JPS6052943B2 - printed wiring board - Google Patents

printed wiring board

Info

Publication number
JPS6052943B2
JPS6052943B2 JP55172025A JP17202580A JPS6052943B2 JP S6052943 B2 JPS6052943 B2 JP S6052943B2 JP 55172025 A JP55172025 A JP 55172025A JP 17202580 A JP17202580 A JP 17202580A JP S6052943 B2 JPS6052943 B2 JP S6052943B2
Authority
JP
Japan
Prior art keywords
printed wiring
pps
base material
wiring board
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55172025A
Other languages
Japanese (ja)
Other versions
JPS5796588A (en
Inventor
實 北中
雄吉 出口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP55172025A priority Critical patent/JPS6052943B2/en
Publication of JPS5796588A publication Critical patent/JPS5796588A/en
Publication of JPS6052943B2 publication Critical patent/JPS6052943B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は熱変形温度や半田耐熱性に代表される熱的性
質、機械的性質および金属箔と絶縁基材との接着強度が
すぐれ、しかも容易かつ安価に製造することのできるプ
リント配線板に関するものである。
Detailed Description of the Invention The present invention has excellent thermal properties such as heat distortion temperature and soldering heat resistance, mechanical properties, and adhesive strength between metal foil and insulating base material, and can be easily and inexpensively manufactured. The present invention relates to a printed wiring board that can be used in various ways.

絶縁基材上に銅箔などの金属箔からなる導体を平面的
に貼り合せて構成したいわゆるプリント配線板は、各種
家電製品、電子計算機、通信機、各種計器類などの分野
で大量に使用されている。
So-called printed wiring boards, which are constructed by laminating a conductor made of metal foil such as copper foil on an insulating substrate, are used in large quantities in fields such as various home appliances, computers, communications equipment, and various instruments. ing.

従来からプリント配線板用絶縁基材としては、エポキ
シ樹脂、フェノール樹脂、不飽和ポリエステル樹脂等の
熱硬化性樹脂と紙、ガラス繊維合成繊維等の基材を組み
合せた複合シートが用いられている。これらはいずれも
熱硬化性樹脂を溶媒に溶解してなる通常ワニスと呼ばれ
る溶液を紙、ガラス繊維、合成繊維等の基材に塗布、含
浸せしめた後、これを乾燥機に導き加熱することにより
ワニス中の溶媒を蒸発せしめて除去し、かつ樹脂の重合
反応を進めていわゆるB状態にしたプリプレグとなし、
このプリプレグを所定枚数重ね合せて加熱、加圧するこ
とにより樹脂を硬化せしめる方法により製造されていた
。しカルながらこの方法では、基材に塗布したワニスか
ら溶媒を除去する必要があるため、溶媒の回収および処
理に多大の費用を要するばかりか、溶媒が大気中に飛散
して作業環境を著しく悪化させ、しかも樹脂を硬化せし
めるのに多大の時間を要し経済的でないなどの問題があ
つた。 そこで本発明者らは上記した如き製造プロセス
の欠点を改良し、熱的、機械的性質が一層すぐれたプリ
ント配線板を容易かつ安価に製造することを目的として
鋭意検討した結果、特定の熱可塑性樹脂複合組成物から
なる板状成形品を絶縁基材として用いることにより、溶
媒の使用や樹脂の硬化に起因するプロセス上の問題が解
消され、しかも従来の熱硬化性樹脂を用いたプリント配
線板と同等またはそれ以上の特性を有するプリント配線
板が得られることを見出し本発明に到達した。
BACKGROUND ART Conventionally, as insulating substrates for printed wiring boards, composite sheets have been used in which thermosetting resins such as epoxy resins, phenolic resins, and unsaturated polyester resins are combined with substrates such as paper and glass fiber synthetic fibers. All of these are made by coating and impregnating a base material such as paper, glass fiber, or synthetic fiber with a solution usually called varnish, which is made by dissolving a thermosetting resin in a solvent, and then leading the solution to a dryer and heating it. The solvent in the varnish is evaporated and removed, and the polymerization reaction of the resin is advanced to produce a prepreg in the so-called B state,
It has been manufactured by a method in which a predetermined number of prepregs are piled up and heated and pressurized to harden the resin. However, with this method, it is necessary to remove the solvent from the varnish applied to the base material, which not only requires a great deal of expense for recovering and processing the solvent, but also causes the solvent to scatter into the atmosphere, significantly worsening the working environment. Moreover, it takes a lot of time to harden the resin, making it uneconomical. Therefore, the present inventors conducted intensive studies with the aim of improving the above-mentioned drawbacks of the manufacturing process and easily and inexpensively manufacturing printed wiring boards with even better thermal and mechanical properties. By using a plate-shaped molded product made of a resin composite composition as an insulating base material, process problems caused by the use of solvents and curing of resin can be solved, and in addition, printed wiring boards using conventional thermosetting resins can be solved. The present invention was achieved by discovering that a printed wiring board having characteristics equal to or superior to that of the present invention can be obtained.

