JPS6054789B2 - semiconductor equipment - Google Patents

semiconductor equipment

Info

Publication number
JPS6054789B2
JPS6054789B2 JP14989580A JP14989580A JPS6054789B2 JP S6054789 B2 JPS6054789 B2 JP S6054789B2 JP 14989580 A JP14989580 A JP 14989580A JP 14989580 A JP14989580 A JP 14989580A JP S6054789 B2 JPS6054789 B2 JP S6054789B2
Authority
JP
Japan
Prior art keywords
resistance
resistance layer
layer
semiconductor device
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14989580A
Other languages
Japanese (ja)
Other versions
JPS5773961A (en
Inventor
健治 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP14989580A priority Critical patent/JPS6054789B2/en
Publication of JPS5773961A publication Critical patent/JPS5773961A/en
Publication of JPS6054789B2 publication Critical patent/JPS6054789B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53271Conductive materials containing semiconductor material, e.g. polysilicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】 この発明は半導体装置に係り、特に著しく抵抗値の異な
る抵抗層を有する半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device, and particularly to a semiconductor device having resistance layers having significantly different resistance values.

従来、例えば第1図a、bに示すような半導体装置にお
いて、N゛型拡散層1よりAl配線2に電流(電子)が
流れる場合、x=0の部分に電流が集区することはよく
知られている(IBMJ、Res。Develop、1
2(1968)P、242)。ここで、3はP型シリコ
ン基板、4はSiQ、膜である。このような現象が生じ
る原因は、基本的には拡散層1の有する抵抗(層抵抗)
とAl配線2の有する抵抗の比が極めて大きい(1び〜
10’倍)ことに由来している。
Conventionally, in a semiconductor device as shown in FIGS. 1a and 1b, for example, when current (electrons) flows from the N-type diffusion layer 1 to the Al wiring 2, the current often concentrates in the area where x=0. Known (IBMJ, Res. Develop, 1
2 (1968) P, 242). Here, 3 is a P-type silicon substrate, and 4 is a SiQ film. The cause of this phenomenon is basically the resistance (layer resistance) of the diffusion layer 1.
and the resistance of the Al wiring 2 is extremely large (1 and 2).
10' times).

すなわち、電流は拡散層1よりN配線2を流れる方がよ
り流れやすいことによるものである。
That is, this is because current flows more easily through the N wiring 2 than through the diffusion layer 1.

周知のように過度の電流集中が生じると、これにより配
線を構成している原子が吹き流される現象いわゆるエレ
クトロマイグレーション(Electromigrat
ion)を引き起こす。
As is well known, when excessive current concentration occurs, the atoms that make up the wiring are blown away, a phenomenon called electromigration.
ion).

このエレクトロマイグレーションが起こると、エレクト
ロンの風下には吹きだまりが生じ、逆にエレクトロンの
風上では原子がなくなり欠損部(Void)を生じ、つ
いには断線してしまう。ところで、上記電流集中の度合
はコンタクト5の大きさWにほとんど依存しないで、主
としてLに依存するが、その集中する度合は極めて鋭い
When this electromigration occurs, a snowdrift occurs on the leeward side of the electron, and conversely, atoms disappear on the upwind side of the electron, creating a void, which eventually leads to a disconnection. Incidentally, the degree of current concentration hardly depends on the size W of the contact 5, but mainly depends on L, but the degree of current concentration is extremely sharp.

従つて、Lを大きくして電流集中の度合を低減しようと
するとより多くの面積が必要となり、経済的に不都合を
生じる。この発明は上記実情に鑑みてなされたもので、
その目的は、著しく抵抗層の異なる抵抗層間の接触面に
生じる電流集中を防止し、エレクトロマイグレーション
の発生を防止することのできる経済的な半導体装置を提
供することにある。
Therefore, if an attempt is made to reduce the degree of current concentration by increasing L, a larger area is required, which is economically disadvantageous. This invention was made in view of the above circumstances.
The purpose is to provide an economical semiconductor device that can significantly prevent current concentration occurring at the contact surface between different resistance layers and prevent electromigration from occurring.

