JPH02218195A - Manufacture of copper-clad laminated sheet - Google Patents

Manufacture of copper-clad laminated sheet

Info

Publication number
JPH02218195A
JPH02218195A JP1038258A JP3825889A JPH02218195A JP H02218195 A JPH02218195 A JP H02218195A JP 1038258 A JP1038258 A JP 1038258A JP 3825889 A JP3825889 A JP 3825889A JP H02218195 A JPH02218195 A JP H02218195A
Authority
JP
Japan
Prior art keywords
copper
laminated sheet
peel strength
resin
prepreg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1038258A
Other languages
Japanese (ja)
Inventor
Kazuo Noguchi
野口 一夫
Takeo Kaneoka
金岡 威雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP1038258A priority Critical patent/JPH02218195A/en
Publication of JPH02218195A publication Critical patent/JPH02218195A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

PURPOSE:To made possible the use of a prepreg using a matrix resin and holding of the physical properties of the prepreg by a method wherein a copper foil is heated and pressed in such a way that its peel strength becomes that in a specified range to form a semicured resin copper-clad laminated sheet and after being cut in a prescribed dimension, the laminated sheet is postcured at a specified temperature. CONSTITUTION:In the manufacturing method of a continuous copper-clad laminated sheet using a double belt press method, a copper foil is heated and pressed in such a way that its peel strength is 0.2kg/cm or more and is confined within a range of 90% or less of its peel strength at the time of complete curing to form a semi-cured resin copper-clad laminated sheet, then, after being cut in a prescribed dimension, the laminated sheet is postcured at temperatures of 100 to 240 deg.C. Here, it is desirable that the peel strength of the copper foil is set in 0.3kg/cm or more and the postcuring is performed in an oxygen-free atmosphere. Thereby, a prepreg for multi-stage press use using a matrix resin by a continuous press can be used without changing substantially its composition and the like and at the same time, the formation of a copper-clad laminated sheet set to the physical properties of the prepreg in a desired range can be performed easily.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、従来の多段プレスなどに用いられているプリ
プレグを何ら変更することなく、生産性、寸法安定性、
機械的強度等に優れた銅張積層板を製造する連続プレス
と後硬化とを結合した新規な銅張積層板の製造法であり
、本発明の製造法による銅張積層板は、高寸法精度の銅
張積層板として種々の用途、例えば、プリント配線板、
多層板の中間層、外層用等として好適に使用されるもの
である。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention improves productivity, dimensional stability, and
This is a new manufacturing method for copper-clad laminates that combines continuous pressing and post-curing to produce copper-clad laminates with excellent mechanical strength, etc. The copper-clad laminates produced by the manufacturing method of the present invention have high dimensional accuracy. Various uses as copper-clad laminates, such as printed wiring boards,
It is suitably used as an intermediate layer, an outer layer, etc. of a multilayer board.

〔従来の技術〕[Conventional technology]

銅張積層板の製造法の一つとして、長尺の樹脂含浸基材
を所望枚数とその最外の片面又は両面に長尺の銅箔を重
ね合わせた構成の積層材を一対のベルト間で加熱加圧す
るダブルベルトプレス法による連続的銅張積層板の製造
法が知られている(特開昭61−10456他)。
As one of the manufacturing methods for copper-clad laminates, a laminate consisting of a desired number of long resin-impregnated base materials and a long copper foil layered on one or both of the outermost surfaces is placed between a pair of belts. A method for producing a continuous copper-clad laminate using a double belt press method using heat and pressure is known (Japanese Unexamined Patent Publication No. 10456/1986, etc.).

この方法は通常、常温の樹脂含浸基材と銅箔とを一対の
ベルト間に供給し、ダブルベルトプレスの加圧加熱領域
で圧力50kg/Cr1以上、温度約200℃程度に加
熱加圧して樹脂を硬化させ、次いで加圧冷却領域で急速
に冷却して一対のベルト間から冷却された銅張積層板を
排出する方法が取られている。この連続製造法は優れた
方法であるが、高い圧力を使用するためには加圧に種々
の問題点が生じること、また、多段プレスと同等の生産
性を確保するためには、加熱加圧硬化時間を数分以内と
しなければ成らないこと等の問題点があった。
This method usually involves supplying a resin-impregnated base material and copper foil at room temperature between a pair of belts, heating and pressing the resin to a pressure of 50 kg/Cr1 or more and a temperature of about 200°C in the pressure heating area of a double belt press. The copper-clad laminate is cured, then rapidly cooled in a pressurized cooling area, and the cooled copper-clad laminate is discharged from between a pair of belts. Although this continuous manufacturing method is an excellent method, various problems arise in pressurization due to the use of high pressure, and in order to ensure productivity equivalent to multistage press, heating and pressing There were problems such as the fact that the curing time had to be kept within a few minutes.

