JPH0463239A - High strength and high toughness ti alloy and method for heat treating it - Google Patents

High strength and high toughness ti alloy and method for heat treating it

Info

Publication number
JPH0463239A
JPH0463239A JP17596390A JP17596390A JPH0463239A JP H0463239 A JPH0463239 A JP H0463239A JP 17596390 A JP17596390 A JP 17596390A JP 17596390 A JP17596390 A JP 17596390A JP H0463239 A JPH0463239 A JP H0463239A
Authority
JP
Japan
Prior art keywords
alloy
strength
toughness
weight
reinforcing elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17596390A
Other languages
Japanese (ja)
Inventor
Akihiro Suzuki
昭弘 鈴木
Tomohito Iikubo
知人 飯久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP17596390A priority Critical patent/JPH0463239A/en
Publication of JPH0463239A publication Critical patent/JPH0463239A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain a high strength and high toughness Ti allay by constituting it of a compsn. contg. alpha reinforcing elements, beta reinforcing elements, a specified amt. of Mn and the balance Ti with impurities. CONSTITUTION:This is a high strength and high toughness Ti allay contg. one or more kinds of alpha reinforcing elements among Al, Sn, Zr and Ga, one or more kinds of beta reinforcing elements among Mo, V, Nb, Ta, Cr, W, Fe, Co, Ni and Cu and the balance Ti with impurities, in which the strength and toughness of a conventional Ti allay having high specific strength is moreover improved. The content of the above reinforcing elements is preferably regulate to 1<=Al+Sn/3+Zr/6<=10% and 5<=Mo+V/1.5+Nb/3.6+Ta/4.5+Cr/0.64+W/2.6+ Mn/0.64+Fe/0.35+Co/0.7+Ni/0.9+Cu/1.3<=30%. The heat treatment for this Ti alloy is preferably executed in such a manner that it is hot-worked at 650 to 1200 deg.C, is thereafter subjected to soln. treatment at 650 to 950 deg.C according to necessary and is subjected to aging treatment at 350 to 650 deg.C.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の目的】[Purpose of the invention]

(産業上の利用分野) 本発明は、高強度高靭性Ti合金およびその熱処理方法
に係わり、例えば、航空機エンジン用ファンディスク、
タービンブレード、産業用ガスタービン、自動車用コネ
クティングロッド等の高強度、高靭性でかつ軽量である
ことが要求されるTi合金製部材の素材として好適に利
用される高強度高靭性Ti合金およびその熱処理方法に
関するものである。 (従来の技術) Ti合金は軽量でかつ高強度が得られる(高比強度であ
る)ので、従来より多くの合金が開発され、そして実用
に供されている。 このようなTi合金には、α+β型のTi−6%An−
4%V合金や、near  β型c7)Ti −17(
Ti−5%AJI−2%5n−2%Zr−4%Cr−4
%M o )合金、Ti−10%V−2%Fe−3%A
旦合金等がある。 これらのTi合金は、α強化元素であるA!;L(Sn
、Zr)とβ強化元素であるM o 、 Cr 。 V、Fe等を適量組み合わせたものである。 (発明が解決しようとする課題) 上記した従来のTi合金は、Niを多量に含む耐熱鋼や
耐熱合金などと比べるとかなり軽量であり、それなりの
強度および耐熱性を有しているが、上述したように、自
動車や航空機のエンジン、産業用ガスタービン等におい
ては、高性能化の要求が高まる一方であり、このような
要求に対応できるようにさらに高強度高靭性化したTi
合金の開発が望まれているという課題があった。 (発明の目的) 本発明は、このような従来の課題にかんがみてなされた
もので、従来の高比強度のTi合金において、その強度
および靭性をさらに向上させることができるようにする
ことを目的としている。
(Industrial Application Field) The present invention relates to a high-strength, high-toughness Ti alloy and a heat treatment method thereof, and includes, for example, a fan disk for an aircraft engine,
A high-strength, high-toughness Ti alloy suitable for use as a material for Ti alloy components that require high strength, high toughness, and light weight, such as turbine blades, industrial gas turbines, and automobile connecting rods, and its heat treatment. It is about the method. (Prior Art) Since Ti alloys are lightweight and have high strength (high specific strength), many alloys have been developed and put into practical use. Such Ti alloys include α+β type Ti-6%An-
4% V alloy, near β type c7) Ti-17 (
Ti-5%AJI-2%5n-2%Zr-4%Cr-4
%Mo) alloy, Ti-10%V-2%Fe-3%A
There are other types such as dango. These Ti alloys contain A! which is an α-strengthening element. ;L(Sn
, Zr) and β-strengthening elements Mo, Cr. It is a combination of appropriate amounts of V, Fe, etc. (Problems to be Solved by the Invention) The conventional Ti alloys described above are considerably lighter than heat-resistant steels and heat-resistant alloys containing a large amount of Ni, and have a certain degree of strength and heat resistance. As mentioned above, there is an ever-increasing demand for higher performance in automobile and aircraft engines, industrial gas turbines, etc., and in order to meet these demands, we are developing Ti, which has even higher strength and toughness.
The problem was that the development of an alloy was desired. (Object of the Invention) The present invention was made in view of such conventional problems, and an object thereof is to further improve the strength and toughness of conventional Ti alloys with high specific strength. It is said that