すなわち本発明はポリフェニレンサルファイド樹脂(
以下PPSと略称する。)85〜2踵量%およ・び長さ
が5Wr!fL以上のガラス繊維15〜8踵量%の複合
からなり、樹脂マトリックスの結晶化度が40%以上で
ある板状成形品を絶縁基材として用いてなるプリント配
線板を提供するものである。 本発明の絶縁基材はPP
S本来の優れた電気的化・学的特性を保持した上に、さ
らに顕著な熱的、機械的特性を付与されたものであり、
通常の半田付作業を何ら支障なく適用でき、電気産業分
野に経済上多大の利益をもたらすものである。
That is, the present invention uses polyphenylene sulfide resin (
Hereinafter, it will be abbreviated as PPS. ) 85-2% heel weight and length is 5Wr! The present invention provides a printed wiring board using, as an insulating base material, a plate-shaped molded product made of a composite of 15 to 8% of glass fibers with a resin matrix having a crystallinity of 40% or more. The insulating base material of the present invention is PP
In addition to retaining the excellent electrical and chemical properties inherent to S, it has been given even more remarkable thermal and mechanical properties,
It can be applied to ordinary soldering work without any problems and brings great economic benefits to the electrical industry.

本発明で用いるPPSとは、構造式 /゛(5/一\\ ]に、、、.,)7「S+で示されるくり返し単位を9
0モル%以上、好ましくは95モル%以上含む重合体で
あり、上記くり返し単位(バラ結合のフェニレンスルフ
ィド単位)が90モル%未満では、ポリマの結晶性が十
分でなく、剛性や熱変形温度などの低下を招くため好ま
しくない。
The PPS used in the present invention has a structural formula /゛(5/1\\], ,,.,)7, with 9 repeating units represented by S+.
It is a polymer containing 0 mol% or more, preferably 95 mol% or more. If the repeating unit (phenylene sulfide unit of loose bond) is less than 90 mol%, the crystallinity of the polymer is insufficient, and the rigidity, heat distortion temperature, etc. This is not preferable because it causes a decrease in

またPPSはくり返し単位の10モル%未満をたとえば
下記の構造式を有するくり返し単位て構成することがで
きる。これらPPSは、温度300℃、みかけの断速度
200/Secの条件下で測定した溶融粘度が50ない
し50000ポイズ、好ましくは、100ないし500
0ポイズの範囲にあることが適当である。溶融粘度が5
0ポイズ以下では十分な機械的強度、耐衝撃性が発現せ
ず、また50000ポイズ以上では、ガラス繊維とPP
Sとを複合する場合にガラス繊維間隙へのPPSの含浸
が不十分となつて望ましい機械的強度が期待できないた
め適当ではない。なお本発明で用いるPPSには酸化防
止剤、熱安定剤、滑剤、結晶核剤、紫外線吸収剤、着色
剤、充填剤、離型剤などの通常の添加剤を添加すること
ができ、また本発明の目的を阻害しない範囲内で他種ポ
リマを少割合ブレンドすることもできる。
In addition, PPS can be composed of less than 10 mol % of repeating units having, for example, the following structural formula. These PPSs have a melt viscosity of 50 to 50,000 poise, preferably 100 to 500 poise, measured at a temperature of 300°C and an apparent shear velocity of 200/Sec.
It is appropriate that it be within the range of 0 poise. Melt viscosity is 5
If it is less than 0 poise, sufficient mechanical strength and impact resistance will not be developed, and if it is more than 50,000 poise, glass fiber and PP
When PPS is combined with S, the impregnation of PPS into the gaps between the glass fibers becomes insufficient and desired mechanical strength cannot be expected, so it is not suitable. Note that ordinary additives such as antioxidants, heat stabilizers, lubricants, crystal nucleating agents, ultraviolet absorbers, colorants, fillers, and mold release agents can be added to the PPS used in the present invention. It is also possible to blend small proportions of other types of polymers within a range that does not impede the purpose of the invention.

本発明で用いるガラス繊維の形態は、その長さが577
!F7!以上であればチヨツプドフアイバー、チヨツプ
ドフアイバーマツト、連続長繊維マット、織物、編物お
よびこれらの二種以上の組み合せ等いかなる状態で用い
ても良いが、マット状あるいは編織物等の布帛状のもの
がとくに好適に用い得る。
The length of the glass fiber used in the present invention is 577 mm.
! F7! As long as it is above, it may be used in any state such as chopped fiber, chopped fiber mat, continuous filament mat, woven fabric, knitted fabric, or a combination of two or more of these. A fabric-like material can be particularly preferably used.

本発明において良好な耐熱性、機械的強度および接着強
度を有するプリント配線板を得るためには、絶縁基材中
に含まれているガラス繊維の長さ、含有量およびPPS
の結晶化度が極めて重要である。
In the present invention, in order to obtain a printed wiring board with good heat resistance, mechanical strength and adhesive strength, the length and content of glass fibers contained in the insulating base material and the PPS
The degree of crystallinity is extremely important.