使用圧力の低下と寸法精度の向上を目的として、本発明
者は先に、積層材の真空下の予備融着(特願昭62−3
03284号)、積層材の予備加熱の利用(特願昭63
−45771号)を見出し出願した。
For the purpose of reducing the working pressure and improving dimensional accuracy, the present inventor previously developed a method for pre-fusion of laminated materials under vacuum (Japanese Patent Application No. 1983-3).
No. 03284), Utilization of preheating of laminated materials (Patent Application No. 1983)
-45771) was filed.

しかし、上記の連続プレスによって従来の多段プレス用
のプリプレグの組成等を実質的に変化させることなく使
用した銅張積層板の製造法に関する記載などは見出され
ていないものである。
However, no description has been found regarding a method for producing a copper-clad laminate using the above-mentioned continuous press without substantially changing the composition of the conventional multi-stage prepreg.

〔従来技術の課題〕[Issues with conventional technology]

本発明者は、上記の連続プレスの実用化について連続プ
レスと多段プレスとを比較した場合の特徴(利点、欠点
)について鋭意検討した。
The present inventor has intensively studied the characteristics (advantages and disadvantages) when comparing a continuous press and a multi-stage press regarding the practical use of the above-mentioned continuous press.

その結果、連続プレスは、 ■、基材、銅箔などの積層材料を所定の長さに切断する
必要がない。
As a result, the continuous press does not require (1) cutting laminated materials such as base material and copper foil into predetermined lengths;

■、加圧加熱ゾーンに於ける被積層材に負荷される圧力
・温度・時間のバラツキは装置の安定性にのみ依存する
(2) Variations in the pressure, temperature, and time applied to the materials to be laminated in the pressure and heating zone depend only on the stability of the equipment.

との特徴を有し、従って、 ■、■より、プリプレグ製造工程との連続化が容易であ
る。
Therefore, it is easier to integrate the prepreg manufacturing process in accordance with (1) and (2).

■、また、粘着性のプリプレグが使用可能である。(2) Also, adhesive prepreg can be used.

■、■より、プリプレグ樹脂の硬化特性とそれに伴う物
性値を把握しておけば、樹脂の硬化度や物性を所望範囲
としだ銅張積層板を製造することが容易であり、かつ、
加工コストへのこの条件設定の影響は少ない。
From ① and ③, if you understand the curing characteristics of prepreg resin and the associated physical property values, it is easy to manufacture copper-clad laminates with the degree of curing and physical properties of the resin within the desired range, and
This condition setting has little effect on processing costs.

■、■より、装置の安定性が良好ならば、多投プレスに
比較して厚み、寸法等の精度の向上がもたらされる。
From (2) and (2), if the stability of the device is good, the accuracy of thickness, dimensions, etc. will be improved compared to the multi-throw press.

の利点を有し、 ■、■であるが、多段プレスと同等の生産性を得るには
、積層成形時間を数分以内とする必要がある。
However, in order to obtain productivity equivalent to that of multistage presses, the lamination molding time must be within a few minutes.

■、従って、通常の銅張積層板を製造する場合、即硬化
性のプリプレグを使用する必要があるが、従来のプリプ
レグを触媒添加量等で°即硬化すると物性が劣る欠点が
生じる。
(2) Therefore, when producing a normal copper-clad laminate, it is necessary to use an instant-curing prepreg, but if a conventional prepreg is immediately cured by adding a catalyst, etc., it has the disadvantage of poor physical properties.

の欠点を有することが明らかとなった。It has become clear that it has the following drawbacks.

そこで、本発明者は、上記のような連続プレスの特徴を
活かす方法について鋭意検討した結果、本発明を完成す
るに至った。
Therefore, the inventor of the present invention conducted extensive studies on a method of utilizing the features of continuous press as described above, and as a result, completed the present invention.