【発明の構成】[Structure of the invention]

(課題を解決するための手段) 本発明に係わ高強度高靭性Ti合金は、α強化元素であ
るA文、Sn、Zr、Gaのうちから選ばれる1種また
は2種以上の元素と、β強化元素であるMo、V、Nb
、Ta、Cr、W、Fe。 Co 、Ni 、Cuのうちから選ばれる1種または2
種以上の元素と、0.5〜30重量%のMnを含み、残
部Tiおよび不純物よりなる構成としたことを特徴とし
ており、実施態様においては、A文、Sn、Zr含有量
が、 1重量%≦AfL+ (S n/3)+ (Z r/6
)510重量% M o 、 V 、 N b 、 T a 、 Cr 
、 W 、 M n 、 F e 。 Co、Ni、Cu含有量が、 5重量%≦M o + (V/ 1 、5)+(Nb/
3.6)+ (Ta/4.5)+ (Crlo 、64
)+ (W/2.6)+ (Mn10.64)+ (F
e10.35)+ (Co10.7)+ (Ni10.
9)+(Cu/1.3)≦30重量% の関係を満足する構成としたことを特徴としており、上
記した高強度高靭性Ti合金の構成を前述した従来の課
題を解決するための手段としている。 また、本発明に係わる高強度高靭性Ti合金の熱処理方
法は、前記Ti合金を650〜1200℃で熱間加工し
た後、350〜650℃で直接時効処理する構成とした
ことを特徴としておりまた、そのほか、前記Ti合金を
650〜1200℃で熱間加工した後、650〜950
℃で溶体化処理を施し、350〜650℃で時効処理す
る構成としたことを特徴としており、上記した高強度高
靭性Ti合金の熱処理方法の構成を前述した従来の課題
を解決するための手段としている。 次に、本発明に係わる高強度高靭性Ti合金の化学成分
限定理由について説明する。 All、Sn、Zr、Gaはα相に固溶してこれを強化
するのに有効な元素群である。 これらのうち、An含有量が多すぎるとTi2Al化合
物が生成して延性を低下させるようになるため、10%
以下とすることが望ましく、必要に応じて8%以下とす
るのがよい、また、Sn含有量が多すぎるとTi3Sn
化合物が生成して延性を低下させるようになるため、1
5%以下とすることが望ましく、さらにZr含有量が多
すぎるとβ相の量が増大してクリープ特性を低下させる
ようになるため、15%以下とすることが望ましい。さ
らにまた、Gaはα相を固溶強化すると共に、Ti合金
の耐熱性を改善するのに有効な元素であるので、このよ
うな効果を得るために0.01%以上含有させることも
必要に応じて望ましいが、Ga含有量が多すぎるとTi
3Ga化合物が生成して延性を低下させるようになるた
め、15%以下とすることが望ましい。 そして、An当量として表わされるAM+(S n/3
)+ (Z r/6)の値が1重量%よりも少ないと、
α相の強化が図れなくなる傾向となるので、1重量%以
上とすることがとくに望ましい、しかし、An当量で1
0重量%を超えると化合物が生成するようになって靭延
性が低下する傾向となるので、10重量%以下とするこ
とがとくに望ましい。 MnはTi合金の強度および靭性を改善するのに有効な
元素であるので、これを必須元素として含有させるのが
よいが、0.5重量%未満では強靭化の効果が少なくな
るので、0.5重量%以上とする必要がある。しかし、
30重量%を超えて含有させるとβ相の安定度が高くな
りすぎてα相の時効析出までに長時間を必要とするよう
になるので、30重量%以下とする必要がある。 M o 、 V 、 N b 、 T a 、 Cr 
、 W 、 F e 。 Co、Ni、Cuはβ相に固溶してこれを強化し、熱処
理性を改善するのに有効であって、短時間強度の改善に
有効な元素群であるので、必要に応じてこれらの1種ま
たは2種以上を添加することも望ましいが、あまり多く
含有させてもβ相の固溶強化にはさほど寄与しなくなる
ので、30重量%以下とすることが望ましい。 この場合、Mo+(V/1.5) + (Nb/3.6)+ (Ta/4.5)+ (Cr
lo 、64)+ (W/2.6)+ (Mn10.6
4)+ (Fe10.35)+ (Co10.7)+ 
(Ni10.9)+(Cu/1.3)で表わされるMO
当量での関係においてこの値が5重量%よりも少ないと
β相の強化が図れなくなる傾向となるので、5重量%以
上とすることがとくに望ましい。しかし、MO当量で3
0重量%を超えるとβ相の安定度が高くなりすぎてα相
の時効析出までに長時間を必要とするようになるので、
30重量%以下とすることがとくに望ましい、なお、上
記各元素のうちM o 、 N b 、 T aはTi
中での拡散速度が遅く、とりわけクリープ特性の改善に
有効であり、また、耐酸化性を改善する効果も大きい。 そのほか、C,Si 、S、Y、REM(希土類元素の
うちの1種または2種以上)はTi合金中の不純物と介
在物ないしは化合物を形成して、クリープ強度を改善す
るのに有効な元素群であるので、必要に応じてこれらの
1種または2種以上を添加することも可能であるが、含
有量が多すぎると製造性を劣化させ、また延性も低下さ
せるようになるため、添加するとしてもこれらの1種ま
たは2種以上の合計で1重量%以下とすることが望まし
い。 Ti:残部 Tiは軽量でかつ耐熱性、耐食性に優れ、高比強度が得
られるので残部とした。 本発明に係わる高強度高靭性Ti合金は、上記した化学
成分よりなるものであり、これを熱処理する際には、前
記Ti合金を650〜1200℃で熱間鍛伸あるいは熱
間圧延等の熱間加工を行った後、350〜650℃で直
接時効処理するようになすことが望ましい。 この場合、熱間加工温度が650℃よりも低いとTi合
金の変態能が低下し、変形抵抗も増大するため、加工が
困難となり、1200℃よりも高いと高温加工のため回
復再結晶現象が起こるようになり、加工ひずみが残留し
にくくなるため直接時効材ではその効果がうすれてしま
い、また、結品粒の粗大化が生じると時効処理後の延性
が低下するので、熱間加工温度は650〜1200℃の
範囲とするのがよい。 また、熱間加工に統〈直接時効処理は、T1合金の高強
度化に有効であるほか、析出α相が均質に分散しやすく
、靭性改善にも有効であることを見いだした。一般にn
ear  β型Ti合金あるいはβ型Ti合金のα相の
析出反応は、350〜650℃の温度域で活発であり、