ガラス繊維は、長さ3wun以上のものと15〜8鍾量
%、好ましくは20〜75重量%配合する必要がある。
ガラス繊維の長さが5T0t未満、またはその添加量が
15重量%以下では十分な機械的特性が得られず、添加
量が8鍾量%以上ではかえつて機械的特性が低下するた
め好ましくない。絶縁基材K(7)PPSマトリックス
の結晶化度は少くとも40%以上、より好ましくは50
%以上必要であり、結晶化度が40%以下では加熱時の
変形が大きく耐熱性が不十分となるため好ましくない。
It is necessary to blend the glass fibers with a length of 3 wun or more in an amount of 15 to 8% by weight, preferably 20 to 75% by weight.
If the length of the glass fiber is less than 5T0t or the amount added is less than 15% by weight, sufficient mechanical properties cannot be obtained, and if the amount added is more than 8% by weight, the mechanical properties are deteriorated, which is not preferable. The degree of crystallinity of the insulating base material K (7) PPS matrix is at least 40%, more preferably 50%.
% or more, and if the crystallinity is less than 40%, it is not preferable because deformation during heating will be large and heat resistance will be insufficient.

なお本発明でいう結晶化度とは、X線回折法(角戸正夫
、“高分子X線回折゛P.262〜2関等参照)により
求めたものであり、具体的には20=100および42
たの範囲の回折強度曲線について、20=144、24
範の回折強度を直線で結んでベースラインとし、回折強
度曲線の裾をなめらかな曲線で結び、結晶による回折と
非晶ハローとを分割することにより求めた値である。な
おこの際、試料中のガラス繊維にもとずく非晶散乱強度
は、非晶PPSの散乱強度に比較して著しく小さいため
、非晶ハローに与えるガラス繊維からの回折は無視し特
に補正を行なわなかつた。ガラス繊維とPPSとを複合
し、板状成形物を得る方法は特に制限されないが、長さ
3wn以上のチヨツプドフアイバーあるいはチヨツプド
フアイバーからなるマット、連続長繊維マット、織物な
どの形態のガラス繊維と粉末状、ペレット状、シート状
などの形態のPPSとを交互に積み重ねPPSの融点以
上に加熱し、加圧、冷却する方法が一般的である。
The degree of crystallinity in the present invention is determined by an X-ray diffraction method (Masao Kakuto, "Polymer X-ray Diffraction", p. 262-2), and specifically, 20=100. and 42
For the diffraction intensity curves in the above range, 20=144, 24
This value is obtained by connecting the diffraction intensities of the range with a straight line to form a baseline, connecting the tails of the diffraction intensity curves with a smooth curve, and dividing the diffraction by the crystal and the amorphous halo. At this time, since the amorphous scattering intensity based on the glass fibers in the sample is significantly smaller than the scattering intensity of amorphous PPS, the diffraction from the glass fibers imparted to the amorphous halo is ignored and no special correction is performed. Nakatsuta. There are no particular restrictions on the method for obtaining a plate-like molded product by combining glass fibers and PPS, but chopped fibers with a length of 3wn or more, mats made of chopped fibers, continuous long fiber mats, woven fabrics, etc. A common method is to alternately stack glass fibers in the form of powder, pellets, sheets, etc., heat them above the melting point of the PPS, pressurize them, and cool them.

この方法によればエポキシ樹脂やフェノール樹脂などの
ワニスを用いる従来の方法に比べ、PPSを溶融しガラ
ス繊維に含浸せしめた後加圧下に冷却するだけで良好な
絶縁基材が得られ、溶媒の回収、処理等の工程が不要に
なるばかりか、樹脂を硬化せしめる必要がないため極め
て効率的である。特に上記ガラス繊維マットとPPSシ
ートとを積み重ねたものを、一対の金属無端ベルト間に
供給し、連続的に加熱、含浸、冷却する方法が効率的て
優れている。
According to this method, compared to conventional methods that use varnishes such as epoxy resins and phenolic resins, a good insulating base material can be obtained by simply melting PPS, impregnating it into glass fibers, and then cooling it under pressure. Not only does it eliminate steps such as collection and treatment, it also eliminates the need to harden the resin, making it extremely efficient. Particularly efficient and excellent is a method in which a stack of the above-mentioned glass fiber mat and PPS sheet is fed between a pair of endless metal belts, and then heated, impregnated, and cooled continuously.

