JPS6053746B2 - Method for forming heterogeneous thin films by reactive deposition - Google Patents

Method for forming heterogeneous thin films by reactive deposition

Info

Publication number
JPS6053746B2
JPS6053746B2 JP56210420A JP21042081A JPS6053746B2 JP S6053746 B2 JPS6053746 B2 JP S6053746B2 JP 56210420 A JP56210420 A JP 56210420A JP 21042081 A JP21042081 A JP 21042081A JP S6053746 B2 JPS6053746 B2 JP S6053746B2
Authority
JP
Japan
Prior art keywords
along
transfer path
base structure
temperature
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56210420A
Other languages
Japanese (ja)
Other versions
JPS58117873A (en
Inventor
昭彦 悳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP56210420A priority Critical patent/JPS6053746B2/en
Publication of JPS58117873A publication Critical patent/JPS58117873A/en
Publication of JPS6053746B2 publication Critical patent/JPS6053746B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 この発明は、基体構成物を移送路に沿つて移動させな
がら基体構成物の表面上に蒸着薄膜を形成し、この際に
蒸着薄膜を反応気体にさらす反応蒸着方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a reactive vapor deposition method in which a deposited thin film is formed on the surface of a substrate composition while the substrate composition is moved along a transfer path, and the deposited thin film is exposed to a reactive gas at this time. .

特にこの発明はかかる反応蒸着によつて不均質薄膜を形
成する方法に関する。 前述したような反応蒸着方法を
用いて不均質薄膜を形成する公知の方法の1側は、移送
路に沿つて蒸着速度を単調に変化させるものであつて、
蒸着速度が単調に変化する場合には蒸着物質と反応気体
との反応によつて生成される物質の特性も単調に変化す
ることを利用する。この際にさらに移送路に沿つて反応
気体の入射密度を単調に変化させると反応生成物質の特
性の変化程度が増強されることも知られている。 この
ような公知の方法は例えば第1図に図示される真空蒸着
装置によつて達成される。
In particular, the present invention relates to methods of forming heterogeneous thin films by such reactive deposition. One of the known methods of forming heterogeneous thin films using reactive deposition methods such as those described above involves monotonically varying the deposition rate along the transport path.
This method utilizes the fact that when the deposition rate changes monotonically, the characteristics of the substance produced by the reaction between the deposition substance and the reaction gas also change monotonically. At this time, it is also known that if the incident density of the reaction gas is further monotonically changed along the transport path, the degree of change in the characteristics of the reaction product can be enhanced. Such a known method is achieved, for example, by the vacuum deposition apparatus illustrated in FIG.

この真空蒸着装置において長尺のフィルム状の基体構成
物20は真空蒸着槽21の中で左上方の巻出しローラ2
2から巻出され、第1偏向ローラ23で偏向したのちに
水平延長の定置の案内板24の下面に接触しながら水平
方向に左から右へ移送され、第2偏向ローラ25でさら
に偏向して右上方の巻取りローラ26に巻取られる。案
内板24の下面に沿う基体構成物20の水平移送路27
の左端近くの直下には適当な距離だけ離して蒸着物質A
例えばクロムの蒸発源28が配置される。水平移送路2
6の下方にこれに接近して第1遮板29および第2遮板
30が設けられ、第1遮板29は蒸発源28の垂直上方
より左側て蒸着物質Aか基体構成物20に達しないよう
にする遮断をする。また第2遮板30は水平移送路27
の右端近くの位置から右方て蒸着物質Aが基体構成物2
0に達しないようにする。このような配置によれば、第
1図に垂直破線31で示される限界と斜行破線32で示
される限界との間で飛行する蒸着物質Aが水平移送中の
基体構成物20の下面に達する。 この場合にフィルム
状基体構成物20の各表面部分に対する蒸着速度Dは、
明らかに、この部分が限界31のところの位置33から
限界32のところの位置34に向うに従つて単調に低減
する。
In this vacuum evaporation apparatus, a long film-like base structure 20 is placed in a vacuum evaporation tank 21 by an unwinding roller 2 at the upper left.
After being deflected by the first deflecting roller 23, it is transferred horizontally from left to right while contacting the lower surface of the horizontally extending stationary guide plate 24, and further deflected by the second deflecting roller 25. It is wound up by the winding roller 26 on the upper right side. Horizontal transfer path 27 for the base structure 20 along the lower surface of the guide plate 24
The vapor deposited substance A is placed at an appropriate distance directly below the left edge of
For example, an evaporation source 28 of chromium is arranged. Horizontal transfer path 2
A first shielding plate 29 and a second shielding plate 30 are provided below and close to the evaporation source 28, and the first shielding plate 29 does not reach the vapor deposition substance A or the substrate structure 20 to the left of the vertically upper part of the evaporation source 28. Make a cutoff to make it happen. Further, the second shielding plate 30 is connected to the horizontal transfer path 27.
From a position near the right end of
Avoid reaching 0. According to such an arrangement, the vapor deposition material A flying between the limit shown by the vertical broken line 31 and the limit shown by the diagonal broken line 32 in FIG. . In this case, the vapor deposition rate D for each surface portion of the film-like substrate structure 20 is:
Clearly, this portion decreases monotonically from position 33 at limit 31 to position 34 at limit 32.

