JPS6054423A - Method of producing solid electrolytic condenser - Google Patents

Method of producing solid electrolytic condenser

Info

Publication number
JPS6054423A
JPS6054423A JP16385683A JP16385683A JPS6054423A JP S6054423 A JPS6054423 A JP S6054423A JP 16385683 A JP16385683 A JP 16385683A JP 16385683 A JP16385683 A JP 16385683A JP S6054423 A JPS6054423 A JP S6054423A
Authority
JP
Japan
Prior art keywords
solid electrolytic
water
oxide film
capacitor
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16385683A
Other languages
Japanese (ja)
Other versions
JPH0320893B2 (en
Inventor
隆 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Capacitor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Capacitor Ltd filed Critical Nichicon Capacitor Ltd
Priority to JP16385683A priority Critical patent/JPS6054423A/en
Publication of JPS6054423A publication Critical patent/JPS6054423A/en
Publication of JPH0320893B2 publication Critical patent/JPH0320893B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Conductive Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は固体電解コンデンサの製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a solid electrolytic capacitor.

一般に固体電解コンデンサはA/、Taなどの金属W極
表面上に酸化皮膜を生bvさせて誘゛畦体を形成し、こ
れに固体電解質を付着させ、ゲラファイト、銀などの導
14L層を介して陰極を導出して構成されている。この
種のコンデンサは、一般に固体電解質層として二酸化マ
ンガンが多くの場合用いられている。これは硝酸マンガ
ン浴液に浸漬した後、加熱分解処理を行い二酸化マンガ
ンとして電極に付着させる方法が用いられている。この
方法によると加熱分解処理の際に、例えばAJの場合で
は誘電体であるA/gos皮膜を損傷させ、大きな耐圧
低下を招いている。この方法ではいずれにしても誘電体
皮膜を硝酸により溶解させ、そこに二酸化マンガンを付
着させる機構であり、電極と二酸化マンガンを強固に結
合させ、固体−同体間の接触抵抗を下げる働きもなして
いる。従ってこの二酸化マンガン方式の改良、特に皮膜
劣化、耐圧低下に対する改良は様々な方法で検討されて
きたが、いずれも根本的な解決方法は見出されていない
In general, solid electrolytic capacitors are made by forming a dielectric ridge by growing an oxide film on the surface of a metal W electrode such as A/, Ta, etc., attaching a solid electrolyte to this, and then forming a conductive 14L layer of gelaphite, silver, etc. The cathode is led out through the structure. In this type of capacitor, manganese dioxide is generally used as the solid electrolyte layer in many cases. The method used is to immerse the material in a manganese nitrate bath solution, then heat it to decompose it and deposit it on the electrode as manganese dioxide. According to this method, in the case of AJ, for example, the dielectric A/gos film is damaged during thermal decomposition treatment, resulting in a large drop in breakdown voltage. In this method, the dielectric film is dissolved with nitric acid and manganese dioxide is attached thereto, which strongly bonds the electrode and manganese dioxide and also works to lower the contact resistance between the solid and the solid body. There is. Therefore, various methods have been investigated to improve the manganese dioxide method, particularly to improve the film deterioration and the drop in pressure resistance, but no fundamental solution has been found in any of them.

一方におun −[電子部品の小型化指向が強まってお
り、耐圧低重によるCv槓の減少は是非とも避けねばな
らぬことである。また、チップ化の傾向も顕著になって
きており、従来用いられた液体系電解質から固体系゛電
解質への移行は必然的侵攻ともなってきている。これら
の要求は積層技術の進歩に伴い新たなコンデンサ装造技
術へと変革していくことけ容易に想定できる。
On the other hand, there is an increasing trend toward miniaturization of electronic components, and a decrease in Cv due to low pressure and weight must be avoided at all costs. In addition, the trend towards chips is becoming more prominent, and the shift from conventionally used liquid electrolytes to solid electrolytes is becoming inevitable. It can be easily assumed that these requirements will be transformed into new capacitor assembly technology as lamination technology advances.

本発明はこうした背景の一環として提供されたものであ
る。
The present invention was provided as part of this background.