この方法における加熱温度は通常290〜330゜C、
圧力は10〜150k9/Crll冷却温度はPPSが
結晶化度40%以上に結晶化し得る約120℃以上融点
(約285℃)以下好ましくは140〜240℃の範囲
が適当である。なお押出機等によりガラスのチヨツプド
フアイバーとPPSとを溶融混練しペレタイズ後射出成
形により板状体を成形する方法も考えられるが、この方
法においては溶融混練時あるいは射出成形時のスクリュ
ーによる断力でガラス繊維が37n1n以下に切断され
てしまうため十分な機械的強度が発現しないだけでなく
、成形時の流動により成形品の特性を異方性を持つよう
になり、成形品にそりが発生するため好ましくない。
The heating temperature in this method is usually 290 to 330°C,
The pressure is 10 to 150 k9/Crll, and the cooling temperature is suitably in the range of about 120 DEG C. or higher and below the melting point (about 285 DEG C.), preferably 140 DEG to 240 DEG C., at which PPS can be crystallized to a degree of crystallinity of 40% or more. It is also possible to use an extruder or the like to melt and knead glass chopped fibers and PPS, pelletize them, and then mold them into a plate by injection molding. Because the glass fibers are cut to 37n1n or less by the shearing force, not only will sufficient mechanical strength not be developed, but the flow during molding will cause the properties of the molded product to become anisotropic, causing warpage in the molded product. This is not desirable because it occurs.

本発明において絶縁基材として用いる板状成形品の厚さ
には特に制限がなく、通常は0.1〜5.0wnの範囲
が選択される。
There is no particular restriction on the thickness of the plate-shaped molded product used as the insulating base material in the present invention, and a range of 0.1 to 5.0 wn is usually selected.

なお場合によつては板状成形品の厚みを増量するために
その一面にさらに他樹脂からなるシートを積層して実用
に供することも可能である。以上のようにして得られた
板状成形品は、ASTMD648に記載の荷重18.6
k9/dにおける熱変形温度が260〜285℃と著し
く高く、極めて優れた耐熱性および耐半田性を有してい
るばかりか、機械的強度も著しくすぐれているので、プ
リント配線板としての望ましい特性を発揮する。
In some cases, in order to increase the thickness of the plate-shaped molded product, a sheet made of another resin may be further laminated on one side of the plate-shaped molded product for practical use. The plate-shaped molded product obtained as described above has a load of 18.6 as specified in ASTM D648.
The heat distortion temperature at k9/d is extremely high at 260-285°C, and it not only has extremely excellent heat resistance and solder resistance, but also has extremely excellent mechanical strength, so it has desirable characteristics as a printed wiring board. demonstrate.

上記板状成形品を絶縁基材として用いて、本発明のプリ
ント配線板を製造する方法にもとくに制限がなく、たと
えば銅箔などの金属箔を絶縁基材に貼り合せた後、金属
箔をパターンエッチングするいわゆるサブトラクテイブ
法、絶縁基材上に銅等をパターン状にメッキするアディ
ティブ法、パターン状に打ち抜いた銅箔等を絶縁基材に
貼り合せるスタンピングホイル法などを利用することが
できる。
There are no particular limitations on the method for manufacturing the printed wiring board of the present invention using the plate-shaped molded product as an insulating base material. For example, after bonding a metal foil such as copper foil to an insulating base material, the metal foil is A so-called subtractive method in which pattern etching is performed, an additive method in which copper or the like is plated in a pattern on an insulating base material, a stamping foil method in which copper foil etc. punched out in a pattern are bonded to an insulating base material, etc. can be used.

なお絶縁基材と銅箔などの金属箔との貼り合せは、接着
剤を用いることなく基材の加圧成形時あるいは成形後に
金属箔を直接重ね合せて圧着することもできるし、また
接着剤を用いることもできるが、金属箔と絶縁基材の接
着強度も著しくすぐれている。
Note that the insulating base material and the metal foil such as copper foil can be bonded together without using an adhesive by directly overlapping the metal foils during pressure molding of the base material or after molding, or by using an adhesive. can also be used, but the adhesive strength between the metal foil and the insulating base material is also extremely excellent.

このように簡略化されたプロセスで製造される本発明の
プリント配線板はすぐれた熱的、機械的特性を有し、半
田特性も良好であるので、電気産業分野への適用が大い
に期待される。
The printed wiring board of the present invention manufactured by such a simplified process has excellent thermal and mechanical properties and good solderability, so it is highly expected to be applied to the electrical industry field. .

以下実施例により本発明をさらに詳しく説明する。実施
例1 オートクレーブに、硫化ナトリウム32.6k9(25
0モル、結晶水40Wt%を含む)、水酸化ナトリウム
100y1安息香酸ナトリウム36.1kg(250モ
ル)、及びN−メチルー2−ピロリドン(以下NMPと
略称する)79.2k9を仕込みかく拌しながら徐々に
205℃まで昇温し、水6.9k9を含む留出液7.0
′を除去した。
The present invention will be explained in more detail with reference to Examples below. Example 1 Sodium sulfide 32.6k9 (25
0 mol, containing 40 wt% of crystal water), 100 y of sodium hydroxide, 36.1 kg (250 mol) of sodium benzoate, and 79.2 k9 of N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP) were gradually added while stirring. The distillate was heated to 205℃ and contained 6.9k9 of water.
' was removed.