しかるに第1図の真空蒸着装置においては反応気体Gが
蒸着作業中に気体導入管35によつて真空蒸着槽21の
中へ導入される。従つて基体構成物20の各表面部分に
ついて、蒸着速度Dが大きい場所では到着する反応気体
Gの量に比べて蒸着沈積する蒸着物質Aの量が多いから
Aの多いAとGの反応生成物Bが形成され、蒸着速度D
が小さい場所では逆にAの少ない反応生成物Bが形成さ
れる。このようにして基体構成物の各表面部分について
形成される薄膜の物性はその厚さ方向に変化する。詳し
く言えば薄膜を形成する物質はその基面(基体構成物に
接触する面)でAの多い反応生成物Bからなり外面(基
体構成物の反対側の面)に近づくに従つてAの含有量が
少なくなる。かくして不均質薄膜が形成される。上述の
公知例において反応気体Gの入射密度が移送路27に沿
つて位置33から34に向つて単調に増大するように気
体導入管35が構成配置されてもよく、このようにすれ
ば薄膜の厚さ方向のAの含有度の変化が大きくなる。
However, in the vacuum evaporation apparatus shown in FIG. 1, the reaction gas G is introduced into the vacuum evaporation tank 21 through the gas introduction pipe 35 during the evaporation operation. Therefore, for each surface portion of the base structure 20, in areas where the deposition rate D is high, the amount of the vapor deposited substance A deposited is large compared to the amount of the arriving reaction gas G, so that the reaction product of A and G with a large amount of A is produced. B is formed and the deposition rate D
On the contrary, in places where the amount of A is small, a reaction product B containing less A is formed. The physical properties of the thin film thus formed on each surface portion of the base structure change in the direction of its thickness. Specifically, the substance that forms the thin film consists of the reaction product B with a large amount of A on its base surface (the surface in contact with the base component), and the content of A increases as it approaches the outer surface (the surface opposite to the base component). Quantity decreases. A non-uniform thin film is thus formed. In the above-mentioned known example, the gas introduction pipe 35 may be configured and arranged so that the incident density of the reaction gas G monotonically increases from the position 33 to the position 34 along the transfer path 27. The change in A content in the thickness direction increases.