〔課題を解決するための手段〕[Means to solve the problem]

すなわち、本発明は、長尺の樹脂含浸基材を1枚又は複
数枚とその最外の片面又は両面に長尺の銅箔を重ね合わ
せた構成の積層材を一対のベルト間で加熱加圧するダブ
ルベルトプレス法による連続的銅張積層板の製造法にお
いて、銅箔の剥離強度が0.2kg/cm以上で完全硬
化時の90%以下の範囲となるように加熱加圧して半硬
化樹脂銅張積層板を製造し、ついで所定寸法に切断した
後、温度100〜240℃で後硬化することを特徴とす
る銅張積層板の製造法であり、より好適には銅箔の剥離
強度が0.3 kg / am以上とすること、後硬化
を脱酸素雰囲気で行う銅張積層板の製造法である。
That is, the present invention heats and presses between a pair of belts a laminated material composed of one or more long resin-impregnated base materials and a long copper foil layered on one or both of the outermost surfaces thereof. In the method for manufacturing continuous copper-clad laminates using the double belt press method, semi-cured resin copper is heated and pressed so that the peel strength of the copper foil is 0.2 kg/cm or more and 90% or less of fully cured. This is a method for producing a copper-clad laminate, which is characterized by producing a clad laminate, cutting it into a predetermined size, and then post-curing at a temperature of 100 to 240°C. More preferably, the peel strength of the copper foil is 0. .3 kg/am or more, and post-curing is performed in an oxygen-free atmosphere.

以下、本発明の構成について説明する。The configuration of the present invention will be explained below.

まず、本発明の連続プレスとは、従来公知のダブルベル
トプレスに代表されるものである。
First, the continuous press of the present invention is typified by a conventionally known double belt press.

ここに、加圧、加熱条件は、従来と同様でよいが、積層
材の真空下の予備融着(特願昭62−303284号)
、積層材の予備加熱の利用(特願昭63−45771号
)、その他を適宜併用したものが使用されるものである
Here, the pressurization and heating conditions may be the same as conventional ones, but preliminary fusion of laminated materials under vacuum (Japanese Patent Application No. 62-303284)
, the use of preheating of laminated materials (Japanese Patent Application No. 63-45771), and other appropriate combinations are used.

本発明の連続プレスによって製造される半硬化樹脂銅張
積層板はその絶縁層として、通常の熱硬化性樹脂(=マ
トリックス樹脂)と基材(=ベース材、補強基材)とか
らなるものである。
The semi-cured resin copper-clad laminate manufactured by the continuous press of the present invention is composed of a normal thermosetting resin (=matrix resin) and a base material (=base material, reinforcing base material) as its insulating layer. be.

マトリックス樹脂としては、フェノール樹脂、エポキシ
樹脂、不飽和ポリエステル樹脂、シアナト樹脂、その他
の熱硬化性樹脂類、これらを適宜二種以上配合してなる
組成物、さらにこれら熱硬化性樹脂、それらの二種以上
配合してなる組成物をポリビニルブチラーノヘアクリロ
ニトリルーブタジエンゴム、多官能性アクリレート化合
物その他の公知の樹脂、添加剤等で変性したもの;架橋
ポリエチレン、架橋ポリエチレン/エポキシ樹脂、架橋
ポリエチレン/シアナト樹脂、ポリフェニレンエーテル
/エポキシ樹脂、ポリエステルカーボネート/シアネー
ト、その他の変性熱可塑性樹脂からなる架橋硬化性樹脂
組成物が挙げられる。
Examples of matrix resins include phenol resins, epoxy resins, unsaturated polyester resins, cyanato resins, and other thermosetting resins, compositions formed by appropriately blending two or more of these, and furthermore, these thermosetting resins, and two or more of these. Compositions containing more than one species modified with polyvinyl butyranohyl acrylonitrile-butadiene rubber, polyfunctional acrylate compounds and other known resins, additives, etc.; cross-linked polyethylene, cross-linked polyethylene/epoxy resin, cross-linked polyethylene/cyanate Examples include crosslinked curable resin compositions made of resin, polyphenylene ether/epoxy resin, polyester carbonate/cyanate, and other modified thermoplastic resins.

