en) Laser working device
JPS61201731A (en) Heater for tooth shape surface
JPS63157123A (en) Linear beam optical system
GB2316187A (en) Laser optical fibre transmission system with adjustable angle of incidence
JPS63273589A (en) Laser welding method
KR100296386B1 (en) Method and apparatus for transforming laser beam profile and method for processing optical fiber grating
CN115390260A (en) Laser beam scanning processing device, system and method