以下、図面を参照してこの発明の一実施例を説明する。Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

前述のように、電流集中を生じる基本的な原因は、金属
層の抵抗値が拡散層のそれに比べて低いこと、さらに補
足すれば第1図aで示したx=0の点より金属層までの
抵抗が最も小さいことによる。従つて、上記問題の解決
のためには、x=0に於ける抵抗を高くして、過度の電
流集中を防止する必要がある。そのためには、x=0を
含む領域に追加の抵抗層を設定することで充分であり、
それにより電流の分流が可能となる。理想的にはx=0
の個所からの抵抗値が金属層との接触面で同一となるよ
うに設定するのが望ましいが、現実的な製造工程として
は困難である。従つて、最も容易であり、かつ効果の期
待できる方法は、第2図A,bに示すように、N+型拡
散層11とA1配線層12との間の一部にx=0の部分
を覆うようにして追加抵抗層13を加え、集中する電流
を2分割することである。工程の繁雑さを厭わなければ
、さらに追加の抵抗層を加えることで分割を細かくし、
理想的な状態に近づけることが可能である。従つて、電
流の集中を防止でき、エレクトロマイグレーションの発
生がなくなり断線等の事故がなくなる。第3図a−cは
上記構造の半導体装置の製造方法を示すものである。
As mentioned above, the basic cause of current concentration is that the resistance value of the metal layer is lower than that of the diffusion layer. This is due to the fact that the resistance is the smallest. Therefore, in order to solve the above problem, it is necessary to increase the resistance at x=0 to prevent excessive current concentration. For that purpose, it is sufficient to set an additional resistance layer in the region containing x=0,
This allows current to be shunted. Ideally x=0
Although it is desirable to set the resistance value from the point to be the same at the contact surface with the metal layer, this is difficult as a practical manufacturing process. Therefore, the easiest and most effective method is to form a part where x=0 between the N+ type diffusion layer 11 and the A1 wiring layer 12, as shown in FIGS. 2A and 2B. An additional resistive layer 13 is added to cover it, and the concentrated current is divided into two. If you don't mind the complexity of the process, you can make the division finer by adding an additional resistance layer.
It is possible to approach the ideal state. Therefore, current concentration can be prevented, electromigration will not occur, and accidents such as wire breakage will be eliminated. 3a to 3c show a method of manufacturing a semiconductor device having the above structure.

ここではNチャンネル形シリコン ゲートMOS(Me
talOxideSemicOnductOr)構造を
例にとつて説明する。まず、第3図aに示すようにP型
シリコン基板(結晶方位:(100))14上に膜厚1
μm程度のフィールド酸化膜15を選択的に形成し、活
性領域と非活性領域とを分離する。次に、熱処理を行い
膜厚1000Aのゲート酸化膜16を成長させ、さらに
このゲート酸化膜16上に多結晶シリコン層17を積層
する。そして、PEP(写真蝕刻工程)によりゲート領
域を形成すると共に、N型不純物例えばAs(砒素)の
拡散によリソース、ドレイン領域等となるN+型拡散層
11を形成する。次に第3図bに示すように、CVD(
ChemicalVapOur′DepsitiOn)
法により膜厚1pm程度のSiO2膜18を形成し、P
EPによりコンタクト・ホールの穴開けを行う。しかる
後、多結晶シリコン層を4000A程度積層し、PEP
により電流の集中する個所に対応して追加抵抗層13を
形成する。最後に、第3図cに示すように、に配線層1
2を積層し、所定の配線パターンにパターニングした後
、保護膜19を形成し、取出し用電極を形成して全工程
を完了する。尚、上記実施例においては、抵抗値の異な
る高抵抗層及び低抵抗層の例として、N+型拡散層11
とAl配線層12の場合について説明したが、これに限
定するものではなく、例えば多結晶シリコン層とAl配
線層間のように著しく抵抗値の異なるものの間において
も一般的に適用可能である。
Here, an N-channel silicon gate MOS (Me
The structure will be explained by taking the structure (talOxideSemiconductOr) as an example. First, as shown in FIG. 3a, a film with a thickness of 1
A field oxide film 15 with a thickness of about .mu.m is selectively formed to separate active regions and non-active regions. Next, a heat treatment is performed to grow a gate oxide film 16 with a thickness of 1000 Å, and a polycrystalline silicon layer 17 is further laminated on this gate oxide film 16. Then, a gate region is formed by PEP (photo-etching process), and an N+ type diffusion layer 11, which will become a resource, a drain region, etc., is formed by diffusion of an N-type impurity, for example, As (arsenic). Next, as shown in Figure 3b, CVD (
ChemicalVapOur'DepsiOn)
A SiO2 film 18 with a thickness of about 1 pm is formed by
Drill a contact hole using EP. After that, a polycrystalline silicon layer of about 4000A is laminated, and PEP
Additional resistance layers 13 are formed corresponding to locations where current is concentrated. Finally, as shown in Figure 3c, the wiring layer 1 is
2 are laminated and patterned into a predetermined wiring pattern, a protective film 19 is formed, and an extraction electrode is formed to complete the entire process. In the above embodiment, the N+ type diffusion layer 11 is an example of the high resistance layer and the low resistance layer having different resistance values.
Although the case of the Al wiring layer 12 has been described, the present invention is not limited thereto, and is generally applicable to materials having significantly different resistance values, such as between a polycrystalline silicon layer and an Al wiring layer, for example.