発明の骨子となるものは従来までの液状電解質が電極の
陽極酸イヒを行う際にORなどのイオン泳動を生体とし
て行なわれていたのに対し、固体にその働き請求めるた
めには、現在ある素材全検討しても困離な状況であるこ
とより、界面でのイオン交換体反応とプロトン伝導の機
構を応用したものである。
The gist of the invention is that while conventional liquid electrolytes have been used to perform iontophoresis such as OR in living organisms when anodizing electrodes, it is currently necessary to apply this function to a solid state. Since the situation is still difficult even after considering all materials, we applied the mechanism of ion exchanger reaction and proton conduction at the interface.

本発明の基本的な反応形態は次式のように示される。た
とえばA7との反応では、 MOX−n HgO+A l→Mo X (n 3 )
 HxO+Al (HgO)g・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・(1)
At (HsOh −+Al (OH)a + 3 H
+・・・・・・・・・・・・・・・・・・・・・・・・
(2)At (OH)m→1A 1m On + 3 
/ 2 H*叶・・・・・・・・・・・・・・・・・・
(3)MOx−n H! Oがプロトン伝導ならば(2
)式で生じた3H+はMOc−nHlo 中を泳動し、
電圧印加の状態下では反応は進行し、事実トの陽極酸化
が行なわれることになる。
The basic reaction form of the present invention is shown by the following formula. For example, in the reaction with A7, MOX-n HgO+A l → Mo X (n 3 )
HxO+Al (HgO)g・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・(1)
At (HsOh −+Al (OH)a + 3 H
+・・・・・・・・・・・・・・・・・・・・・・・・
(2) At (OH)m→1A 1m On + 3
/ 2 H*Kano・・・・・・・・・・・・・・・・・・
(3) MOx-n H! If O is proton conducting (2
) 3H+ generated by the formula migrates in MOc-nHlo,
Under the condition of voltage application, the reaction proceeds, and in fact, anodic oxidation takes place.

さらK(3)式で示されるような反応が進行し、生成し
た水分は再びMOX結晶中の結晶水あるいは吸着水とし
て組み込められると最も良好な状態である。
The best condition is when the reaction shown by equation K (3) proceeds and the produced water is incorporated again into the MOX crystal as crystal water or adsorbed water.

さらにコンデンサの固体電解質への応用条部としては、 ■ 20C1付近まで結晶水あるいは吸着水が飛散しな
いこと。
Furthermore, as for application to the solid electrolyte of capacitors: (1) Crystal water or adsorbed water must not scatter up to around 20C1.

■ ハンダ付けを考慮すると260℃10秒浸漬処理に
より変質しないこと。
■ Considering soldering, there should be no deterioration in quality by immersion treatment at 260°C for 10 seconds.

■ 電極を侵さないこと。■ Do not damage the electrode.

■ 加熱処理により容易に酸化されること。■ Easily oxidized by heat treatment.

(シ 比較的安価であること。(Sh) It must be relatively inexpensive.

などの条件がある。従ってF記の条件を満たしかつ結晶
水あるいは@着水を有しかつプロトン閲導性?有する金
lN41Jf化物Vこその固体電解質としての機能會備
、えたものがあることになる。
There are conditions such as Therefore, it satisfies the conditions in F, has crystal water or @water landing, and has proton readability? This means that the gold lN41Jf compound V has the functionality as a solid electrolyte.

次1c @ %への付着方法が問題となる。硝酸との金
1m tM trより皮膜溶解させながら付着させる方
法は、訪電体皮膜と固体電解質との電気的密着性は良好
であるが、皮膜溶解することがコンデンサとし一〇の緒
特性を大幅に減するため良策ではない。
The next problem is how to attach it to 1c@%. The method of depositing gold with nitric acid while melting the film with 1 m tM tr provides good electrical adhesion between the visiting body film and the solid electrolyte, but the melting of the film greatly impairs the characteristics of the capacitor. This is not a good idea as it reduces the

そこで本発明に用いる電解質である結晶水あるいはeA
/水tfJするプロトン伝導性合端酸化物という、Qを
考慮すると、まず−電体及膜上へ金鵬を蒸着、スパッタ
リング、無電解メッキなどにより付★せしめ、次に加熱
処理により金楓酸化物とし。
Therefore, crystal water or eA, which is the electrolyte used in the present invention,
Considering the Q of the proton-conducting bonded oxide that conducts water tfJ, gold maple oxide is first applied onto the electric body and film by vapor deposition, sputtering, electroless plating, etc., and then gold maple oxide is applied by heat treatment. year.