なお第1図において、36は光学モニターの投受光器を
示し、37は補助の遮板を示し、また38はシャッタを
表わす。案内板24は冷却水通路39を有し、これによ
つて基体構成物20は移送路27においてすなわち蒸着
作業される際に一定の温度に冷却される。第1図に示し
た装置による公知の方法では蒸着速度の単調変化を達成
するために蒸着源28から蒸発する蒸着物質Aのうちで
垂直限界31から右方の範囲へ向つて飛行するものだけ
が使用され、垂直限界31から左方の範囲へ向つて飛行
する蒸着物質Aは遮板29て阻止される。
In FIG. 1, reference numeral 36 indicates a light emitter/receiver of the optical monitor, 37 indicates an auxiliary shielding plate, and 38 indicates a shutter. The guide plate 24 has a cooling water passage 39 by which the substrate structure 20 is cooled to a constant temperature in the transfer passage 27, that is, during the vapor deposition operation. In the known method using the apparatus shown in FIG. 1, in order to achieve a monotonous change in the deposition rate, only that of the deposition material A evaporated from the deposition source 28 flies toward the right range from the vertical limit 31. The deposited material A that is used and flies from the vertical limit 31 toward the left range is blocked by the shielding plate 29.

故に実質上蒸着物質Aの半分だけしか有効に使用されな
い。従来の移送路に沿つて蒸着速度を変化させる方法は
、明らかに、移送路の下方に多くの蒸発源を.順次配置
してこれら蒸発源の蒸着物質蒸着速度を順次低減させる
ようにしても達成できる。しかしながら蒸着速度が低い
状態で蒸発源を作動させることは当業者に知られている
ように効率が著しく低下する。この発明の目的は上述し
たような従来の反応蒸着による不均質薄膜の形成方法の
欠点を除去した効率の高い方法を提供することにある。
Therefore, substantially only half of the deposited material A is effectively used. Conventional methods of varying the deposition rate along the transport path obviously create many evaporation sources below the transport path. This can also be achieved by sequentially arranging these evaporation sources so that the evaporation rate of the evaporation material is sequentially reduced. However, operating the evaporation source at low deposition rates significantly reduces efficiency, as is known to those skilled in the art. An object of the present invention is to provide a highly efficient method that eliminates the drawbacks of the conventional method of forming a heterogeneous thin film by reactive vapor deposition as described above.

この目的の達成のためこの発明による不均質薄膜形成方
法は、基体構成物を移送路に沿つて移動させながら基体
構成物の表面上に蒸着薄膜を形成し、この際に蒸着薄膜
を反応気体にさらす反応蒸着方法において、基体構成物
の温度を移送路に沿つて変化させることを特徴とする。
To achieve this objective, the method for forming a heterogeneous thin film according to the present invention forms a vapor deposited thin film on the surface of a substrate structure while moving the substrate structure along a transfer path, and at this time, the vapor deposited thin film is exposed to a reactive gas. The reactive vapor deposition method is characterized in that the temperature of the substrate structure is varied along the transport path.

1実施例によれば、移送路において基体構成物を定置の
案内板の表面に沿つて移動させ、案内板の温度をその表
面に沿つて位置的に変化させることによつて移送路に沿
う基体構成物の温度変化がj達成される。別の実施例に
よれば、移送路において基体構成物を複数個の回転筒に
順次接触するように移動させ、回転筒の温度が互に相異
なるようにすることによつて移送路に沿う基体構成物の
温度変化が達・成される。
According to one embodiment, the substrate arrangement along the transfer path is moved by moving the substrate composition along the surface of a stationary guide plate in the transfer path and by varying the temperature of the guide plate positionally along its surface. A temperature change of the composition is achieved. According to another embodiment, the substrate configuration along the transfer path is moved so as to sequentially contact a plurality of rotating cylinders, and the temperatures of the rotating cylinders are different from each other. A temperature change in the composition is achieved.

以下、図面を参照しながらこの発明の実施例について詳
述する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第2図に示すこの発明の方法を実施するための真空蒸着
装置は多くの構成要素が第1図の従来の・ものと実質的
に同じてあるから、それらについては第1図と同じ符号
で示し説明を省略しまたは簡単にする。
The vacuum evaporation apparatus shown in FIG. 2 for carrying out the method of the present invention has many components that are substantially the same as the conventional one shown in FIG. omit or simplify explanation.