このような温度範囲内での処理が実用的であって短時間
時効が可能となり、この直接時効処理において、その温
度が350℃よりも低いと時効硬化に時間がかかるよう
になるので好ましくなく、650℃よりも高くなると過
時効により強度が低下し、熱処理の効果が薄れるので好
ましくなく、したがって、直接時効処理は350〜65
0℃の範囲とするのがよい。 また、上記化学成分のTi合金を熱処理する際には、前
記Ti合金を650〜1200℃で熱間鍛伸あるいは熱
間圧延等の熱間加工を行った後、650〜950℃で溶
体化処理を施し、350〜650℃で時効処理するよう
になすこともできる。 このように、必要に応じて時効処理前に溶体化処理を施
すことも望ましく、熱間加工の際の加工ひずみが不均一
であって時効処理後の機械的性質が場所によって不均一
となることが予想される場合には、時効処理前に溶体化
処理を施すことによってあらかじめ加工ひずみを軽減し
ておくようになすことも有効である。そして、この溶体
化処理は650〜950℃で行うことが望ましく、65
0℃未満では合金成分の溶は込みが十分でなく、950
℃を超えるとα相が粗大化して靭性が低下し、その結果
割れを生じやすくなるので好ましくない。 (発明の作用) 本発明に係わる高強度高靭性Ti合金は、上記した構成
を有しているので、Ti中にAM。 Sn、Zr、Gaの1種または2種以上を適量添加する
ことによってα相が固溶強化され、Mo。 V、Nb、Ta、Cr、W、Fe、Co、Ni 。 Cuのうちの1種または2種以上を適量含有させること
によってβ相が固溶強化され、熱処理性が改善されて短
時間強度が向上したものとなり、さらに、Mnを適量含
有させることによってβ相が固溶強化されると共に強度
および靭性がさらに改善されたものとなる。 (実施例) 第1表に示す化学成分組成のTi合金をプラズマスカル
炉により溶製し、それぞれについて直径的100mmの
鋳塊を得たのち、1100℃で板厚50mmまで鍛造し
、続いて950℃(ただし、比較例No、25では10
25℃)で仕上げ鍛伸加工を行って、30 m m X
 70 m m X 800mmの板材を製作した。 次いで、同じく第1表に示す条件で一部について溶体化
処理を行ったのち時効処理を施して供試材とした。 続いて、各供試材の0.2%耐力と破壊靭性値を調べて
これを図にあられしたところ、第1図に示す結果となっ
た。なお、破壊靭性値の測定は、鍛伸方向に直角に切込
みを入れた幅25.4mmのコンパクトテンション試験
片を用いて実施した。 第1表に示すように、本発明実施例合金陥、1〜14は
いずれも比較例合金崩、21〜25に比べて、高強度か
つ高靭性となっていることが認められた。
(Means for Solving the Problems) The high-strength, high-toughness Ti alloy according to the present invention contains one or more elements selected from α-strengthening elements A, Sn, Zr, and Ga; β-strengthening elements Mo, V, Nb
, Ta, Cr, W, Fe. One or two selected from Co, Ni, and Cu
It is characterized by having a structure containing 0.5 to 30% by weight of Mn and 0.5 to 30% by weight of Mn, and the remainder being Ti and impurities. %≦AfL+ (S n/3)+ (Z r/6
) 510% by weight Mo, V, Nb, Ta, Cr
, W, Mn, Fe. The Co, Ni, and Cu contents are 5% by weight≦M o + (V/ 1, 5) + (Nb/
3.6)+ (Ta/4.5)+ (Crlo, 64
)+ (W/2.6)+ (Mn10.64)+ (F
e10.35)+ (Co10.7)+ (Ni10.
9)+(Cu/1.3)≦30% by weight The structure of the high-strength, high-toughness Ti alloy described above is a means for solving the above-mentioned conventional problems. It is said that Further, the method for heat treatment of a high strength and high toughness Ti alloy according to the present invention is characterized in that the Ti alloy is hot worked at 650 to 1200°C and then subjected to direct aging treatment at 350 to 650°C. , In addition, after hot working the Ti alloy at 650 to 1200°C, 650 to 950°C
It is characterized by a structure in which solution treatment is carried out at 350 to 650 degrees Celsius, and the structure of the above-described heat treatment method for high-strength, high-toughness Ti alloy is a means for solving the above-mentioned conventional problems. It is said that Next, the reason for limiting the chemical composition of the high-strength, high-toughness Ti alloy according to the present invention will be explained. All, Sn, Zr, and Ga are a group of elements that are effective in solidly dissolving in the α phase and strengthening it. Among these, if the An content is too large, Ti2Al compounds will be generated and the ductility will be reduced, so 10%