残留混合物に、1,4ージクロルベンゼン37.5k9
(255モル)、およびNMP2O.Ok9を加え、2
65゜Cで4時間加熱した。反応生成物を熱湯で8回洗
浄し、真空乾燥機を用いて80℃で24Tf間乾燥して
、溶融粘度2900ポイズの粉末状高重合度PPS2l
.lk9を得た。上記PPSを用い、押出成形により厚
さ0.7Tn!nのシートを作成した。
1,4-dichlorobenzene 37.5k9 to the residual mixture
(255 mol), and NMP2O. Add Ok9, 2
Heated at 65°C for 4 hours. The reaction product was washed 8 times with hot water and dried for 24 Tf at 80°C using a vacuum dryer to obtain 2 l of powdered highly polymerized PPS with a melt viscosity of 2900 poise.
.. I got lk9. Using the above PPS, the thickness is 0.7Tn by extrusion molding! n sheets were created.

次にこのシート2枚と、ガラスの連続長繊維マット(旭
ファイバーグラス製M96OO、目付量600k9/d
)2枚とを交互に重ねて330℃に設定した加熱ブレス
中の平板状金型間に供給し、5k9/dの圧力を加えて
3分間加熱後、150℃の設定した冷却ブレスに上記金
型を移し35k9/dの圧力を加えて5分間冷却するこ
とにより、厚さ1.6Tmのガラス連続長繊維で補強し
たPPS板状成形品Aを得た。また上記と同じ方法て得
たPPS粉末と長さが3a7m15T1r!nおよび1
5w0nのガラスチヨツプドフアイバー(旭ファイバー
グラス製CSO3MA4ll、CSO5MA4llおよ
びCSl5MA4ll)とをガラス繊維の配合量が4呼
量%になるようにヘンシエルミキサーに供給し2紛間混
合し、PPS粉末とガラスチヨツプドフアイバーからな
る綿状外観の混合物を得た。
Next, add these two sheets and a glass continuous fiber mat (Asahi Fiberglass M96OO, basis weight 600k9/d).
) are stacked alternately and supplied between flat molds in a heating press set at 330°C, heated for 3 minutes under a pressure of 5k9/d, and then placed in a cooling press set at 150°C. The mold was transferred, a pressure of 35 k9/d was applied, and the mold was cooled for 5 minutes to obtain a PPS plate-shaped molded product A reinforced with continuous glass fibers having a thickness of 1.6 Tm. Also, the length of PPS powder obtained by the same method as above is 3a7m15T1r! n and 1
5w0n glass chopped fibers (CSO3MA4ll, CSO5MA4ll and CSl5MA4ll made by Asahi Fiberglass) were fed into a Henschel mixer so that the blended amount of glass fiber was 4% by weight, and mixed with PPS powder. A mixture with a flocculent appearance consisting of glass chopped fibers was obtained.

次にこの混合物を加熱ブレス間に供給し、前記と同じ条
件でブレス、冷却することにより、厚さ1.6wnの板
状成形品B,CおよびDを圧縮成形した。一方ブチレン
テレフタレート単位4呼量%ブチレンテレフタレート単
位2踵量%、ドデカンアミド単位3鍾量%からなるポリ
エステルアミド樹脂7娼とビスフェノール型エポキシ樹
脂3娼からなる接着剤(モノクロルベン/メタノール系
混合溶媒に溶解したもの)を市販のプリント配線用電解
銅箔(厚さ35μ)に塗布乾燥して接着剤付き銅箔を作
製した。
Next, this mixture was supplied between heating presses, pressed and cooled under the same conditions as above to compression mold plate-shaped molded products B, C, and D having a thickness of 1.6 wn. On the other hand, an adhesive consisting of 7 parts of a polyester amide resin consisting of 4 parts by weight of butylene terephthalate units, 2 parts by weight of butylene terephthalate units and 3 parts by weight of dodecane amide units and 3 parts of a bisphenol type epoxy resin (in a monochloroben/methanol mixed solvent). The dissolved solution was coated on a commercially available electrolytic copper foil for printed wiring (thickness: 35 μm) and dried to produce an adhesive-coated copper foil.

次に上記板状体と接着剤付き銅箔とを重ね合せて、13
0℃で加熱圧着しさらに接着剤を熱硬化させて銅張積層
板(プリント配線板)を作つた。得られた銅張積層板の
各種特性項目をJISC648lに基づいて測定した結
果を表1に示す。さらに比較のため上記PPS粉末に長
さが3W!lのガラスチヨツプドフアイバー4鍾量%を
添加し、押出機で均一に混合して得たペレットを射出成
形機に供し、金型温度120℃の条件で厚さ1.6m1
16−×12h寸法の板状成形品Eを作成した。
Next, the above-mentioned plate-shaped body and copper foil with adhesive are overlapped, and 13
A copper-clad laminate (printed wiring board) was produced by heat-pressing at 0° C. and then heat-curing the adhesive. Table 1 shows the results of measuring various characteristic items of the obtained copper-clad laminate based on JISC648l. Furthermore, for comparison, the length of the above PPS powder is 3W! The pellets obtained by adding 4% by weight of glass chopped fibers and uniformly mixing them in an extruder were put into an injection molding machine and molded to a thickness of 1.6 m1 at a mold temperature of 120°C.
A plate-shaped molded product E with dimensions of 16-12h was created.

