JPS6053109B2 - Heat treatment method for titanium alloys with high internal friction - Google Patents

Heat treatment method for titanium alloys with high internal friction

Info

Publication number
JPS6053109B2
JPS6053109B2 JP23214982A JP23214982A JPS6053109B2 JP S6053109 B2 JPS6053109 B2 JP S6053109B2 JP 23214982 A JP23214982 A JP 23214982A JP 23214982 A JP23214982 A JP 23214982A JP S6053109 B2 JPS6053109 B2 JP S6053109B2
Authority
JP
Japan
Prior art keywords
internal friction
alloy
temperature
heat treatment
treatment method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP23214982A
Other languages
Japanese (ja)
Other versions
JPS58161754A (en
Inventor
昭二 植田
頼正 竹田
晃 弘本
信行 永井
康夫 森口
喜昌 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Mitsubishi Heavy Industries Ltd
Original Assignee
Kobe Steel Ltd
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Mitsubishi Heavy Industries Ltd filed Critical Kobe Steel Ltd
Priority to JP23214982A priority Critical patent/JPS6053109B2/en
Publication of JPS58161754A publication Critical patent/JPS58161754A/en
Publication of JPS6053109B2 publication Critical patent/JPS6053109B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は例えば蒸気タービン翼の回転翼などで、特に
大型化又は高速化した場合に適用して非常に有利な内部
摩擦が大きいチタン合金の振動減衰能および熱的安定性
をさらに改善する熱処理法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is applicable to, for example, the rotor blades of steam turbine blades, especially when the blades are large in size or high in speed. This invention relates to a heat treatment method for further improving properties.

蒸気タービン翼などの回転翼は振動による疲労破壊が
大きい問題となる。
Rotating blades such as steam turbine blades suffer from fatigue failure due to vibration.

疲労破壊防止には共振防止処理、振動の減衰処理が有効
な役割を果している。ただし蒸気タービン翼などにおい
ては振動は複雑であり、設計的に完全に共振を防止する
ことは難しい。従つて振動の減衰が重要になつてくる。
回転翼の振動減衰の要因としては、エーロダイナミツ
ク・ダンピング(Aerodynamic dampi
ng)、ルート・ダンピング(RO()tdampin
g)、メカニカル、ダンピング (Mechanica
ldamping)、マテーリアル・ダンピング(Ma
terialdamping)が考えられる。
Resonance prevention treatment and vibration damping treatment play an effective role in preventing fatigue failure. However, vibrations in steam turbine blades and the like are complex, and it is difficult to completely prevent resonance from a design point of view. Therefore, vibration damping becomes important.
Aerodynamic damping is a factor that dampens rotor blade vibration.
ng), route damping (RO()tdampin
g), mechanical, damping (Mechanica
ldamping), material damping (Ma
terial damping).

これ ら要因のトータル、ダンピング(Totalda
mping)に対する寄与率については各種の見解があ
るが、マテーリアル・ダンピングが大きい役割を果して
いる場合も少なくないといわれている。事実、現在では
多くの場合、蒸気タービン翼材には内部摩擦の大きい1
3Cr−Mo鋼などが使用されている。一般にチタン合
金は比強度が大きく、翼が高速化又は大型化した場合、
ロータヘの負荷の低減という理由からも、蒸気タービン
翼などの回転翼への利用が考えられ、特にTi−6A]
−4V合金はチタン合金中最も使用実績が高く (約7
0%以上)、蒸気タービン翼などの回転翼への利用が考
えられ、すでに一部実用化されている例もある。 しカ
ルながら従来の実用Ti−6Al−4V合金の熱)処理
である焼鈍処理又は焼入時効処理を実施したものは、上
記13Cr−Mo鋼など実際に蒸気タービン翼材として
使用されているものと比較してその内部摩擦は大幅に低
くなつており、マテーリアル・ダンピングによる減衰効
果は期待できない。
The total damping of these factors
Although there are various opinions regarding the contribution rate to mping), it is said that there are many cases in which material damping plays a large role. In fact, in many cases today, steam turbine blade materials are made of materials with high internal friction.
3Cr-Mo steel etc. are used. In general, titanium alloys have a high specific strength, so when the blade becomes faster or larger,
In order to reduce the load on the rotor, it can be used in rotary blades such as steam turbine blades, especially Ti-6A]
-4V alloy has the highest usage record among titanium alloys (approximately 7
0% or more), it can be considered for use in rotary blades such as steam turbine blades, and some examples have already been put into practical use. However, conventional practical Ti-6Al-4V alloys subjected to annealing treatment or quench aging treatment are not the same as those actually used as steam turbine blade materials, such as the above-mentioned 13Cr-Mo steel. In comparison, its internal friction is significantly lower, and no damping effect due to material damping can be expected.