It is desirable that the Sn content be 8% or less, if necessary, and if the Sn content is too high, Ti3Sn
1 because compounds are generated and reduce ductility.
It is desirable that the Zr content be 5% or less, and if the Zr content is too high, the amount of β phase will increase and the creep properties will be degraded, so it is desirable that the Zr content be 15% or less. Furthermore, since Ga is an effective element for solid solution strengthening the α phase and improving the heat resistance of Ti alloys, it is necessary to contain 0.01% or more to obtain such effects. However, if the Ga content is too high, Ti
Since 3Ga compounds are generated and reduce ductility, it is desirable that the content be 15% or less. Then, AM+(S n/3
) + (Z r/6) is less than 1% by weight,
Since this tends to make it difficult to strengthen the α phase, it is particularly desirable to set the content to 1% by weight or more.
If it exceeds 0% by weight, compounds tend to form and the toughness and ductility tends to decrease, so it is particularly desirable to keep the content to 10% by weight or less. Mn is an effective element for improving the strength and toughness of Ti alloys, so it is better to include it as an essential element, but if it is less than 0.5% by weight, the toughening effect will be reduced, so if it is less than 0.5% by weight, the toughening effect will be reduced. It needs to be 5% by weight or more. but,
If the content exceeds 30% by weight, the stability of the β phase becomes too high and a long time is required for the aging precipitation of the α phase, so it is necessary to limit the content to 30% by weight or less. Mo, V, Nb, Ta, Cr
, W, F e. Co, Ni, and Cu are effective in solid-dissolving in the β phase to strengthen it and improve heat treatability, and are effective in improving short-term strength, so these elements may be added as necessary. It is also desirable to add one or more kinds, but if too much is added, it will not contribute much to the solid solution strengthening of the β phase, so it is desirable to add 30% by weight or less. In this case, Mo+(V/1.5) + (Nb/3.6)+ (Ta/4.5)+ (Cr
lo, 64) + (W/2.6) + (Mn10.6
4)+ (Fe10.35)+ (Co10.7)+
MO expressed as (Ni10.9) + (Cu/1.3)
In terms of equivalent weight, if this value is less than 5% by weight, it tends to be difficult to strengthen the β phase, so it is particularly desirable to set it to 5% by weight or more. However, the MO equivalent is 3