また、ベース材としては、クラフト紙、リンター紙、ガ
ラス(E、 D、  S、 T、石英その他各種ガラス
製繊維からの)織布・不織布、全芳香族ポリアミド、ポ
リフェニレンサルファイド、ポリエーテルエーテルケト
ン、ポリエーテルイミド、ポリテトラフロロエチレンな
どの耐熱エンプラ製繊維の織布・不織布、さらにこれら
を適宜混合或いは複合使用してなる複合繊布・不織布な
どの長尺のものが挙げられる。
In addition, base materials include kraft paper, linter paper, glass (E, D, S, T, quartz and other various glass fibers) woven and non-woven fabrics, fully aromatic polyamide, polyphenylene sulfide, polyether ether ketone, Examples include woven and nonwoven fabrics made of heat-resistant engineering plastic fibers such as polyetherimide and polytetrafluoroethylene, as well as long composite fabrics and nonwoven fabrics made by appropriately mixing or combining these materials.

この長尺の基材に上記のマトリックス樹脂を含浸、塗布
などして適宜乾燥して本発明の積層成形用のプリプレグ
を製造する。本発明においては、従来の多段プレスの場
合と同様の成分でも使用可能であるが、当然に、触媒の
種類やその添加量の増減、予備反応度などを本発明の連
続プレスによる半硬化板の製造、その後硬化という製造
工程を考慮して適合させたものが好ましい。
This elongated base material is impregnated with the above-mentioned matrix resin, coated, etc., and dried as appropriate to produce the prepreg for laminate molding of the present invention. In the present invention, it is possible to use the same components as in the case of conventional multi-stage pressing, but naturally the type of catalyst, increase/decrease in the amount added, degree of preliminary reactivity, etc. It is preferable that the material be adapted in consideration of the manufacturing process of manufacturing and subsequent curing.

銅箔としては、長尺の電解銅箔、圧延銅箔等、並びにこ
れらの裏面(接着面側)を接着用に処理したちの更に裏
面に接着剤層を形成したもの等であり、いずれも使用可
能であり、適宜上記に説明した樹脂含浸基材の樹脂の種
類に応じて選択するものである。
Copper foils include long electrolytic copper foils, rolled copper foils, etc., as well as those whose back surfaces (adhesive side) have been treated for adhesion and an adhesive layer has been formed on the back surface, etc. It can be used and is appropriately selected depending on the type of resin of the resin-impregnated base material described above.

以上を使用して半硬化樹脂銅張積層板を製造し所定寸法
に切断した後、後硬化する。
A semi-cured resin copper-clad laminate is produced using the above, cut into predetermined dimensions, and then post-cured.

本発明の半硬化樹脂銅張積層板の製造は、銅箔の剥離強
度が0.2 kg / cm以上、より好ましくは銅箔
の剥離強度が0.3kg/cm以上で完全硬化後の剥離
強度の90%以下の範囲となるように加熱加圧して半硬
化樹脂銅張積層板を製造する。この銅箔剥離強度の目安
はマトリックス樹脂として熱硬化性樹脂組成物を使用し
た場合には、そのガラス転位温度からも把握出来るもの
であって、マトリックス樹脂のガラス転位温度(Tg’
℃)/完全硬化後のマトリックス樹脂のガラス転位温度
Tg’ ”C) =0.55〜0.90の範囲に相当す
る。
The semi-cured resin copper-clad laminate of the present invention can be manufactured using a copper foil with a peel strength of 0.2 kg/cm or more, more preferably a copper foil with a peel strength of 0.3 kg/cm or more, and a peel strength after complete curing. A semi-cured resin copper-clad laminate is manufactured by heating and pressurizing the copper clad laminate so that it is within 90% of the above range. When a thermosetting resin composition is used as the matrix resin, the standard for this copper foil peel strength can also be determined from the glass transition temperature of the matrix resin.
C)/glass transition temperature Tg'''C) of the matrix resin after complete curing corresponds to the range of 0.55 to 0.90.

ここに銅箔剥離強度が0.2kg/印未満では、得られ
た半硬化樹脂銅張積層板を切断する場合に銅箔の端部の
剥離その他の不良発生の原因となり易いので好ましくな
く、完全硬化後の剥離強度の90%を超えるで硬化させ
る必要はない。
If the copper foil peel strength is less than 0.2 kg/mark, it is undesirable and may easily cause peeling of the edges of the copper foil or other defects when cutting the obtained semi-cured resin copper-clad laminate. It is not necessary to cure to more than 90% of the peel strength after curing.