結晶水めるいは吸着水を含む金M#1化物とするために
は、水蒸気中で加熱処理を行なうと良好であることを見
出した。
It has been found that heat treatment in steam is effective in producing a gold M#1 compound containing crystal water or adsorbed water.

以下、本う6明は第1図〜8g4図に示す実施例につい
て祝明する。
Hereinafter, we will congratulate the embodiments shown in Figs. 1 to 8g4.

99.99%、90μmの高純度アルミニウム箔をホウ
酸アンモニウム溶液で150vまで陽極酸化した化成箔
を用いる。
A chemically formed foil obtained by anodizing a 99.99%, 90 μm high-purity aluminum foil with an ammonium borate solution to 150 V is used.

実施例1 上記第を真空蒸着装置を使用し、1.5μmの厚みでf
3nを蒸着させる。次に円筒型加熱炉の中に水蒸剣ヲ送
)込み、加熱炉中を飽和蒸気圧に保ちながら220℃、
1時間加熱処理を行なった。でき上った試料を第1図に
示すようにコロイダルカーボン4を塗布し、さらに銀ペ
ースト5を付着させ、リード引出線7をハンダ付けし固
体電解コンデンサ試料を製作した。第1図において、1
はアルミニウム箔、2は酸化アルミニウム、3は固体電
解質としての5nol−n)(雪Oである。
Example 1 Using a vacuum evaporation apparatus, the above film was deposited with a thickness of 1.5 μm.
3n is deposited. Next, a steam sword was placed in a cylindrical heating furnace, and heated to 220°C while maintaining the saturated steam pressure inside the heating furnace.
Heat treatment was performed for 1 hour. As shown in FIG. 1, the resulting sample was coated with colloidal carbon 4, silver paste 5 was further adhered, and lead wires 7 were soldered to produce a solid electrolytic capacitor sample. In Figure 1, 1
is aluminum foil, 2 is aluminum oxide, and 3 is 5nol-n (Snow O) as a solid electrolyte.

次に第1図に示すコンデンサ試料K O,5mA10J
の定電流を流して電圧ト昇特性を測定し、A/*Oa皮
膜生成能力を調整した。
Next, the capacitor sample K O, 5mA10J shown in Figure 1
A constant current was applied to measure the voltage rise characteristics, and the A/*Oa film forming ability was adjusted.

第2図中曲線aはその結果會示す。また同第2図中曲線
すは水蒸気中で加熱しなかった場合、即ち結晶水を含ま
ないSnugのA/gos皮膜生成能力を示17た。こ
の図から明らかなように結晶水あるいは吸着水が存在す
るといわゆるエージング性が著しく増大し、固体電解質
的効果は大幅にト昇する。
Curve a in FIG. 2 shows the result. In addition, the curved line in FIG. 2 shows the A/gos film forming ability of Snug without heating in water vapor, that is, without crystallization water. As is clear from this figure, the presence of crystal water or adsorbed water significantly increases the so-called aging property, and the solid electrolyte effect is greatly enhanced.

またこのコンデンサ試料′fr150℃雰囲気中で10
00時間無負荷試験を行ない5n01・nHaO中の水
分の飛散状況全調査したが、この皮膜生成能力はほとん
ど損なわれることはなかった。その結果を第3図に示す
。第3図中曲線aは1作時のもので、曲線すは1501
:’ ] (100時間後の電圧上昇特性である。これ
は0.117I A / l?Jlの定電流を加え電圧
上昇特性を測定したものである。
In addition, this capacitor sample'fr10℃ in an atmosphere of 150℃
A 00-hour no-load test was conducted to fully investigate the state of water scattering in 5n01.nHaO, but the film-forming ability was hardly impaired. The results are shown in FIG. Curve a in Figure 3 is for one crop, and curve A is 1501.
:'] (This is the voltage increase characteristic after 100 hours. This is the voltage increase characteristic measured by applying a constant current of 0.117 IA/l?Jl.