この板状成形品Eを用いて上記と同様に銅張積層板を作
成し、種々の特性を評価した結果を表1に併せて示す。
なお表1中の半田耐熱性および剥離強度以外の評価結果
はいずれも銅箔をエッチングにより除去した基板につい
ての値である。
A copper-clad laminate was prepared using this plate-shaped molded product E in the same manner as described above, and the results of evaluating various properties are also shown in Table 1.
Note that all evaluation results other than solder heat resistance and peel strength in Table 1 are values for the substrate from which the copper foil was removed by etching.

また表1中のガラス繊維の長さは板状成形品を焼却した
後の灰分を顕微鏡および肉眼鑑察して求めた値であり、
この結果から板状成形品A,C,Dはガラス繊維がその
長さを保持して成形品中に含まれているのに対し、押出
および射出成形を経た板状成形品Eにおいてはガラス繊
維が0.3wn以下に切断されていることがわかる。
In addition, the length of the glass fiber in Table 1 is the value determined by observing the ash content under a microscope and with the naked eye after incinerating the plate-shaped molded product.
This result shows that glass fibers are contained in the molded products while maintaining their length in the plate-shaped molded products A, C, and D, whereas in the plate-shaped molded product E that has undergone extrusion and injection molding, the glass fibers are contained in the molded products. It can be seen that the length is cut to 0.3wn or less.

そして表1の結果からはガラス繊維の長さが3順以下の
場合(NO.l,2)は、半田耐熱性がなく耐熱性が劣
るだけでなく曲げ強度も著しく劣るなどの欠点があるの
に対し、本発明のプリント配線板(NO.3〜5)はこ
れらの欠点が改良されていることが明らかである。
From the results in Table 1, it can be seen that when the length of glass fibers is in the order of 3 or less (No. 1, 2), there are disadvantages such as not only poor soldering heat resistance but also extremely poor bending strength. On the other hand, it is clear that the printed wiring boards (Nos. 3 to 5) of the present invention have improved these drawbacks.

実施例2 実施例1と同様の方法て作成したPPSの押出成形シー
ト1〜3枚とガラス連続長繊維マット1〜4板および銅
箔1板とを、銅箔が最外層を形成し、かつ銅箔はPPS
に直接接触するように重ね合せて各々ガラス繊維含有量
が表2の割合となるようにし、これを室温の平板状金型
間に供給し、金型を330℃に設定した加熱ブレスに導
き、圧力10K9/C7iを加えて1紛間保持した後、
金型を150℃に設定した冷却ブレスに移し100k9
/dの圧力を加えて1紛間冷することにより厚さ1.2
〜1.5?の外観良好な銅張積層板(プリント配線板)
を得た。
Example 2 1 to 3 extrusion-molded sheets of PPS prepared in the same manner as in Example 1, 1 to 4 sheets of continuous glass fiber mat, and 1 sheet of copper foil, with the copper foil forming the outermost layer, and Copper foil is PPS
The glass fibers were stacked so that they were in direct contact with each other so that the glass fiber content was in the proportions shown in Table 2, and this was supplied between flat molds at room temperature, and the mold was introduced into a heating press set at 330 ° C. After applying a pressure of 10K9/C7i and holding it for 1 hour,
Transfer the mold to a cooling brace set at 150℃ and heat it to 100k9.
By applying a pressure of /d and cooling the powder, the thickness is 1.2
~1.5? Copper-clad laminate (printed wiring board) with good appearance
I got it.

各積層板について実施例1と同様の評価を行ない表2の
結果を得た。表2の結果からガラス繊維含有量が15重
量%以下(NO.6)では耐熱性、曲げ強度が著しく劣
ることが明らかである。
Each laminate was evaluated in the same manner as in Example 1, and the results shown in Table 2 were obtained. From the results in Table 2, it is clear that when the glass fiber content is 15% by weight or less (No. 6), the heat resistance and bending strength are significantly inferior.

実施例3 実施例1て得たPPS粉末から押出成形により厚さ1.
0Tnmのシートを作製した。
Example 3 The PPS powder obtained in Example 1 was extruded to a thickness of 1.
A sheet of 0 Tnm was produced.