銅箔剥離強度を上記の範囲に制御して連続積層成形する
方法は、所定の温度下で積層成形用プリプレグと銅箔と
を加熱処理した場合の剥離強度を予め測定する方法によ
るが、マトリックス樹脂のガラス転位温度の挙動によっ
てもよく、この条件に従って、連続プレスの加熱温度と
加熱時間とを設定する方法による。例えば、通常の多段
プレス用のガラスエポキシプリプレグを使用した場合、
200℃では、1〜3分間の加熱で銅箔の剥離強度が0
.3〜1.5 kg/cm (完全硬後の銅箔剥離強度
2、Qkg/cm以上) 、Tg’/Tg’=0.70
〜0.85程度となり、また、180℃では、2〜4分
間の加熱で銅箔の剥離強度が0.4〜1.0 kg/ 
cm、 Tgs/Tg’ =0.60〜0.75程度と
なるものであり、通常の連続プレス時間で半硬化樹脂銅
張積層板を製造することが可能となるものである。なお
、上記において、銅箔剥離強度が0.2 kg / a
m以上であれば、特にその後の取り扱いで不良等が発生
する原因は実質的になくなる。従って、内部と銅箔接着
部近傍とを性質の異なる絶縁層とした半硬化樹脂銅張積
層板としてもよいものであり、この性質としては、■マ
トリックス樹脂のガラス転位温度を変えること。■マト
リックス樹脂の含有量を変えること又は樹脂層を形成す
ること。■マトリックス樹脂の種類を変えること〔銅箔
接着部近傍はポリエステル等のラジカル重合成分、架橋
ポリエチレン等の架橋性賦与熱可塑性樹脂、架橋性賦与
ゴムなどを含むプリプレグを用いる方法等〕。■、ベー
ス材の種類〔織布、不織布の組合せ、ガラス/紙、ガラ
ス/耐熱エンプラなど異種ベース材の組合せ等〕。並び
に■、■〜■の組合せをそれぞれ選択することが挙げら
れる。なお、本発明の半硬化樹脂銅張積層板は上記の構
成を特徴とするものであるが、さらにプリプレグ間に長
尺の離型性フィルムを挿入して片面銅張の半硬化樹脂抱
合せ板を製造すること、この抱合せ板の製造に所定位置
に多数の穴を設けたものを用い、部分接着された抱合せ
板とすること、接着剤付き銅箔又はプリプレグ間に硬化
した連続積層板或いは金属フィルムを挿入し、硬化した
絶縁層或いは金属層を有する半硬化樹脂銅張積層板を製
造することなども含まれるものである。
The method of continuous lamination molding while controlling the peel strength of copper foil within the above range is based on the method of measuring the peel strength in advance when the prepreg for lamination molding and the copper foil are heat treated at a predetermined temperature. It may also depend on the behavior of the glass transition temperature, and the heating temperature and heating time of the continuous press may be set according to this condition. For example, when using glass epoxy prepreg for normal multi-stage presses,
At 200℃, the peel strength of copper foil decreases to 0 after heating for 1 to 3 minutes.
.. 3 to 1.5 kg/cm (copper foil peel strength after complete hardening 2, Qkg/cm or more), Tg'/Tg' = 0.70
~0.85, and at 180°C, the peel strength of copper foil is 0.4~1.0 kg/ after heating for 2~4 minutes.
cm, Tgs/Tg' = about 0.60 to 0.75, and it is possible to manufacture a semi-cured resin copper-clad laminate in a normal continuous press time. In addition, in the above, the copper foil peel strength is 0.2 kg/a
If it is at least m, there will be virtually no cause for defects, especially during subsequent handling. Therefore, it is possible to use a semi-cured resin copper-clad laminate with an insulating layer having different properties inside and near the copper foil bonding part, and the properties include: (1) changing the glass transition temperature of the matrix resin; ■Changing the content of matrix resin or forming a resin layer. ■Changing the type of matrix resin [methods such as using a prepreg containing a radical polymerization component such as polyester, a crosslinkable thermoplastic resin such as crosslinked polyethylene, or a crosslinkable rubber near the copper foil bonding area]. ■ Types of base materials (combinations of woven fabrics, non-woven fabrics, combinations of different base materials such as glass/paper, glass/heat-resistant engineering plastics, etc.). Also, each of the combinations of (1) and (2) to (2) may be selected. The semi-cured resin copper-clad laminate of the present invention is characterized by the above-mentioned structure, but a long releasable film is further inserted between the prepregs to form a single-sided copper-clad semi-cured resin laminate. To manufacture this binding board, use a board with a number of holes in predetermined positions, and to make a binding board that is partially bonded.A continuous laminate or metal film cured between adhesive-coated copper foil or prepreg. This also includes manufacturing a semi-cured resin copper-clad laminate having a hardened insulating layer or metal layer by inserting a hardened insulating layer or metal layer.