If it exceeds 0% by weight, the stability of the β phase will become too high and it will take a long time for the aging precipitation of the α phase.
It is particularly desirable that the content be 30% by weight or less. Among the above elements, Mo, Nb, and Ta are Ti
It has a slow diffusion rate and is particularly effective in improving creep characteristics, and is also highly effective in improving oxidation resistance. In addition, C, Si, S, Y, and REM (one or more rare earth elements) are effective elements that form inclusions or compounds with impurities in Ti alloys and improve creep strength. It is possible to add one or more of these as needed, but if the content is too large, it will deteriorate manufacturability and also reduce ductility. Even if it does, it is desirable that the total amount of one or more of these is 1% by weight or less. Ti: Remainder Ti is lightweight, has excellent heat resistance and corrosion resistance, and provides high specific strength, so it was designated as the remainder. The high-strength, high-toughness Ti alloy according to the present invention is composed of the above-mentioned chemical components, and when heat-treating it, the Ti alloy is heated by hot forging or hot rolling at 650 to 1200°C. After the temporary working, it is desirable to directly age the material at 350 to 650°C. In this case, if the hot working temperature is lower than 650°C, the transformation ability of the Ti alloy will decrease and the deformation resistance will increase, making processing difficult. If the hot working temperature is higher than 1200°C, the recovery recrystallization phenomenon will occur due to high temperature processing. The effect of directly aged material is lost because it becomes difficult for working strain to remain, and if the grains become coarser, the ductility after aging decreases, so the hot working temperature is The temperature is preferably in the range of 650 to 1200°C. In addition, it has been found that direct aging treatment combined with hot working is effective for increasing the strength of the T1 alloy, as well as for easily dispersing the precipitated α phase homogeneously, which is also effective for improving toughness. Generally n
The precipitation reaction of the α phase of the ear β-type Ti alloy or β-type Ti alloy is active in the temperature range of 350 to 650°C,
Treatment within such a temperature range is practical and allows short-time aging, but in this direct aging treatment, if the temperature is lower than 350°C, age hardening will take a long time, which is not preferable. If the temperature is higher than 650°C, the strength will decrease due to over-aging and the effect of heat treatment will be weakened, which is undesirable.