そこで本発明の発明者等は種々研究の結果、さきに(α
+β)チタン合金を(α+β)相領域の適当な温度から
急冷処理するど大幅に内部摩擦が改善されることを見出
し、特願昭49−307汚として特許出願した。しかし
(α+β)チタン合金は、例えばTi−い1−4V合金
を例にとると、100′C以上に加熱保持すると、その
内部摩擦も低下し熱的に不安定であつた。
Therefore, as a result of various researches, the inventors of the present invention found that (α
+β) It was discovered that internal friction can be significantly improved by rapidly cooling a titanium alloy from an appropriate temperature in the (α+β) phase region, and a patent application was filed in 1977-307. However, the (α+β) titanium alloy, for example a Ti-1-4V alloy, was thermally unstable as its internal friction decreased when heated and held at 100'C or higher.

また疲労破壊防止には内部摩擦の絶対値が高くなるほど
有利であるので、この点からも内部摩擦の絶対値をさら
に高くすることが要望されていた。本発明はこのような
事情に鑑み、チタン合金の内部摩擦および熱的安定性を
改善する熱処理法を提供する目的で提案されたもので、
Al5.5〜6.75重量%(以下%で示す)、V1〜
5%、MOl〜5%、ただしV+MO≧5%ならびに残
部がTiおよび通常の不純物からなるチタン合金をβ変
態点よりも125℃低い温度以上で加熱保持した後急冷
することを特徴とする熱処理法を提供する。
Furthermore, since the higher the absolute value of internal friction is, the more advantageous it is to prevent fatigue failure, from this point of view as well, it has been desired to further increase the absolute value of internal friction. In view of these circumstances, the present invention was proposed for the purpose of providing a heat treatment method for improving the internal friction and thermal stability of titanium alloys.
Al5.5-6.75% by weight (hereinafter expressed as %), V1-
A heat treatment method characterized by heating and holding a titanium alloy consisting of 5%, MOl ~ 5%, but V+MO≧5% and the remainder being Ti and normal impurities at a temperature 125°C lower than the β transformation point and then rapidly cooling it. I will provide a.

以下本発明について実施例を参照して詳細に説明する。The present invention will be described in detail below with reference to Examples.

まず、本発明法に供せられる対象合金について説明する
。第1表に示す組成のチタン合金をボタン溶解法で15
0gr溶解し、その篠p鍛造で20瓢角、さらに(α+
β)鍛造で1−×15?角に成形して以下の試験に供し
た。
First, the target alloy to be subjected to the method of the present invention will be explained. Titanium alloy with the composition shown in Table 1 was melted using the button melting method.
Melt 0gr and forge it to 20gr, and further (α+
β) 1−×15 for forging? It was formed into a corner and subjected to the following tests.

即ちこれらの各材を第2表に示す各焼入温度より急冷処
理(水焼入れ)し、内部摩擦および機械的性質を調べた
。なお内部摩擦は横振動型内部摩擦測定装置を用い、振
動減衰能9−1で測定した。試験片の形状は2T1$t
厚さ×10W1m幅×90m長さとした。第2表には各
材の内部摩擦の測定結果も示している。この結果によれ
ば、MOを0.64%含有するB材と従来の標準合金で
あるTi−的−4V合金(A材とを比較してMO添加の
効果がほとんどないことがわかる。
That is, each of these materials was rapidly cooled (water quenched) from each quenching temperature shown in Table 2, and the internal friction and mechanical properties were examined. The internal friction was measured using a transverse vibration type internal friction measuring device with a vibration damping capacity of 9-1. The shape of the test piece is 2T1$t
Thickness x 10W 1m width x 90m length. Table 2 also shows the measurement results of the internal friction of each material. According to the results, it can be seen that there is almost no effect of MO addition when comparing material B containing 0.64% MO with Ti-4V alloy (material A), which is a conventional standard alloy.