このシート2枚と実施例1て使用したガラス連続長繊維
マット2枚とを交互に重ね、冷却ブレス温度を水冷(約
20゜C)〜180゜Cに変化させた他は実施例2と同
様の操作を実施し、表3の如く結晶化度を種々変化させ
た厚さ2.0WrInの銅張積層板(プリント配線板)
を得た。各積層板について耐熱性、曲げ強さ等を評価し
表3の結果を得た。表3からは結晶化度が40%未満(
NOlO,ll)では耐熱性が著しく劣ることが明らか
である。実施例4 みかけの溶融粘度が約150ポイズのPPS粉末(フィ
リップス・ペトローリアム社製、64ライトゾ゛V−1
)をガラス連続長繊維マット(旭ファイバーグラス製M
96OO、目付600y/d)の上に均一に散布し、こ
れを二枚重ねたものの最外層へ、さらに銅箔(厚み35
μ)を重ねて、金属無端ベルト間に供給し、加圧下で加
熱、冷却を連続的に実施することにより、厚さ2.iの
ガラス繊維補強PPSを絶縁基材とする銅張積層板を得
た。
Same as Example 2, except that these two sheets and the two continuous glass fiber mats used in Example 1 were stacked alternately, and the cooling breath temperature was varied from water cooling (approximately 20°C) to 180°C. Copper-clad laminates (printed wiring boards) with a thickness of 2.0 WrIn were prepared by performing the following operations and varying the degree of crystallinity as shown in Table 3.
I got it. Each laminate was evaluated for heat resistance, bending strength, etc., and the results shown in Table 3 were obtained. Table 3 shows that the degree of crystallinity is less than 40% (
It is clear that the heat resistance of NOlO,ll) is significantly inferior. Example 4 PPS powder with an apparent melt viscosity of about 150 poise (manufactured by Phillips Petroleum, 64 Litezo V-1)
) to glass continuous long fiber mat (M made by Asahi Fiberglass)
96OO, area weight 600y/d), and then coated with copper foil (thickness 35
μ) are stacked, supplied between endless metal belts, and heated and cooled continuously under pressure to achieve a thickness of 2.5 μm. A copper-clad laminate using the glass fiber-reinforced PPS of i as an insulating base material was obtained.

成形条件は加熱ゾーン設定温度:325℃、冷却ゾーン
設定温度;120℃、ベルト速度;0.33m/分、製
品中心部最高温度;298℃、製品取り出し時温度;1
80℃であった。得られた銅張積層板(プリント配線板
)の絶縁基材中ガラス繊維含有量は37%、結晶化度は
57%、熱変形温度は280℃、曲げ強さは21kg/
Mm2であり、すぐれた耐熱性、機械的性質を有してい
た。
The molding conditions are heating zone set temperature: 325°C, cooling zone set temperature: 120°C, belt speed: 0.33 m/min, maximum temperature at the center of the product: 298°C, temperature when taking out the product: 1
The temperature was 80°C. The resulting copper-clad laminate (printed wiring board) had a glass fiber content of 37% in the insulating base material, a crystallinity of 57%, a heat distortion temperature of 280°C, and a bending strength of 21 kg/
Mm2, and had excellent heat resistance and mechanical properties.

またJISC648lに基づいて銅張積層板の各種特性
を評価した結果、表4に示すとおりすぐれた特性を有し
ていた。実施例5 実施例4と同じPPS粉末をガラスクロス(旭ファイバ
ーグラス製、H252)のうえに均一に散布し、これを
2枚重ねて、330℃に設定した加熱ブレス中の平板状
金型間に供給し、5k9/Cltの圧力を加えて3分間
加熱後、150℃に設定した冷却ブレス中に上記金型を
移し35k9/Cltの圧力を加えて5分間冷却するこ
とにより、厚さ0.65Tn!nのガラスクロスで補強
した板状成形品を得た。
Furthermore, as a result of evaluating various properties of the copper-clad laminate based on JISC648l, it was found that the copper-clad laminate had excellent properties as shown in Table 4. Example 5 The same PPS powder as in Example 4 was evenly spread on glass cloth (H252, manufactured by Asahi Fiberglass), two sheets were stacked on top of each other, and the sheets were placed between flat molds in a heating press set at 330°C. After applying a pressure of 5k9/Clt and heating for 3 minutes, the mold was transferred to a cooling breath set at 150°C, and a pressure of 35k9/Clt was applied and cooled for 5 minutes to form a mold with a thickness of 0. 65Tn! A plate-shaped molded product reinforced with glass cloth of n was obtained.

上記方法て得た板状体の片面に厚さ35ミクロンのプリ
ント配線用電解銅箔を重ねて、310′Cに設定した加
熱ブレス中の平板状金型間に供給し、10k9/Cli
の圧力を加えて3分間保持した後、150℃に保持した
冷却ブレスに上記金型を移し100kg/dの圧力を加
えて1紛間冷却したところ、外観良好な銅張積層板が得
られた。
Electrolytic copper foil for printed wiring with a thickness of 35 microns was layered on one side of the plate obtained by the above method, and it was supplied between the flat molds in a heating press set at 310'C.
After applying a pressure of .

この銅張積層板の各種特性を評価したところ表5の如く
すぐれた結果を得た。
When various properties of this copper-clad laminate were evaluated, excellent results were obtained as shown in Table 5.