“またこの時付着した5nOj・nH,0は2μmであ
り、rqみ方向の比抵抗は約60Ω(−JnC25’C
)であり)W層液と同等の機能を有していた。
“Also, the 5nOj・nH,0 deposited at this time is 2 μm, and the specific resistance in the rq direction is approximately 60Ω (-JnC25'C
) and had the same function as the W layer liquid.

実施例2 1ユ述の150v化成アルミニウム箔に真空蒸着装置−
を用い、1μmの191みで)nを蒸着させた。次いで
円筒型加熱炉中に水蒸気を送りこみ、加熱炉中f飽和1
1貿圧に保ちながら150℃、30分間加熱処理を行な
った。次いで実施例1と同様の方法でコンデンサ試料を
製作した。
Example 2 Vacuum deposition equipment for 150V chemical aluminum foil as described in 1.
1 μm of 191 nm) was deposited using the same method. Next, water vapor is sent into the cylindrical heating furnace, and f saturation 1 is achieved in the heating furnace.
Heat treatment was performed at 150° C. for 30 minutes while maintaining the pressure at 1°C. Next, a capacitor sample was manufactured in the same manner as in Example 1.

0.5mA/cdの定電流を疏し゛電圧上昇特性を測定
し、AJxOs皮膜生取能力を調査した結果、第3図と
同様な特性が得られ、5n02・nHloと同様良好な
皮膜生成能力を有していることがわかった。
As a result of measuring the voltage rise characteristics by applying a constant current of 0.5 mA/cd and investigating the AJxOs film generation ability, the same characteristics as shown in Fig. 3 were obtained, and the same good film formation ability as 5n02/nHlo was obtained. It was found that it has.

この時のIn0g・nHlOはおよそ15μmであり、
厚み方向の比抵抗は40Ω−c+++(25′C)であ
り、S n 01・nHHO2よシ低比抵抗であった。
In0g/nHlO at this time is approximately 15 μm,
The specific resistance in the thickness direction was 40Ω-c+++ (25'C), which was lower than that of S n 01·nHHO2.

また7、nについても上述のSn、:[nと同様の結果
が得られた。
Further, for 7.n, the same results as for the above-mentioned Sn,:[n were obtained.

なお、実施例]:I−?よび実施例2の方法で製作した
コンデンサ試料の静電容是、−一および漏れ電流特性を
第1表に示す。また同コンデンサの温度特性を第4図に
示した。
In addition, Example]: I-? Table 1 shows the capacitance, -1, and leakage current characteristics of the capacitor samples manufactured by the method of Example 2. Figure 4 shows the temperature characteristics of the same capacitor.

第1表 *:23t″での賄 中本:50V印加5分後の伯 第41ス1中曲線AけS n Ox・口H,0で固体゛
邂解貿が形成さI]だもの、曲線BはI n O,・n
H2Oで固体市、解質が+19 bslされたもの、曲
!1JICは従来法による液体電解′dの場合である。
Table 1 *: After 5 minutes of application of 50V, a solid ゛dissolution is formed at 0, Curve B is I n O,・n
Solid city with H2O, the solution is +19 bsl, song! 1JIC is the case of conventional liquid electrolysis.

第4図から明らかなように一40′C〜+105″Cに
おいての靜>[Wbl変化率は従来の散状電解質のもの
と比べ大幅に減少1〜でいる。また処理条件の様々な検
討Vこより液体状屯hjl質使用のものより優れタイン
ピーダンス!l生も得られた。
As is clear from FIG. 4, the rate of change in Wbl at -40'C to +105"C is significantly reduced compared to that of conventional dispersed electrolytes. In addition, various studies of processing conditions have been conducted. This also provided better impedance than those using liquid material.