しかしMOがさらに添加されたC,D,E,F,G,H
材についてはA材と比較して内部摩擦が大幅に改善され
ていることがわかるこのことは次のように解釈される。
本発明者等はさきにチタン合金においてある温度範囲か
ら急冷することによつて準安定β相を室温までもちきた
せば内部摩擦を高め得ることを見い出したのであるが、
この効果はチタン合金中の同素変態?J安定化元素(I
sOmOrphOusβ−Stabillzer)が主
要な役割を果していると思われる。そして上記のβ安定
化元素のひとつである■を含有するTi−いj一4V合
金については(α+β)相領域の温度から急冷すること
によつて内部摩擦が大きくなることも確認した。そこで
従来のTi−6A1−4V合金を基準としてさらに他の
同素変態型β安定化元素であるMOを添加した場合につ
いて検討した結果、本発明が完成したのである。
However, C, D, E, F, G, H to which MO is further added
It can be seen that the internal friction of material A is significantly improved compared to material A. This fact can be interpreted as follows.
The present inventors have previously discovered that internal friction can be increased by bringing the metastable β phase to room temperature in a titanium alloy by rapidly cooling it from a certain temperature range.
Is this effect due to allotropic transformation in titanium alloy? J stabilizing element (I
sOmOrphOusβ-Stabilzer) appears to play a major role. It was also confirmed that the internal friction of the Ti-J-4V alloy containing one of the β-stabilizing elements described above increases by rapid cooling from the temperature in the (α+β) phase region. Therefore, based on the conventional Ti-6A1-4V alloy, we investigated the case where MO, which is another allotropic transformation type β stabilizing element, was added, and as a result, the present invention was completed.

即ち第2表のD材とG材とを比較すると両者とも■+M
O+6.9で、内部摩擦もほぼ等しい。前記のようにV
,MOは作用が同じということで、従来からチタン合金
でよく用いられ、また複合添加の場合の効果を定量的に
みる方法として■当量(1×V(%)+1.3×MO(
%))なる概念が提案されているが、これらのことはV
+MO=ー定で内部摩擦が等しいという上記試験結果と
ほぼ一致する。従つてV+MO=ー定ならは、チタン合
金の内部摩擦を改善する効果が同じと考えてよい。そし
て具体的には■とMOの組成範囲として■+MO=≧5
%、望しくは■+MO≧6%にすれば、内部摩擦が格段
に改善されることが第2表に示す試験結果から明らかで
ある。また斗+B材における試験結果からみてMO≧1
%である必要があり、■とMOとは定性的にも定量的に
も互いに等価と考えられ、かつV<5M0の相乗効果が
期待されるためには■≧1%である必要がある。次に第
1表に示された各材の熱的安定性について述べる。
In other words, when comparing material D and material G in Table 2, both have ■+M
O+6.9, and the internal friction is almost the same. As mentioned above, V
, MO have been commonly used in titanium alloys because they have the same effect, and as a way to quantitatively assess the effect of combined addition, ■Equivalent (1 x V (%) + 1.3 x MO (
The concept of %)) has been proposed, but these things are
This almost agrees with the above test result that +MO=- constant and the internal friction is equal. Therefore, if V+MO=-constant, it can be considered that the effect of improving the internal friction of the titanium alloy is the same. Specifically, the composition range of ■ and MO is ■+MO=≧5
%, preferably ■+MO≧6%, it is clear from the test results shown in Table 2 that internal friction is significantly improved. Also, from the test results for Dou+B material, MO≧1
%, and in order for ■ and MO to be considered equivalent to each other both qualitatively and quantitatively, and for a synergistic effect of V<5M0 to be expected, ■≧1% must be satisfied. Next, the thermal stability of each material shown in Table 1 will be described.