It is preferable to set it in the range of 0°C. In addition, when heat treating a Ti alloy having the above chemical composition, the Ti alloy is subjected to hot working such as hot forging or hot rolling at 650 to 1200°C, and then solution treatment is performed at 650 to 950°C. It is also possible to perform an aging treatment at 350 to 650°C. In this way, it is also desirable to perform solution treatment before aging treatment if necessary, since the processing strain during hot working is non-uniform and the mechanical properties after aging treatment will be non-uniform depending on the location. If this is expected, it is also effective to reduce processing strain in advance by performing solution treatment before aging treatment. This solution treatment is preferably carried out at 650 to 950°C, and 650 to 950°C.
At temperatures below 0°C, the alloy components are not sufficiently penetrated, resulting in
If the temperature exceeds .degree. C., the alpha phase becomes coarse, the toughness decreases, and as a result, cracks are likely to occur, which is not preferable. (Function of the Invention) The high-strength, high-toughness Ti alloy according to the present invention has the above-described structure, so that Ti contains AM. By adding appropriate amounts of one or more of Sn, Zr, and Ga, the α phase is solid solution strengthened, and Mo. V, Nb, Ta, Cr, W, Fe, Co, Ni. By containing an appropriate amount of one or more of Cu, the β phase is solid solution strengthened, heat treatability is improved, and short-term strength is improved.Furthermore, by containing an appropriate amount of Mn, the β phase is strengthened. is strengthened by solid solution, and the strength and toughness are further improved. (Example) Ti alloys having the chemical composition shown in Table 1 were melted in a plasma skull furnace to obtain ingots with a diameter of 100 mm, and then forged at 1100°C to a plate thickness of 50 mm, followed by 950°C. °C (However, in Comparative Example No. 25, 10
Finish forging and stretching at 25°C) to a diameter of 30 mm
A board measuring 70 mm x 800 mm was manufactured. Next, part of the sample was subjected to solution treatment under the same conditions shown in Table 1, and then subjected to aging treatment to obtain a test material. Subsequently, the 0.2% proof stress and fracture toughness values of each sample material were investigated and plotted in a diagram, resulting in the results shown in Figure 1. Note that the fracture toughness value was measured using a compact tension test piece with a width of 25.4 mm in which cuts were made at right angles to the forging and elongation direction. As shown in Table 1, it was observed that all of the alloys according to the present invention, Nos. 1 to 14, had higher strength and toughness than the comparative alloys Nos. 21 to 25.