なお、上述の実施例において、酸化皮1IIJトに牛放
せしめた金鵬がSnの場合は水蒸気中の加熱温度を10
0〜240’c、Inの場合は1(10〜1fiO′c
In addition, in the above-mentioned example, if the metal that was exposed to the oxide skin 1IIJ was Sn, the heating temperature in steam was set to 10
0 to 240'c, 1 for In (10 to 1fiO'c
.

Znの場合は100〜420′cの範囲で処理すること
が望ましい。これは100 を未満では必要な水蒸気が
得られず、ま九高温側の限定理由はF記金属の融点を越
えるためである。
In the case of Zn, it is desirable to treat it within the range of 100 to 420'c. This is because if the temperature is less than 100, the necessary water vapor cannot be obtained, and the reason for the limitation on the high temperature side is that it exceeds the melting point of the F metal.

このように本発明法による固体電解コンデンサは従来の
液体電解質と同程度あるいはそれ以下の低比抵抗を有し
、温度変化および高周波インピーダンス特性に大きな利
点をもたらし、チップ化にも無理なく適合でき、工業的
ならびに実用的価値大なるものである。
As described above, the solid electrolytic capacitor produced by the method of the present invention has a low resistivity comparable to or lower than that of conventional liquid electrolytes, has great advantages in terms of temperature change and high frequency impedance characteristics, and can be easily adapted to be made into a chip. It has great industrial and practical value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の固体電解コンデンサの製1青方法によ
って製作されたコンデンサ試料の説明図、第2図は同コ
ンデンサのエージング特性比較図、第3図は同コンデン
サの無負荷試験前後のエージング特性比較図、第4図は
本発明の固体電解コンデンサのl’i造方法によって製
作されたコンデンサと従来品とを比較したコンデンサの
〆精度特性比較図である。 1ニアルミニウム箭 2:酸化アルミニウム 3 : 14ij体″巾′解質 特許出細入 日本コンデンサ工業株式会社 第2図 第1図 −・ ?Lrりv Vコ 手続補正書(自船 特許庁長官 若杉和夫 殿 1、事件の表示 昭和58年特許願第163856′F:2、発明の名称 固体電解コンデンサの製造方法 3、補正をする者 事件との関係 特許出願人 4、補正の対象 「明細書の発明の詳細な説明の欄」 5 補正の内容 (1)明111]ll杏第5頁第19行を次のように補
正する。 「以下、不発明を第1図〜第4図に示す夾楕例に」 (2)明帷蔚第6頁嬉17行を次のように補正する。 「、皮暎生成能力を調査した。」 (2) −99
Figure 1 is an explanatory diagram of a capacitor sample manufactured by the manufacturing method of the solid electrolytic capacitor of the present invention, Figure 2 is a comparison diagram of the aging characteristics of the same capacitor, and Figure 3 is the aging of the same capacitor before and after a no-load test. Characteristic Comparison Chart FIG. 4 is a comparison diagram of capacitor accuracy characteristics comparing a capacitor manufactured by the l'i manufacturing method of a solid electrolytic capacitor of the present invention and a conventional product. 1. Aluminum oxide 2: Aluminum oxide 3: 14'' Body width Determination patent entry Nippon Capacitor Industries Co., Ltd. Figure 2 Figure 1-・ ? 1. Indication of the case 1982 Patent Application No. 163856'F: 2. Name of the invention Method for manufacturing solid electrolytic capacitors 3. Person making the amendment Relationship to the case Patent applicant 4. Subject of the amendment ``Invention in the specification 5 Contents of the amendment (1) Mei 111]ll An, page 5, line 19 is amended as follows. For example.'' (2) Correct the 17th line of page 6 of 明帷蔵 as follows.