第1図は第1表のうちA,D,E,材を100℃、15
0℃、200℃に1時間加熱保持空冷後、各々室温で内
部摩擦を測定した結果を示す。図中横軸は加熱保持した
温度を示す。図から本発明法の対象合金D,E材は従来
の標準合金であるTi−6A1−4■合金(A材)と比
較して高温まで内部摩擦は高い値を保持し、熱的安定性
が優れていることがわかる。特にE材は内部摩擦の絶対
値も高く、高温での低下率も少なくなつており非常に優
れている。以上の説明かられかるようにV<!:.MO
とを複合添加した場合には従来のV当量などの考えから
予想される以上に内部摩擦は改善され、またその熱・的
安定性の優れたチタン合金が得られる.ことがわかる。
Figure 1 shows materials A, D, and E in Table 1 at 100°C and 15°C.
The internal friction was measured at room temperature after heating and holding at 0° C. and 200° C. for 1 hour and air cooling, respectively. The results are shown below. In the figure, the horizontal axis indicates the temperature at which the temperature was maintained. As can be seen from the figure, alloys D and E, which are the target of the present invention, maintain a high internal friction value even at high temperatures and have better thermal stability than the conventional standard alloy Ti-6A1-4■ alloy (A material). It turns out that it is excellent. In particular, material E has a high absolute value of internal friction and a low rate of decline at high temperatures, making it extremely superior. As you can see from the above explanation, V<! :. M.O.
When a combination of titanium and titanium is added, the internal friction is improved more than expected from conventional considerations such as V equivalent, and a titanium alloy with excellent thermal and thermal stability is obtained. I understand that.

ただし一般的にβ安定化元素の過剰は密度を増加させ比
強度を低下させるが、それのみならすヤング率を低下せ
、かつ延性・靭性を減少させると−言われており、従つ
てこれらの元素量はヤング率および延性・紋性をひどく
損うことなく内部摩擦を大きくする組成範囲に保たれる
必要がある。
However, it is generally said that an excess of β-stabilizing elements increases density and lowers specific strength, but also lowers Young's modulus and reduces ductility and toughness. The amount must be kept within a composition range that increases internal friction without severely compromising Young's modulus and ductility/strength.

そこで第1表の各材の機械的性質を調べた結果が第3表
に示されている。ノ 大差ない。
Table 3 shows the results of examining the mechanical properties of each material listed in Table 1. There's no big difference.

しかしMOを5.41%含んだF材は引張り試験におけ
る伸び、2mVノツチシヤルピー衝撃値が他の試験材よ
り大幅に低下し、延性・紋性およびヤング率が低下して
いることがわかる。従つてヤング率および延性・紋性を
損わないで内部摩擦を大きくするにはMOは5%以下で
ある必要がある。またVも作用としてはMOと同じであ
るから、その組成範囲は5%以下とする。なおAl量は
よく知られているように脆化せず、しかも強度を増すた
めに必要な量として5.5〜6.75%とした。
However, it can be seen that material F containing 5.41% MO had significantly lower elongation in the tensile test and 2 mV notched py impact value than the other test materials, and had lower ductility, patternability, and Young's modulus. Therefore, in order to increase internal friction without impairing Young's modulus, ductility, and patternability, MO needs to be 5% or less. Further, since V has the same effect as MO, its composition range is set to 5% or less. The amount of Al was set at 5.5 to 6.75%, as is well known, as it is necessary to prevent embrittlement and increase strength.

次に本発明の熱処理条件について説明する。Next, the heat treatment conditions of the present invention will be explained.

第1表に示すA,C,D,H材について(α+β)およ
びβ相領域の任意の温度より急冷処理(水焼入れ)を実
施し、内部摩擦を測定した。使用した測定装置および試
験片の形状は然記と同様である。第2図は上記のA,C
,D,H材の焼入温度と内部摩擦との関係を示す測定結
果である。
Materials A, C, D, and H shown in Table 1 were rapidly cooled (water quenched) from arbitrary temperatures in the (α+β) and β phase regions, and the internal friction was measured. The measuring device and the shape of the test piece used were the same as those described above. Figure 2 shows A and C above.
, D, and H materials showing the relationship between quenching temperature and internal friction.

従来のTi−6A14V合金(A材)の内部摩擦は焼入
温度がその合金のβ変態点よりも180℃低い温度付近
で最大となる。また焼入温度がβ変態点を越すと内部摩
擦が非常に小さくなることが確認され、このことは特願
昭49−30n号の明細書でも記載している。これに対
して本発明法を施した合金であるC,D,H材は焼入温
度がその合金のβ変態点よりも100℃低い温度では非
常に大きいが、β変態点より150゜C低い温度になる
と内部摩擦が低下することが第2図かられかる。
The internal friction of the conventional Ti-6A14V alloy (material A) reaches its maximum when the quenching temperature is approximately 180° C. lower than the β-transform point of the alloy. It has also been confirmed that when the quenching temperature exceeds the β transformation point, the internal friction becomes extremely small, and this is also described in the specification of Japanese Patent Application No. 1983-30. On the other hand, materials C, D, and H, which are alloys subjected to the method of the present invention, have a very high quenching temperature that is 100°C lower than the β-transformation point of the alloy, but the quenching temperature is 150°C lower than the β-transformation point. It can be seen from Figure 2 that the internal friction decreases as the temperature increases.