第2図の装置では、蒸発源28aは移送路27の実質上
中央の直下に配置される。蒸発源28aから蒸発する蒸
着物質Aはほぼ前後対称の斜行限界31aと32aの間
で移送路27を移動中の基体構成物20に沿つて飛行す
る。案内板24はその左端近くに冷却水通路39aを有
し、それより右の方の多くの埋込ヒータ40はこれらの
間の間隔が次第にせまくなるような配置で案内板24a
の中に埋設される。第2図に示された真空蒸着装置によ
るこの発明の方法においては、真空蒸着作業の際に冷却
水通路39aに冷却水が流されかつ埋込ヒータ40が付
勢される。
In the apparatus shown in FIG. 2, the evaporation source 28a is located substantially directly below the center of the transfer path 27. The evaporation substance A evaporated from the evaporation source 28a flies along the base structure 20 that is moving along the transfer path 27 between the oblique limits 31a and 32a, which are substantially longitudinally symmetrical. The guide plate 24 has a cooling water passage 39a near its left end, and the many embedded heaters 40 on the right side of the guide plate 24a are arranged so that the distance between them gradually becomes narrower.
buried inside. In the method of the present invention using the vacuum evaporation apparatus shown in FIG. 2, cooling water is flowed into the cooling water passage 39a and the embedded heater 40 is energized during the vacuum evaporation operation.

このようにすると案内板24aはその下面に沿つて左か
ら右へ向つて温度が単調に上昇し、従つてこれの下面に
接触しながら移送される基体構成物20の温度は移送路
20に沿つて例えば第3図に実線Uで示すように単調に
変化する。この第3図において、Xは基体構成物の移送
距離でEは位置33に対応しFは位置34に対応する。
Tは基体構成物の温度を表わす。第3図におけるVは従
来の場合の基体構成物の温度変化を示す。なお、上述の
ような移送路27に沿う基体構成物20の温度の単調上
昇はこの発明の単なる例であつて、この発明には基体構
成物の温度を別の態様で変化させることも包含される。
その際には冷却水通路39aおよび埋込ヒータ0の配置
および間隔などが変えられる。上述のような基体構成物
の温度変化によつて不均質薄膜が基体構成物20の表面
上に形成できるが、その理由について次に説明する。
In this way, the temperature of the guide plate 24a increases monotonically from left to right along its lower surface, and therefore the temperature of the base structure 20 that is transferred while contacting the lower surface of the guide plate 24a increases along the transfer path 20. For example, as shown by the solid line U in FIG. 3, it changes monotonically. In FIG. 3, X is the transport distance of the base structure, E corresponds to position 33, and F corresponds to position 34.
T represents the temperature of the base structure. V in FIG. 3 indicates the temperature change of the base structure in the conventional case. Note that the monotonous increase in temperature of the base structure 20 along the transfer path 27 as described above is just an example of the present invention, and the present invention also includes changing the temperature of the base structure in another manner. Ru.
At that time, the arrangement and spacing of the cooling water passage 39a and the embedded heater 0 are changed. The reason why a non-uniform thin film can be formed on the surface of the base structure 20 due to the temperature change of the base structure as described above will be explained next.

基体構成物20として金属箔(例えばA1箔、Cu箔、
Ni箔またはNi被覆不銹鋼箔など)が選択され、これ
の表面上にCrOx(xは変化する)で構成されたブラ
ッククロム選択吸収膜が形成される場合について例示す
る。
The base component 20 is a metal foil (for example, A1 foil, Cu foil,
An example will be exemplified in which a black chromium selective absorption film made of CrOx (x varies) is formed on the surface of a Ni foil or Ni-coated stainless steel foil.