Claims (2)

【特許請求の範囲】[Claims] (1)酸化皮膜生成合繊の表面トに酸化皮膜層を形成し
、これに固体電解質層、陰極溝%LPinを順次形成し
てなる固体電解コンデンサの製造方法において、真空蒸
着、スパッタリングなどの方法により、S ” s I
 ”%znなどの金稙を上記酸化皮膜上に生σさせた後
、水蒸気中で加熱反応させて sno、HnHxOl 
InOx ・ nHsO,Zn0t −nHt。 などの吸着水あるいは結晶水を有する合鴨酸化物からな
る固体電解II層を形成することを特徴とする固体電解
コンデンサの製造方法。
(1) Oxide film generation A method for manufacturing a solid electrolytic capacitor in which an oxide film layer is formed on the surface of synthetic fibers, and a solid electrolyte layer and a cathode groove %LPin are sequentially formed thereon, by a method such as vacuum evaporation or sputtering. , S ” s I
``%zn'' is grown on the oxide film, and then reacted by heating in water vapor to form sno, HnHxOl.
InOx・nHsO, Zn0t-nHt. A method for manufacturing a solid electrolytic capacitor, comprising forming a solid electrolytic II layer made of a duck oxide having adsorbed water or crystallized water.
(2)上記水蒸気中の加熱温度は10(l以−トでかつ
酸化皮膜上に生成した金属の融点以下の範囲内であるこ
とを特徴とする特許請求の範囲第1項記載の固体電解コ
ンデンサの製造方法。
(2) The solid electrolytic capacitor according to claim 1, characterized in that the heating temperature in the water vapor is 10 liters or more and is below the melting point of the metal formed on the oxide film. manufacturing method.
JP16385683A 1983-09-05 1983-09-05 Method of producing solid electrolytic condenser Granted JPS6054423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16385683A JPS6054423A (en) 1983-09-05 1983-09-05 Method of producing solid electrolytic condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16385683A JPS6054423A (en) 1983-09-05 1983-09-05 Method of producing solid electrolytic condenser

Publications (2)

Publication Number Publication Date
JPS6054423A true JPS6054423A (en) 1985-03-28
JPH0320893B2 JPH0320893B2 (en) 1991-03-20

Family

ID=15782050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16385683A Granted JPS6054423A (en) 1983-09-05 1983-09-05 Method of producing solid electrolytic condenser

Country Status (1)

Country Link
JP (1) JPS6054423A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5014524A (en) * 1989-08-23 1991-05-14 Adrian Smilovici Flat bed knitting machine having plural carriages

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5014524A (en) * 1989-08-23 1991-05-14 Adrian Smilovici Flat bed knitting machine having plural carriages

Also Published As

Publication number Publication date
JPH0320893B2 (en) 1991-03-20

Similar Documents

Publication Publication Date Title
Yang et al. Electrodeposition of tin and antimony in 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid
Demir The investigation of the corrosion behavior of CZTS thin films prepared via electrodeposition
US4648010A (en) Solid electrolytic capacitor and process for preparation thereof
US2910633A (en) Electrolytic capacitor
JPS6054423A (en) Method of producing solid electrolytic condenser
JP2000003835A (en) Manufacture of electrode foil for aluminum electrolytic capacitor
JPH02500602A (en) Method for depositing composite oxide-nickel coating on metal substrate and oxide-nickel electrode
WO2022230304A1 (en) Multilayer body production method, capacitor production method, multilayer body, capacitor, electric circuit, circuit board, and device
DE19504088C1 (en) Thin layer electrode for determining concentration of metal ions in solution
JP2973504B2 (en) Chip type solid electrolytic capacitor
GB1503795A (en) Electrolytic devices
JPS61285711A (en) Making of solid electrolytic capacitor
JPS62216211A (en) Solid electrolytic capacitor
Palmqvist et al. Electrochemistry of Molybdenum Single Crystals and Thin Wires in Cyanide and Gold Cyanide Electrolytes
JPH02166715A (en) Solid electrolytic capacitor
RU1775505C (en) Gold-plating electrolyte
JPH01294870A (en) Phosphating bath for copper-based material, its phosphating method, and humidity sensor produced by using the same bath
JPS6298712A (en) Solid electrolytic capacitor
JPS6323309A (en) Manufacture of winding type solid electrolytic capacitor
JPS62268122A (en) Solid electrolytic capacitor
JPH0320058B2 (en)
JPH0350815A (en) Manufacture of cathode foil for electrolytic capacitor
JPS62124728A (en) Manufacture of solid electrolyte capacitor
JPS62126624A (en) Solid electrolytic capacitor
JPS62274615A (en) Manufacture of winding type solid electrolytic capacitor