次に第3図はA材およびD材について急冷処理後の加熱
時効による内部摩擦の変化の測定結果、即ち、熱的安定
性の試験結果を示す。
Next, FIG. 3 shows the measurement results of changes in internal friction due to heating aging after rapid cooling treatment for Materials A and D, that is, the results of a thermal stability test.

横軸は加熱処理材の加熱保持温度を示す。測定は加熱処
理材を同一温度で1時間保持後空冷した後行つた。なお
図中においてRD材:(β変態点−50℃)熱処理ョと
はRD材をその合徐φ変態点よりも50℃低い温度から
急冷処理したョことを示す。第3図より次のことがわか
る。
The horizontal axis indicates the heating holding temperature of the heat-treated material. The measurement was performed after the heat-treated material was held at the same temperature for 1 hour and then air-cooled. In the figure, RD material: (β transformation point - 50° C.) heat treated means that the RD material was rapidly cooled from a temperature 50° C. lower than its gradual φ transformation point. The following can be seen from Figure 3.

従来合金であるTi−6A1−4■合金(A材)では内
部摩擦が最も向上する温度、即ちA材のβ変態点よりも
180′C低い温度で熱処理しても、その後200℃で
加熱保持した後には内部摩擦は0.001以下に低下す
るのに・対し、本発明法を施した合金のD材ではその合
金のβ変態点よりも100℃低い温度から焼入れしたも
の、即ち焼入温度が低いほうでも内部摩擦は0.001
以上である。さらにβ変態点よりも50℃低い温度から
焼入れしたもの、即ち焼入温度が高いものでは200℃
まで内部摩擦はほとんど低下せず、熱的安定性は非常に
優れている。以上の結果より本発明法を施した合金をそ
の合金のβ変態点よりも125℃低い温度以上の焼入温
度より急冷処理すれば、非常に大きな内部摩擦が得られ
、しかも熱的安定性もすぐれていることがわかる。
Even if the conventional alloy Ti-6A1-4 alloy (A material) is heat-treated at a temperature that is 180'C lower than the temperature at which the internal friction improves the most, that is, the β transformation point of A material, it is subsequently heated and held at 200°C. The internal friction decreases to 0.001 or less after quenching.On the other hand, the D material of the alloy treated with the method of the present invention is quenched at a temperature 100°C lower than the β transformation point of the alloy, that is, the quenching temperature Even if the value is low, the internal friction is 0.001
That's all. Furthermore, for those quenched at a temperature 50℃ lower than the β transformation point, that is, for those with a high quenching temperature, the temperature is 200℃.
There is almost no decrease in internal friction, and thermal stability is excellent. From the above results, if the alloy processed by the method of the present invention is rapidly cooled from a quenching temperature that is 125°C lower than the β-transformation point of the alloy, a very large internal friction can be obtained, and thermal stability can also be achieved. I can see that it is excellent.

なおこの焼入温度範囲では焼入温度を高くしたほうが内
部摩擦の熱的安定性は優れている。以上詳述したように
本発明は内部摩擦が大きく熱的安定性が優れ、内部摩擦
の大きいチタン合金の内部摩擦およびその熱的安定性を
さらに高める熱処理法を提供するもので、タービン翼の
回転翼など振動の励起が避けられないような箇所に用い
て好適である。
Note that within this quenching temperature range, the higher the quenching temperature, the better the thermal stability of internal friction. As detailed above, the present invention provides a heat treatment method that further increases the internal friction and thermal stability of titanium alloys, which have large internal friction and excellent thermal stability, and which It is suitable for use in locations where vibration excitation is unavoidable, such as on blades.

【図面の簡単な説明】[Brief explanation of the drawing]

第1,3図は本発明法を施した合金および従来合金のも
つ振動減衰能の熱的安定性を示す線図、第2図は本発明
を施した合金および従来合金の振動減衰能と焼入温度と
の関係を示す線図てある。
Figures 1 and 3 are diagrams showing the thermal stability of the vibration damping ability of the alloy treated with the present invention and the conventional alloy, and Figure 2 is a diagram showing the thermal stability of the vibration damping capacity of the alloy treated with the present invention and the conventional alloy. There is a diagram showing the relationship with input temperature.