蒸発源28aから蒸発される蒸着物質AとしてCrが採
用され、気体導入管35から反応気体Gとして02が導
入されると、金属酸化反応て基体構成物の表面にクロム
酸化物CrOxが被覆形成される。この際に膜組成Cr
Ox(原子比で表わして)は公知のように式(1)で表
わされる。ただしここで とする。
When Cr is adopted as the vapor deposition substance A evaporated from the evaporation source 28a, and 02 is introduced as the reaction gas G from the gas introduction pipe 35, a metal oxidation reaction occurs to form a coating of chromium oxide CrOx on the surface of the base structure. Ru. At this time, the film composition Cr
Ox (expressed in atomic ratio) is expressed by the formula (1) as is known. However, let's stop here.

上述の式(1),(2)において、N(02)は単位面
積単位時間あたりのC2分子数て表わした基体構成物表
面への02の入射頻度を示し、N(Cr)は単位面積単
位時間あたりのCr原子数て表わしハ基体構成物表面へ
のCrの入射頻度を示し、α。
In the above equations (1) and (2), N(02) indicates the frequency of incidence of 02 on the surface of the base structure expressed as the number of C2 molecules per unit area and unit time, and N(Cr) indicates the frequency of incidence of 02 on the surface of the base structure expressed as the number of C2 molecules per unit area and unit time. α represents the frequency of incidence of Cr on the surface of the substrate component, expressed as the number of Cr atoms per hour.

は02分子の凝縮係数を示し、Eは酸素の化学吸着の活
性化エネルギを示し、ΔEは酸素の離脱の活性化エネル
ギを示し、Rは気体常数を示し、Tは絶対温度で表わし
た基体構成物20の温度を示す。
represents the condensation coefficient of 02 molecules, E represents the activation energy for chemisorption of oxygen, ΔE represents the activation energy for desorption of oxygen, R represents the gas constant, and T represents the substrate configuration expressed in absolute temperature. The temperature of the object 20 is shown.

しかるに式(1)でα。・Exp(IP)はCrの酸化
反応の場合などには温度Tの単調増加関数であり、従つ
てN(02)/N(Cr)が不変であるとすればxも基
体構成物の温度Tの単調増加関数になる。この関係から
明らかなように基体構成物の温度Tを移送路に沿つて変
化させればこれの表面上に形成されるCrOx薄膜のx
がその厚さ方向に変化する。これによつて薄膜の厚さ方
向に組成が変化する不均質薄膜が得られる。上述のこと
はCrの酸化以外の一般の場合にも成立ち、蒸着物質A
と反応気体Gとによつて構成される反応生成物Bの中の
AとGの割合は移送路に沿つて基体構成物の温度を変化
させることによつて薄膜の厚さ方向に変化し、これによ
つて不均質薄膜が形成できる。
However, in equation (1), α.・Exp(IP) is a monotonically increasing function of temperature T in the case of oxidation reaction of Cr, and therefore, if N(02)/N(Cr) remains unchanged, x also depends on the temperature T of the base structure. becomes a monotonically increasing function. As is clear from this relationship, if the temperature T of the substrate structure is changed along the transfer path, the CrOx thin film formed on the surface of the base component x
changes in the thickness direction. This results in a heterogeneous thin film whose composition changes in the direction of the thickness of the thin film. The above holds true in general cases other than the oxidation of Cr, and the vapor deposited substance A
The proportion of A and G in the reaction product B constituted by the reaction gas G and the reaction gas G is varied in the thickness direction of the thin film by changing the temperature of the substrate structure along the transport path, This allows the formation of a non-uniform thin film.

この発明の方法は上述したように構成されているから、
第1図に示した従来のもののように蒸発源28を偏在さ
せてこれから蒸発し飛行する蒸蒸着物質Aの一部だけを
利用する必要はなく、蒸発源28aは第2図のように中
央配置できまた蒸発飛行する蒸着物質Aの実質上大部分
が有効に使用できる。
Since the method of this invention is configured as described above,
Unlike the conventional one shown in FIG. 1, it is not necessary to place the evaporation source 28 unevenly so that only a part of the vapor-deposited material A that will evaporate and fly is utilized; instead, the evaporation source 28a is placed centrally as shown in FIG. Substantially most of the deposited substance A that is produced or evaporated can be used effectively.