【発明の効果】【Effect of the invention】

本発明に係わるTi合金は、α強化元素であるA!;L
、Sn、Zr、Ga(7)うちから選ばれる1種または
2種以上の元素と、β強化元素であるMo、V、Nb、
Ta、Cr、W、Fe、Co。 Ni、Cuのうちから選ばれる1種または2種以上の元
素と、0.5〜30重量%のMnを含み、残部Tiおよ
び不純物よりなる構成としたものであるから、従来の高
比強度のTi合金において、その強度および靭性をより
一層向上させることが可能であり、従来以上に高強度高
靭性をそなえたTi合金部材を提供することが可能であ
り、本発明に係わる高強度高靭性Ti合金の熱処理方法
によってTi合金の高強度高靭性化を実現することが可
能になるという著しく優れた効果がもたらされる。
The Ti alloy according to the present invention has an α-strengthening element A! ;L
, Sn, Zr, Ga (7) and one or more elements selected from among them, and β-strengthening elements Mo, V, Nb,
Ta, Cr, W, Fe, Co. Since it contains one or more elements selected from Ni and Cu, and 0.5 to 30% by weight of Mn, with the remainder being Ti and impurities, it has a high specific strength compared to the conventional one. It is possible to further improve the strength and toughness of a Ti alloy, and it is possible to provide a Ti alloy member with higher strength and toughness than ever before, and the high strength and high toughness Ti alloy member according to the present invention The heat treatment method for the alloy brings about the remarkable effect that it becomes possible to realize high strength and high toughness of the Ti alloy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わる高強度高靭性Ti合金の実施例
を比較例と共に示すグラフである。
FIG. 1 is a graph showing examples of high-strength, high-toughness Ti alloys according to the present invention together with comparative examples.

Claims (4)

【特許請求の範囲】[Claims] (1)α強化元素であるAl、Sn、Zr、Gaのうち
から選ばれる1種または2種以上の元素と、β強化元素
であるMo、V、Nb、Ta、Cr、W、Fe、Co、
Ni、Cuのうちから選ばれる1種または2種以上の元
素と、0.5〜30重量%のMnを含み、残部Tiおよ
び不純物よりなることを特徴とする高強度高靭性Ti合
金。
(1) One or more elements selected from among α-strengthening elements Al, Sn, Zr, and Ga and β-strengthening elements Mo, V, Nb, Ta, Cr, W, Fe, and Co. ,
A high-strength, high-toughness Ti alloy comprising one or more elements selected from Ni and Cu, and 0.5 to 30% by weight of Mn, with the remainder being Ti and impurities.
(2)Al、Sn、Zr含有量が、 1重量%≦Al+(Sn/3)+(Zr/6≦10重量
% Mo、V、Nb、Ta、Cr、W、Mn、Fe、Co、
Ni、Cu含有量が、 5重量%≦Mo+(V/1.5) +(Nb/3.6)+(Ta/4.) +(Cr/0.64)+(W/2.6) +(Mn/0.64)+(Fe/0.35)+(Co/
0.7)+(Ni/0.9) +(Cu/1.3)≦30重量% の関係を満足する請求項第1項に記載の高強度高靭性T
i合金。
(2) Al, Sn, Zr content is 1% by weight≦Al+(Sn/3)+(Zr/6≦10% by weight Mo, V, Nb, Ta, Cr, W, Mn, Fe, Co,
Ni, Cu content is 5% by weight≦Mo+(V/1.5) +(Nb/3.6)+(Ta/4.)+(Cr/0.64)+(W/2.6) +(Mn/0.64)+(Fe/0.35)+(Co/
0.7) + (Ni/0.9) + (Cu/1.3)≦30% by weight.
i-alloy.
(3)請求項第1項または第2項に記載のTi合金を6
50〜1200℃で熱間加工した後、350〜650℃
で直接時効処理することを特徴とする高強度高靭性Ti
合金の熱処理方法。
(3) The Ti alloy according to claim 1 or 2 is
After hot working at 50-1200℃, 350-650℃
High-strength, high-toughness Ti characterized by direct aging treatment with
Alloy heat treatment method.
(4)請求項第1項または第2項に記載のTi合金を6
50〜1200℃で熱間加工した後、650〜950℃
で溶体化処理を施し、350〜650℃で時効処理する
ことを特徴とする高強度高靭性Ti合金の熱処理方法。
(4) The Ti alloy according to claim 1 or 2 is
After hot working at 50-1200℃, 650-950℃
A method for heat treating a high-strength, high-toughness Ti alloy, the method comprising solution treatment at a temperature of 350 to 650°C and aging treatment at a temperature of 350 to 650°C.
JP17596390A 1990-07-03 1990-07-03 High strength and high toughness ti alloy and method for heat treating it Pending JPH0463239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17596390A JPH0463239A (en) 1990-07-03 1990-07-03 High strength and high toughness ti alloy and method for heat treating it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17596390A JPH0463239A (en) 1990-07-03 1990-07-03 High strength and high toughness ti alloy and method for heat treating it