ついで、得られた半硬化樹脂銅張積層板を所定寸法に切
断した後、後硬化する。後硬化の条件は多段プレスの積
層成形に使用する加熱温度と時間が通常好ましく、10
0〜240℃、0.5〜5時間の範囲から選択される。
Next, the obtained semi-cured resin copper-clad laminate is cut into a predetermined size and then post-cured. The conditions for post-curing are usually preferably the heating temperature and time used for laminated molding in a multi-stage press;
The temperature is selected from the range of 0 to 240°C and 0.5 to 5 hours.

また、後硬化の雰囲気としては脱酸素雰囲気とすること
が好ましく、後硬化槽を窒素などで置換すること、又は
、多数の半硬化銅張積層板を重ね、その上下、さらに必
要に応じて側壁を耐熱性の樹脂、金属箔などで被覆する
方法などが例示される。
In addition, it is preferable to use a deoxidized atmosphere as the post-curing atmosphere, and the post-curing tank may be replaced with nitrogen or the like, or a large number of semi-cured copper clad laminates may be stacked on top and bottom, and if necessary, on the side walls. Examples include a method of covering the material with heat-resistant resin, metal foil, etc.

〔実施例〕〔Example〕

以下、本発明を実施例等により説明する。 The present invention will be explained below with reference to Examples.

なお、実施例中のガラス転位温度は、O5Cによって測
定したものである。
Note that the glass transition temperature in the examples was measured by O5C.

実施例1〜5 ブロム化エポキシ樹脂に対して、硬化剤としてジシアン
ジアミド、硬化促進剤として2−エチル−4−メチルイ
ミダゾールおよび希釈溶剤としてアセトンを用いたエポ
キシ樹脂フェスを調整した。このフェスに長尺の巾52
5mm、厚み0.2印のガラス織布を含浸し、乾燥して
、170℃熱盤上でのゲルタイムは30秒、樹脂量40
%の長尺のプリプレグ(以下、PPIと記す)を得た。
Examples 1 to 5 Epoxy resin faces were prepared using dicyandiamide as a curing agent, 2-ethyl-4-methylimidazole as a curing accelerator, and acetone as a diluting solvent for a brominated epoxy resin. This festival has a long width of 52
Impregnated a glass woven fabric with a thickness of 5 mm and a thickness of 0.2 mark, dried it, gel time on a 170°C heating plate was 30 seconds, and the amount of resin was 40.
% long prepreg (hereinafter referred to as PPI) was obtained.

上記で得たPPI  8枚を重ね合わせ、その両側の最
外層にそれぞれ厚み35虜の銅M(以下、Cu1と記す
)を重ね、ダブルベルトプレスに連続的に送り込んで加
熱加圧成形を行った。成形温度は200℃、成形圧力は
 50kg/cdとし、成形時間はダブルベルトの走行
速度を変化させることにより、第1表に示した時間とし
た。
The 8 sheets of PPI obtained above were stacked, and copper M (hereinafter referred to as Cu1) with a thickness of 35 cm was stacked on the outermost layer on both sides, and heated and pressure molded by continuous feeding into a double belt press. . The molding temperature was 200°C, the molding pressure was 50 kg/cd, and the molding time was set to the time shown in Table 1 by varying the running speed of the double belt.

ダブルベルトにより成形後の長尺銅張積層板を所定の長
さに切断し、同時に両サイドの耳部も切断除去し、半硬
化樹脂銅張積層板を得た。
The long copper-clad laminate after molding was cut into a predetermined length using a double belt, and at the same time, the ears on both sides were also cut and removed to obtain a semi-cured resin copper-clad laminate.