第4図に図示される真空蒸着装置においては、長尺のフ
ィルム状の基体構成物20は真空蒸着槽(図示なし)の
中で左上方の巻出しローラ22から巻出され、偏向ロー
ラ23a,23bおよび23cで偏向されたの塾に水平
軸線を中心として回転できる第1回転筒41の下側周面
に沿つて進行し、偏向ローラ42で偏向されたのちに水
平軸線を中心として回転できる第2回転筒41aの下側
周面に沿つて進行し、さらに偏向ローラ42aで偏向さ
れたのちに水平軸線を中心として回転できる第3回転筒
41bの下側周面に沿つて進行し、その後に偏向ローラ
25a,25bおよび25cで偏向されたのちに、右上
方の巻取りローラ26に巻取られる。
In the vacuum deposition apparatus shown in FIG. 4, a long film-like substrate structure 20 is unwound from an unwinding roller 22 at the upper left in a vacuum deposition tank (not shown), and deflecting rollers 23a, 23b and 23c, the first rotary cylinder 41, which can rotate around the horizontal axis, advances along the lower circumferential surface of the first rotary cylinder 41, and after being deflected by the deflection roller 42, the first rotary cylinder 41, which can rotate around the horizontal axis, It advances along the lower circumferential surface of the second rotating barrel 41a, and after being deflected by the deflecting roller 42a, it proceeds along the lower circumferential surface of the third rotating barrel 41b which can rotate around the horizontal axis. After being deflected by deflection rollers 25a, 25b, and 25c, it is wound up by a winding roller 26 on the upper right side.

第1回転筒41、第2回転筒41aおよび第3回転筒4
1bの下方には蒸着物質Aノの蒸発源28b,28cお
よび28dがそれぞれ配置される。遮板29a,43a
,43bおよび30aによつてさえぎられて、蒸発源2
8bからの蒸着物質Aは第1回転筒41の位置33aと
34aの間で基体構成物20の表面に到着し、蒸発7源
28cからの蒸着物質Aは第2回転筒41aの位置33
bと34bの間で基体構成物20の表面に到着し、さら
に蒸発源28dからの蒸着物質Aは第3回転筒41bの
位置33cと34cの間で基体構成物20の表面に到着
する。第1回転筒4)1はその周に沿つて配置された冷
却水通路39bを有し、第2回転筒41aはその周に沿
つて配置された多くの埋込ヒータ40aを有し、さらに
第3回転筒41bは埋込ヒータ40aよりもせまい間隔
で周に沿つて配置された多くの埋込ヒータ40bを有す
る。さらに偏向ローラ42aは埋込ヒータ40cを有す
る。符号35は反応気体Gの気体導入管を示す。第4図
の真空蒸着装置において基体構成物20の移送路27a
は主として、位置33aと34aの間の第1回転筒41
に沿う移送路部分27b1位置33bと34bの間の第
2回転筒41aに沿う移送路部分27c1および位置3
3cと34cの間の第3回転筒41bに沿う移送路部分
27dで構成される。
First rotating barrel 41, second rotating barrel 41a, and third rotating barrel 4
Evaporation sources 28b, 28c and 28d of vapor deposition substance A are arranged below 1b, respectively. Shielding plates 29a, 43a
, 43b and 30a, the evaporation source 2
The vapor deposition substance A from the evaporation source 8b reaches the surface of the base structure 20 between the positions 33a and 34a of the first rotating cylinder 41, and the vapor deposition substance A from the evaporation source 28c reaches the surface of the base structure 20 between the positions 33a and 34a of the second rotating cylinder 41a.
The evaporation substance A from the evaporation source 28d reaches the surface of the base structure 20 between positions 33c and 34c of the third rotary cylinder 41b. The first rotating barrel 4) 1 has a cooling water passage 39b arranged along its circumference, and the second rotating barrel 41a has a number of embedded heaters 40a arranged along its circumference. The three-rotation cylinder 41b has many embedded heaters 40b arranged along the circumference at narrower intervals than the embedded heaters 40a. Furthermore, the deflection roller 42a has an embedded heater 40c. Reference numeral 35 indicates a gas introduction pipe for the reaction gas G. In the vacuum evaporation apparatus shown in FIG.
is mainly the first rotary cylinder 41 between positions 33a and 34a.
Transfer path portion 27c1 along the second rotary cylinder 41a between positions 33b and 34b along the transfer path portion 27b1 and position 3
It is composed of a transfer path portion 27d along the third rotary cylinder 41b between 3c and 34c.