Claims (1)

【特許請求の範囲】[Claims] 1 ポリフェニレンサルファイド樹脂85〜20重量%
および長さが5mm以上のガラス繊維15〜80重量%
の複合からなり、樹脂マトリックスの結晶化度が40%
以上である板状成形品を絶縁基材として用いてなるプリ
ント配線板。
1 Polyphenylene sulfide resin 85-20% by weight
and 15-80% by weight of glass fibers with a length of 5 mm or more
The crystallinity of the resin matrix is 40%.
A printed wiring board using the plate-shaped molded product as described above as an insulating base material.
JP55172025A 1980-12-08 1980-12-08 printed wiring board Expired JPS6052943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55172025A JPS6052943B2 (en) 1980-12-08 1980-12-08 printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55172025A JPS6052943B2 (en) 1980-12-08 1980-12-08 printed wiring board

Publications (2)

Publication Number Publication Date
JPS5796588A JPS5796588A (en) 1982-06-15
JPS6052943B2 true JPS6052943B2 (en) 1985-11-22

Family

ID=15934121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55172025A Expired JPS6052943B2 (en) 1980-12-08 1980-12-08 printed wiring board

Country Status (1)

Country Link
JP (1) JPS6052943B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6154933A (en) * 1984-08-27 1986-03-19 呉羽化学工業株式会社 Printed wiring board
JPH0684543B2 (en) * 1985-12-18 1994-10-26 呉羽化学工業株式会社 Selective chemical plating
US5639544A (en) * 1993-03-31 1997-06-17 Toray Industries, Inc. Resin-impregnated fabric sheet

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51145574A (en) * 1975-06-10 1976-12-14 Hodogaya Chemical Co Ltd Manufacture of heattresistant resin impregnating agent
JPS5485380A (en) * 1977-12-20 1979-07-06 Tokyo Shibaura Electric Co Substrate for electric wiring
JPS54146867A (en) * 1978-05-11 1979-11-16 Toshiba Corp Production of heat-resistant insulator
JPS54146852A (en) * 1978-05-10 1979-11-16 Shin Etsu Chem Co Ltd Polyphenylene sulfide resin composition
JPS556231A (en) * 1978-06-28 1980-01-17 Citizen Watch Co Ltd Watch parts
JPS5529526A (en) * 1978-08-21 1980-03-01 Shin Etsu Chem Co Ltd Polyphenylene sulfide resin composition
JPS5543120A (en) * 1978-09-22 1980-03-26 Dainippon Ink & Chem Inc Preparation of improved resin composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51145574A (en) * 1975-06-10 1976-12-14 Hodogaya Chemical Co Ltd Manufacture of heattresistant resin impregnating agent
JPS5485380A (en) * 1977-12-20 1979-07-06 Tokyo Shibaura Electric Co Substrate for electric wiring
JPS54146852A (en) * 1978-05-10 1979-11-16 Shin Etsu Chem Co Ltd Polyphenylene sulfide resin composition
JPS54146867A (en) * 1978-05-11 1979-11-16 Toshiba Corp Production of heat-resistant insulator
JPS556231A (en) * 1978-06-28 1980-01-17 Citizen Watch Co Ltd Watch parts
JPS5529526A (en) * 1978-08-21 1980-03-01 Shin Etsu Chem Co Ltd Polyphenylene sulfide resin composition
JPS5543120A (en) * 1978-09-22 1980-03-26 Dainippon Ink & Chem Inc Preparation of improved resin composition

Also Published As

Publication number Publication date
JPS5796588A (en) 1982-06-15

Similar Documents

Publication Publication Date Title
US4389453A (en) Reinforced polyphenylene sulfide molded board, printed circuit board including this molded board and process for preparation thereof
US9243132B2 (en) High-frequency copper foil covered substrate and compound material used therein
GB2199286A (en) Moulded laminate of fibre-reinforced cross-linked polypropylene
JPS6331367B2 (en)
JPS6052943B2 (en) printed wiring board
JPS593991A (en) Printed circuit board
EP0096122B1 (en) Reinforced polyphenylene sulphide board, printed circuit board made therefrom and process for making them
JP3261061B2 (en) Resin composition for laminate, prepreg and laminate using the composition
JP4214573B2 (en) Laminate production method
JPS5968990A (en) Printed circuit board
JPS6128545A (en) Resin composition, laminate, and their preparation
JPS5921774B2 (en) Manufacturing method of cyanate resin laminate
JPS6221626B2 (en)
JP3001400B2 (en) High frequency printed wiring board and method of manufacturing the same
JPS5969989A (en) Printed circuit board
JPH03264347A (en) Manufacture of flame retardant polyamino-bis-maleimide resin laminate
JPS5816588A (en) Printed circuit board
JPS6330538A (en) Production of laminated sheet
JPS61137391A (en) Manufacture of molding for printed wiring
JPS60135425A (en) Curable resin composition and its molding
JPS63145022A (en) Manufacture of multilayer printed wiring board
JPS6220882B2 (en)
JPH02218196A (en) Semi-cured resin copper-clad laminated sheet
JPH02218195A (en) Manufacture of copper-clad laminated sheet
JPS6295325A (en) Production of laminated sheet