Publications (1)

Publication Number Publication Date
JPH0463239A true JPH0463239A (en) 1992-02-28

Family

ID=16005320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17596390A Pending JPH0463239A (en) 1990-07-03 1990-07-03 High strength and high toughness ti alloy and method for heat treating it

Country Status (1)

Country Link
JP (1) JPH0463239A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005105388A (en) * 2003-10-01 2005-04-21 Furukawa Techno Material Co Ltd Method of producing superelastic titanium alloy for living body, and titanium alloy for superelasticity
CN104060125A (en) * 2014-07-07 2014-09-24 林娟娟 Heat treatment method of engine blade
JP2015025167A (en) * 2013-07-25 2015-02-05 大同特殊鋼株式会社 β TYPE TITANIUM ALLOY
CN105457583A (en) * 2015-12-10 2016-04-06 攀枝花市九鼎智远知识产权运营有限公司 Ammonium chloride neutralization reaction kettle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005105388A (en) * 2003-10-01 2005-04-21 Furukawa Techno Material Co Ltd Method of producing superelastic titanium alloy for living body, and titanium alloy for superelasticity
JP2015025167A (en) * 2013-07-25 2015-02-05 大同特殊鋼株式会社 β TYPE TITANIUM ALLOY
CN104060125A (en) * 2014-07-07 2014-09-24 林娟娟 Heat treatment method of engine blade
CN105457583A (en) * 2015-12-10 2016-04-06 攀枝花市九鼎智远知识产权运营有限公司 Ammonium chloride neutralization reaction kettle

Similar Documents

Publication Publication Date Title
JP3233188B2 (en) Oil-tempered wire for high toughness spring and method of manufacturing the same
JP3049767B2 (en) Ti alloy with excellent heat resistance
US6918972B2 (en) Ni-base alloy, heat-resistant spring made of the alloy, and process for producing the spring
JP4037929B2 (en) Low thermal expansion Ni-base superalloy and process for producing the same
US5032357A (en) Tri-titanium aluminide alloys containing at least eighteen atom percent niobium
JPH0297634A (en) Ni base superalloy and its manufacture
JP3308090B2 (en) Fe-based super heat-resistant alloy
US10913991B2 (en) High temperature titanium alloys
JP3076696B2 (en) α + β type titanium alloy
JPS5834129A (en) Heat-resistant metallic material
JPH04218642A (en) Low thermal expansion superalloy
JPH0463239A (en) High strength and high toughness ti alloy and method for heat treating it
JP3306878B2 (en) α + β type Ti alloy
JP2004107777A (en) Austenitic heat resistant alloy, production method therefor and steam turbine parts
JP3424314B2 (en) Heat resistant steel
JPH11117020A (en) Production of heat resistant parts
JP3491397B2 (en) Near β type high strength Ti alloy material with excellent fatigue crack propagation characteristics
JP2686140B2 (en) Alloy for high temperature bolt and method for producing the same
JP3365190B2 (en) Post heat treatment method for α + β type titanium alloy welded members
JP2001158943A (en) Heat resistant bolt
JP3216837B2 (en) Iron-based super heat-resistant alloy for heat-resistant bolts
JPS6013050A (en) Heat-resistant alloy
JP2001172751A (en) Fe-BASE HEAT-RESISTING ALLOY FOR ENGINE VALVE, WITH EXCELLENT COLD WORKABILITY AND HIGH TEMPERATURE STRENGTH
JPH08134615A (en) Production of high strength titanium alloy excellent in characteristic of balance of mechanical property
JPH11199987A (en) Heat resistant alloy suitable for cold working