この発明の方法の達成のためには蒸着作業中に冷却水通
路39bに冷却水が通され、埋込ヒータ40a,40b
,40cが付勢される。このようにすると回転筒41,
41a,41bの温度が互に変化し詳しく言えばこの順
に順次高くなり、これによつて例えば第5図にWで示す
ように移送路に沿つて基体構成物20の温度が変化する
。ここでC,D,E,F,G,Hは位置33a,34a
,33b,34b,33c,34cにそれぞれ対応する
。またXおよびTは第3図のそれと同じ定義である。こ
のような温度変化に一よつて前述した第2図および第3
図の場合と同様に不均質薄膜が形成されることは明らか
である。この第4図およびM5図によるこの発明の方法
では特に多くの蒸発源を配置して蒸着物質の蒸発速度を
順次低減させるようにする従来の方法と比べるとどの蒸
発源でも蒸着速度を低減させる必要がないから高い効率
が得られる。
In order to achieve the method of the present invention, cooling water is passed through the cooling water passage 39b during the vapor deposition operation, and the embedded heaters 40a, 40b are
, 40c are energized. In this way, the rotating cylinder 41,
The temperatures of 41a and 41b change each other, and more specifically, they increase in this order, thereby causing the temperature of the base structure 20 to change along the transfer path, as shown by W in FIG. 5, for example. Here, C, D, E, F, G, H are at positions 33a, 34a
, 33b, 34b, 33c, and 34c, respectively. Also, X and T have the same definitions as in FIG. Due to such temperature changes, the above-mentioned figures 2 and 3
It is clear that a non-uniform thin film is formed as in the case shown in the figure. In the method of the present invention shown in FIGS. 4 and M5, it is necessary to reduce the evaporation rate at every evaporation source, especially compared to the conventional method in which many evaporation sources are arranged to sequentially reduce the evaporation rate of the deposition material. High efficiency can be obtained because there is no

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の不均質薄膜方法の実施に使用される真空
蒸着装置の図解図、第2図はこの発明による不均質薄膜
形成方法の実施に使用される真空蒸着装置の1実施例の
図解図、第3図は第1図および第2図の装置における基
体構成物の温度変化を示すグラフ、第4図はこの発明に
よる不均質薄膜形成方法の実施に使用される真空蒸着装
置の別の実施例の図解図、第5図は第4図の装置におけ
る基体構成物の温度変化を示すグラフである。
FIG. 1 is a diagrammatic illustration of a vacuum evaporation apparatus used to implement a conventional method for forming a heterogeneous thin film, and FIG. 2 is an illustration of an embodiment of a vacuum evaporation apparatus used to implement a method for forming a heterogeneous thin film according to the present invention. 3 is a graph showing the temperature change of the substrate structure in the apparatus of FIGS. 1 and 2, and FIG. FIG. 5, an illustrative diagram of the embodiment, is a graph showing the temperature change of the base structure in the apparatus of FIG. 4.