以上説明したようにこの発明によれば、著しく抵抗値の
異なる2つの抵抗層の間において、電流の集中する個所
を覆うように追加の抵抗層を設け・る構成としたので、
電流集中を防止し、エレクトロマイグレーションの発生
を防止することのできる経済的な半導体装置を提供でき
る。
As explained above, according to the present invention, an additional resistance layer is provided between two resistance layers having significantly different resistance values so as to cover the area where current is concentrated.
It is possible to provide an economical semiconductor device that can prevent current concentration and electromigration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A,bは従来の半導体装置の構成を示す・もので
、aは断面図、bは平面図、第2図A,bはこの発明の
一実施例に係る半導体装置の構成を示すもので、aは断
面図、bは平面図、第3図a〜cは上記装置の製造工程
を示す断面図てある。 11・・・・・・N+型拡散層、12・・・・・・A1
配線層、173・・・・・・追加抵抗層。
1A and 1B show the structure of a conventional semiconductor device, where a is a cross-sectional view and b is a plan view, and FIGS. 2A and 2B show the structure of a semiconductor device according to an embodiment of the present invention. 3A is a sectional view, FIG. 3B is a plan view, and FIGS. 3A to 3C are sectional views showing the manufacturing process of the above device. 11...N+ type diffusion layer, 12...A1
Wiring layer, 173...Additional resistance layer.

Claims (1)

【特許請求の範囲】 1 一導電型半導体基板と、この基板の主面に設けられ
た第1の抵抗層と、この第1の抵抗層とは抵抗値が異な
り、かつこの第1の抵抗層に接触する接触部及び電流の
集中する個所に対応した非接触部を有する第2の抵抗層
と、この第2の抵抗層の非接触部に対応して設けられた
第3の抵抗層とを具備したことを特徴とする半導体装置
。 2 前記第3の抵抗層を多結晶シリコンで形成したこと
を特徴とする特許請求の範囲第1項記載の半導体装置。 3 前記第2の抵抗層は前記第1の抵抗層より低い抵抗
値を有することを特徴とする特許請求の範囲第1項記載
の半導体装置。
[Claims] 1. A semiconductor substrate of one conductivity type, a first resistance layer provided on the main surface of this substrate, and a first resistance layer having different resistance values, and a second resistance layer having a contact portion that comes in contact with the current and a non-contact portion corresponding to a location where current is concentrated, and a third resistance layer provided corresponding to the non-contact portion of the second resistance layer. A semiconductor device characterized by comprising: 2. The semiconductor device according to claim 1, wherein the third resistance layer is made of polycrystalline silicon. 3. The semiconductor device according to claim 1, wherein the second resistance layer has a lower resistance value than the first resistance layer.
JP14989580A 1980-10-25 1980-10-25 semiconductor equipment Expired JPS6054789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14989580A JPS6054789B2 (en) 1980-10-25 1980-10-25 semiconductor equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14989580A JPS6054789B2 (en) 1980-10-25 1980-10-25 semiconductor equipment

Publications (2)

Publication Number Publication Date
JPS5773961A JPS5773961A (en) 1982-05-08
JPS6054789B2 true JPS6054789B2 (en) 1985-12-02

Family

ID=15484959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14989580A Expired JPS6054789B2 (en) 1980-10-25 1980-10-25 semiconductor equipment

Country Status (1)

Country Link
JP (1) JPS6054789B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0277152A (en) * 1988-06-01 1990-03-16 Nec Corp Semiconductor integrated circuit device
JP2594719B2 (en) * 1991-07-19 1997-03-26 日本電気株式会社 Semiconductor device

Also Published As

Publication number Publication date
JPS5773961A (en) 1982-05-08

Similar Documents

Publication Publication Date Title
JPH07120653B2 (en) Manufacturing method of monolithic integrated circuit
JPH01103876A (en) Insulated-gate semiconductor device
US4151631A (en) Method of manufacturing Si gate MOS integrated circuit
US4740482A (en) Method of manufacturing bipolar transistor
JPH05304262A (en) Semiconductor device and manufacture thereof
US5521416A (en) Semiconductor device having gate electrode and impurity diffusion layer different in conductivity type and method of manufacturing the same
US5138425A (en) Semiconductor integrated circuit device with nitride barrier layer ion implanted with resistivity decreasing elements
JPS6054789B2 (en) semiconductor equipment
JP2828438B2 (en) Method for forming polycide layer in semiconductor device
US5204735A (en) High-frequency semiconductor device having emitter stabilizing resistor and method of manufacturing the same
JPS5950104B2 (en) Hand tie souchi
JP3350170B2 (en) Power MOS type semiconductor device and method of manufacturing the same
JPS6292470A (en) Semiconductor device
US6838747B2 (en) Semiconductor device having resistive element formed of semiconductor film
JPH0283920A (en) Manufacture of semiconductor device
JPH01268167A (en) Manufacture of schottky diode
JPS634648A (en) Semiconductor device
JPH033270A (en) Semiconductor device
JPH0738413B2 (en) Semiconductor device
JPH06291077A (en) Semiconductor device and manufacture thereof
JPS5951130B2 (en) Method for manufacturing semiconductor devices with low leakage current
JP2528694B2 (en) Method for manufacturing semiconductor device
JP2753849B2 (en) Semiconductor device
JPS61242059A (en) Semiconductor device for capacitor microphone
JPH04184978A (en) Manufacture of semiconductor device