次に、この半硬化樹脂銅張積層板を窒素ガス置換した2
00℃に保持された熱風乾燥機中で1時間加熱し後硬化
させた。
Next, this semi-cured resin copper-clad laminate was replaced with nitrogen gas.
It was heated for 1 hour in a hot air dryer maintained at 00°C for post-curing.

上記で得た半硬化樹脂銅張積層板の特性並びに後硬化し
た銅張積層板の特性を第1表に示した。
Table 1 shows the properties of the semi-cured resin copper-clad laminate obtained above and the properties of the post-cured copper-clad laminate.

実施例6 実施例2において、銅箔として平均厚さ20虜の接着剤
付き銅箔を用いる他は同様にした。
Example 6 The same procedure as in Example 2 was carried out except that an adhesive-coated copper foil having an average thickness of 20 mm was used as the copper foil.

得られた銅張板の特性を第1表に示した。Table 1 shows the properties of the copper clad plate obtained.

比較例1 実施例1〜5において、フェスの調製に用いる硬化促進
剤の量を3倍量とする他は全く同様にしてプリプレグ(
以下、PP2と記す)を得、実施例2と同様にしてダブ
ルベルトプレスで銅張積層板を得た。なお、後硬化は行
わなかった。
Comparative Example 1 Prepreg (
PP2) was obtained, and a copper-clad laminate was obtained using a double belt press in the same manner as in Example 2. Note that post-curing was not performed.

得られた銅張板の特性を第1表に示した。Table 1 shows the properties of the copper clad plate obtained.

比較例2 実施例1〜5と同様のフェスを用い、170℃熱盤上で
のゲルタイム2分45秒のプリプレグ(以下、PP3と
記す)を調製した。
Comparative Example 2 Using the same festival as in Examples 1 to 5, a prepreg (hereinafter referred to as PP3) with a gel time of 2 minutes and 45 seconds on a 170° C. heating plate was prepared.

このプリプレグを所定寸法に切断したものを8枚重ね、
その最外層にCulを重ね、多段熱盤プレスにより、温
度180℃、圧力50kg/cutで1時間30分加熱
し、30分間冷却して銅張積層板を得た。
8 sheets of this prepreg cut into predetermined dimensions are stacked together.
Cul was layered on the outermost layer, heated using a multistage hot platen press at a temperature of 180° C. and a pressure of 50 kg/cut for 1 hour and 30 minutes, and cooled for 30 minutes to obtain a copper-clad laminate.

得られた銅張板の特性を第1表に示した。Table 1 shows the properties of the copper clad plate obtained.

第1表−2 尚、第1表の記載は、下記によった。Table 1-2 The description in Table 1 is as follows.

・Cu剥離強度 JIS C−6481により測定。・Cu peel strength Measured according to JIS C-6481.

・Tg ニガラス転位温度 08Cにより測定。・Tg Nigaras transition temperature Measured at 08C.

・ΔL:寸法変化率  MILにより測定。・ΔL: Dimensional change rate Measured by MIL.

・PCT:プレッシャークツカーテスト。・PCT: Pressure test.

〔発明の作用および効果〕[Operation and effects of the invention]

以上の発明の詳細な説明および実施例から明らかなよう
に、本発明の半硬化樹脂銅張積層板を製造し、後硬化す
る銅張積層板の製造法は、連続プレスの有する限界、す
なわち、即硬化性のプリプレグを使用しなければ生産性
に劣るものとなり、その場合には耐熱性等の物性を保持
することが困難であることを打破し、多段プレスと同様
のマトリックス樹脂を用いたプリプレグの使用を可能と
し、物性の保持も可能となる。さらに、連続プレスの利
点である寸法安定性、寸法精度などをさらに改良するこ
とができるものである。
As is clear from the above detailed description of the invention and examples, the method of manufacturing a semi-cured resin copper-clad laminate of the present invention and post-curing the copper-clad laminate does not meet the limitations of continuous press, that is, Productivity will be poor if an instantly curing prepreg is not used, and in that case it is difficult to maintain physical properties such as heat resistance. It also makes it possible to maintain the physical properties. Furthermore, the advantages of continuous press, such as dimensional stability and dimensional accuracy, can be further improved.