Claims (1)

【特許請求の範囲】[Claims] 1 重量パーセントでAl5.5〜6.75%、V1〜
5%、Mo1〜5%、ただしV+Mo≧5%ならびに残
部がTiおよび通常の不純物からなるチタン合金をβ変
態点よりも125℃低い温度以上で加熱保持した後急冷
することを特徴とする内部摩擦の大きいチタン合金の熱
処理法。
1 Al5.5-6.75% by weight percent, V1-
Internal friction characterized by heating and holding a titanium alloy consisting of 5% Mo, 1 to 5% Mo, but V+Mo≧5% and the remainder being Ti and normal impurities at a temperature 125°C lower than the β transformation point and then rapidly cooling it. heat treatment method for large titanium alloys.
JP23214982A 1982-12-29 1982-12-29 Heat treatment method for titanium alloys with high internal friction Expired JPS6053109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23214982A JPS6053109B2 (en) 1982-12-29 1982-12-29 Heat treatment method for titanium alloys with high internal friction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23214982A JPS6053109B2 (en) 1982-12-29 1982-12-29 Heat treatment method for titanium alloys with high internal friction

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP51049056A Division JPS5839902B2 (en) 1976-04-28 1976-04-28 Titanium alloy with high internal friction

Publications (2)

Publication Number Publication Date
JPS58161754A JPS58161754A (en) 1983-09-26
JPS6053109B2 true JPS6053109B2 (en) 1985-11-22

Family

ID=16934757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23214982A Expired JPS6053109B2 (en) 1982-12-29 1982-12-29 Heat treatment method for titanium alloys with high internal friction

Country Status (1)

Country Link
JP (1) JPS6053109B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4631092A (en) * 1984-10-18 1986-12-23 The Garrett Corporation Method for heat treating cast titanium articles to improve their mechanical properties
US7195455B2 (en) * 2004-08-17 2007-03-27 General Electric Company Application of high strength titanium alloys in last stage turbine buckets having longer vane lengths
JP5605273B2 (en) * 2011-03-04 2014-10-15 新日鐵住金株式会社 High strength α + β type titanium alloy having excellent hot and cold workability, production method thereof, and titanium alloy product

Also Published As

Publication number Publication date
JPS58161754A (en) 1983-09-26

Similar Documents

Publication Publication Date Title
JP4037929B2 (en) Low thermal expansion Ni-base superalloy and process for producing the same
US4134758A (en) Titanium alloy with high internal friction and method of heat-treating the same
US6132535A (en) Process for the heat treatment of a Ni-base heat-resisting alloy
JPS6128007B2 (en)
US4167427A (en) Heat treatment of titanium alloys
JPS5834129A (en) Heat-resistant metallic material
JPH0321622B2 (en)
JPS6053109B2 (en) Heat treatment method for titanium alloys with high internal friction
JPH04218642A (en) Low thermal expansion superalloy
JP2659373B2 (en) Method of manufacturing high-temperature bolt material
JPS5837382B2 (en) Heat treatment method for nickel-based heat-resistant alloy
JP2541042B2 (en) Heat treatment method for (α + β) type titanium alloy
JP2004107777A (en) Austenitic heat resistant alloy, production method therefor and steam turbine parts
JP4107830B2 (en) TiAl intermetallic compound-based alloy and method for producing cast parts
JPS6250549B2 (en)
US2945758A (en) Nickel base alloys
JPH03134144A (en) Nickel-base alloy member and its manufacture
US2842439A (en) High strength alloy for use at elevated temperatures
JPS62205253A (en) Heat treatment for ti-8al-1mo-1v alloy
JP3289847B2 (en) Low thermal expansion super heat resistant alloy with excellent oxidation resistance
JPH02270940A (en) Alloy for high temperature use bolt and its manufacture
JPS61547A (en) Co-base high-strength heat-resistant alloy for gas turbine
JPH0463239A (en) High strength and high toughness ti alloy and method for heat treating it
JPS6013050A (en) Heat-resistant alloy
WO2018079073A1 (en) Heat-resistant alloy for hearth metal member