Claims (1)

【特許請求の範囲】 1 基体構成物を移送路に沿つて移動させながら基体構
成物の表面上に蒸着薄膜を形成し、この際に蒸着薄膜を
反応気体にさらす反応蒸着方法において、基体構成物の
温度を移送路に沿つて変化させることを特徴とする反応
蒸着によつて不均質薄膜を形成する方法。 2 移送路において基体構成物を定置の案内板の表面に
沿つて移動させ、案内板の温度をその表面に沿つて位置
的に変化させることによつて移送路に沿う基体構成物の
温度変化を達成する特許請求の範囲第1項に記載の方法
。 3 移送路において基体構成物を複数個の回転筒に順次
接触するように移動させ、回転筒の温度が互に相異なる
ようにすることによつて移送路に沿う基体構成物の温度
変化を達成する特許請求の範囲第1項に記載の方法。
[Claims] 1. A reactive vapor deposition method in which a deposited thin film is formed on the surface of a substrate composition while the substrate composition is moved along a transfer path, and the deposited thin film is exposed to a reactive gas at this time. A method for forming heterogeneous thin films by reactive deposition, characterized in that the temperature of the film is varied along the transport path. 2. The temperature change of the base structure along the transfer path is controlled by moving the base structure along the surface of a stationary guide plate in the transfer path and changing the temperature of the guide plate positionally along the surface. A method as claimed in claim 1 to achieve. 3 Achieving a temperature change of the base structure along the transfer path by moving the base structure so as to sequentially contact a plurality of rotating cylinders in the transfer path so that the temperatures of the rotating cylinders are different from each other. A method according to claim 1.
JP56210420A 1981-12-29 1981-12-29 Method for forming heterogeneous thin films by reactive deposition Expired JPS6053746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56210420A JPS6053746B2 (en) 1981-12-29 1981-12-29 Method for forming heterogeneous thin films by reactive deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56210420A JPS6053746B2 (en) 1981-12-29 1981-12-29 Method for forming heterogeneous thin films by reactive deposition

Publications (2)

Publication Number Publication Date
JPS58117873A JPS58117873A (en) 1983-07-13
JPS6053746B2 true JPS6053746B2 (en) 1985-11-27

Family

ID=16589012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56210420A Expired JPS6053746B2 (en) 1981-12-29 1981-12-29 Method for forming heterogeneous thin films by reactive deposition

Country Status (1)

Country Link
JP (1) JPS6053746B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012205254B4 (en) * 2012-03-30 2018-05-09 Von Ardenne Gmbh Method and device for tempering strip-shaped substrates under a thermally stimulated process environment

Also Published As

Publication number Publication date
JPS58117873A (en) 1983-07-13

Similar Documents

Publication Publication Date Title
KR950704534A (en) MICROWAVE APPARATUS FOR DEPOSITING THIN FILMS
US2369764A (en) Apparatus for forming optical wedges
JPS6053746B2 (en) Method for forming heterogeneous thin films by reactive deposition
US4428979A (en) Method for forming an inhomogeneous optical layer
US20100209728A1 (en) Magnetron co-sputtering device
US5449535A (en) Light controlled vapor deposition
JPH06228743A (en) Vacuum deposition device
JPH09165674A (en) Vacuum coating apparatus
JPS61159573A (en) Vacuum depositing apparatus
US3655428A (en) Coating metallic materials
JPS5939664B2 (en) Method of forming a solar heat absorption film on the surface of metal foil
JP3421064B2 (en) Method and apparatus for producing gas barrier film
TWI825433B (en) Nozzle assembly for guiding an evaporated material to a substrate, evaporation source and deposition system and method for depositing an evaporated material onto a substrate
JPH089163Y2 (en) Roll-up type vapor deposition device
JPH06111316A (en) Vacuum deposition device for producing magnetic recording medium
JPH06506983A (en) Method and apparatus for vacuum depositing a Sio↓x-coating on a substrate
JPS5861272A (en) Formation of film on surface of foil
JPH0230442Y2 (en)
JPH0328045B2 (en)
JPS5850628A (en) Production of magnetic recording medium
US3721496A (en) Image exposure and development method
JPH07316783A (en) Vacuum vapor deposition device for sublimatable material
JPS6153815B2 (en)
JPH0121534B2 (en)
JPH06176360A (en) Production of magnetic recording medium