しかも、その製造に特別の機器などを要求しないもので
あることから実用的な工業的に優れたものであることは
明白である。
Moreover, since it does not require any special equipment to manufacture, it is clear that it is excellent in practical industrial terms.

特許出願人  三菱瓦斯化学株式会社Patent applicant: Mitsubishi Gas Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】 1 長尺の樹脂含浸基材を1枚又は複数枚とその最外の
片面又は両面に長尺の銅箔を重ね合わせた構成の積層材
を一対のベルト間で加熱加圧するダブルベルトプレス法
による連続的銅張積層板の製造法において、銅箔の剥離
強度が0.2kg/cm以上で完全硬化時の90%以下
の範囲となるように加熱加圧して半硬化樹脂銅張積層板
を製造し、ついで所定寸法に切断した後、温度100〜
240℃で後硬化することを特徴とする銅張積層板の製
造法。 2 銅箔の剥離強度が0.3kg/cm以上である請求
項1記載の銅張積層板の製造法。 3 後硬化を脱酸素雰囲気で行う請求項1記載の銅張積
層板の製造法。
[Claims] 1. A laminate consisting of one or more long resin-impregnated substrates and a long copper foil layered on one or both of the outermost surfaces is heated between a pair of belts. In a method for manufacturing continuous copper-clad laminates using a double belt press method, semi-cured resin is heated and pressed so that the peel strength of the copper foil is 0.2 kg/cm or more and 90% or less of fully cured. After producing a copper-clad laminate and then cutting it to a predetermined size, it is heated to a temperature of 100~
A method for producing a copper-clad laminate, characterized by post-curing at 240°C. 2. The method for producing a copper-clad laminate according to claim 1, wherein the copper foil has a peel strength of 0.3 kg/cm or more. 3. The method for producing a copper-clad laminate according to claim 1, wherein the post-curing is performed in an oxygen-free atmosphere.
JP1038258A 1989-02-20 1989-02-20 Manufacture of copper-clad laminated sheet Pending JPH02218195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1038258A JPH02218195A (en) 1989-02-20 1989-02-20 Manufacture of copper-clad laminated sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1038258A JPH02218195A (en) 1989-02-20 1989-02-20 Manufacture of copper-clad laminated sheet

Publications (1)

Publication Number Publication Date
JPH02218195A true JPH02218195A (en) 1990-08-30

Family

ID=12520295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1038258A Pending JPH02218195A (en) 1989-02-20 1989-02-20 Manufacture of copper-clad laminated sheet

Country Status (1)

Country Link
JP (1) JPH02218195A (en)

Similar Documents

Publication Publication Date Title
US4087300A (en) Process for producing metal-plastic laminate
JPS63267524A (en) Method and apparatus for manufacturing metal clad laminated sheet
JPH02218195A (en) Manufacture of copper-clad laminated sheet
JPH02218196A (en) Semi-cured resin copper-clad laminated sheet
JPS6221626B2 (en)
JP4759896B2 (en) Manufacturing method of printed wiring board manufacturing material
JPH0421413A (en) Manufacture of laminated sheet
JPS58128846A (en) Manufacture of polyimide group resin one-sided copper lined laminated board
JPH04323034A (en) Manufacture of laminated board
JPS60189439A (en) Manufacture of metallic foil lined laminated board
JPS6052943B2 (en) printed wiring board
JP4595899B2 (en) Single-sided metal foil-clad laminate
JPH05293928A (en) Polyetherimide/dimethyl siloxane copolymer adhesive for adhering copper foil to flexible polyetherimide sheet
JPH03110157A (en) Production of laminated sheet
JPH03110158A (en) Production of laminated sheet
JPH04119836A (en) Metal foil clad laminated sheet and preparation thereof
JPH03110159A (en) Production of laminated sheet
JPS58199151A (en) Manufacture of laminated board for chemical plating
JPH03110156A (en) Production of laminated sheet
JPH02226797A (en) Manufacture of very thin copper foil clad laminated board
JPH0448330B2 (en)
JPS6220882B2 (en)
JPH07228715A (en) Preparation of prepreg
JPS5833464A (en) Manufacture of laminated board
JPH0771839B2 (en) Laminated board manufacturing method