JPS6051781A - Production of coke for metallurgy - Google Patents

Production of coke for metallurgy

Info

Publication number
JPS6051781A
JPS6051781A JP15797283A JP15797283A JPS6051781A JP S6051781 A JPS6051781 A JP S6051781A JP 15797283 A JP15797283 A JP 15797283A JP 15797283 A JP15797283 A JP 15797283A JP S6051781 A JPS6051781 A JP S6051781A
Authority
JP
Japan
Prior art keywords
coke
strength
coal
blended coal
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15797283A
Other languages
Japanese (ja)
Inventor
Kenichi Nemoto
根本 謙一
Teiji Shibuya
渋谷 悌二
Tomonori Kato
友則 加藤
Takeo Fujimura
藤村 武生
Yoshio Sano
佐野 芳夫
Hiroshi Saito
斎藤 汎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP15797283A priority Critical patent/JPS6051781A/en
Publication of JPS6051781A publication Critical patent/JPS6051781A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coke Industry (AREA)

Abstract

PURPOSE:To obtain coke for metallurgy with improved productivity, which has excellent strength, by briquetting blended coal to give a specified cake density and dry-distilling the briquette. CONSTITUTION:In dry-distilling blended coal having appropriate average rank of coalification and appropriate max. fluidity, said blended coal is briquetted to give a cake density of 0.90-1.05. By compacting the blended coal, an increase in the quantity of the coal to be fed into a coke oven by 20-40% can be achieved, as compared with conventional methods. Thus, even when the dry distillation time is prolonged thereby, productivity can be improved. Particularly, with regard to productivity, an operation of a higher oven wall temp. becomes possible by compacting. For example, when the bulk density is 0.75T/m<3> and the oven wall temp. is 950 deg.C in a convention method, DI15<30> is 91.1, while when the bulk density is 1.00T/m<3> in the present invention, DI15<30> can be increased to 93.6 at the same oven wall temp. of 950 deg.C.

Description

【発明の詳細な説明】 本発明は冶金用コークスの製造法に係り、強度的に優れ
)生産性の向上を図ることのできる冶金用コークスの製
造法を提供しようとするものである。高炉操業に用いら
れる冶金用コークスにはその操業を安定に維持させるた
めの熱源としての役割の外に還元剤としての役割および
通気性維持材としての役割がらり、これら3つの役割の
中でも通気性維持材としての役割は重要である。然して
このような通気性維持材としての意味からコークスに要
求される特性として冷間強度、CO,反応後強度、熱間
強度などが採用されているが、これらの中で最も重要視
されるコークス性状代表値は冷間強度であって、このコ
ークス冷間強度を支配する因子としては配合炭側におけ
る原料炭の石炭化度、軟化溶融性、活性グループとイナ
ートグループ量のような原料炭性状と、コークス炉側に
おける嵩密度やフリュ一温度、置時間のような乾留条件
が挙げられる。ところで上記したような従来のコークス
炉側におけるコークス強度支配因子はその時点でのコー
クスバランス等から由来する稼働率などで決定されるの
でコークス強度として代表的なドラム強度を積極的に操
作するようなことは困難であり、むしろ上記のような因
子を常に一定に保ち又乾留条件を同一にすることによっ
て個々の黒におけるコークス品位を安定化すべきものと
されている。即ち斯様な従来法における代表的な配合理
論としては石炭を石炭化度と流動性によって分類し、そ
れら双方における相互関係でドラム強度を決定するとい
うものであって、石炭化度についてのビトリニット反射
率とギースラー最高流動度によるM、 O,F、図表の
如きが発表され、該図表にそれぞれの原料炭をプロット
し、配合すべき入荷原料炭などがこの図表上におけるI
−IV象限のどのような位置に該当するかを考慮して配
合を決定し所要のドラム強度を得ようとするものである
。この方法は原料炭を適切に管理し好ましい安定したコ
ークスを得しめることは勿論であるが配合炭側を主体と
するもので、更にコークス炉側においてコークス強度な
どを積極的に向上し得る手法を確立することは頗る重要
であるに拘わらず、今日まで好ましい技術が確立される
に到っていない。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing metallurgical coke, and is intended to provide a method for producing metallurgical coke that has excellent strength and can improve productivity. Metallurgical coke used in blast furnace operations not only serves as a heat source to maintain stable operations, but also as a reducing agent and as an air permeability maintenance material. Its role as a material is important. However, properties required of coke as an air permeability maintenance material include cold strength, CO, post-reaction strength, and hot strength, but among these, coke is considered the most important. The typical property value is cold strength, and the factors that control this coke cold strength include the coking coal properties such as the degree of coalification, softening and melting properties, and the amount of active groups and inert groups on the coal blend side. , carbonization conditions such as bulk density on the coke oven side, flue temperature, and standing time. By the way, the coke strength governing factors in the conventional coke oven as described above are determined by the operating rate derived from the coke balance at that time, etc., so it is important to actively manipulate the typical drum strength as the coke strength. Rather, it is considered that the quality of coke in each black should be stabilized by keeping the above-mentioned factors constant and making the carbonization conditions the same. In other words, the typical blending theory in such conventional methods is to classify coal according to its degree of coalification and fluidity, and determine the drum strength based on the mutual relationship between the two. A chart such as M, O, F based on the ratio and Giessler maximum fluidity was announced, and each coking coal was plotted on the chart, and the incoming coking coal that should be blended was shown on the chart.
The objective is to obtain the required drum strength by determining the composition in consideration of the position of the -IV quadrant. This method not only appropriately manages the coking coal to obtain desirable and stable coke, but it also focuses on blended coal, and also involves methods that can actively improve coke strength etc. on the coke oven side. To date, no preferred technology has been established, although it is of great importance to do so.

本発明は上記したような実情に鑑み検討を重ねて創案さ
れたものでおって、平均石炭化度および最高流動度を適
当に選んだ配合炭を乾留するに当り、該配合炭を加圧成
形してケーキ密度を0.90〜1.05 とすることを
提案するものである。即ちこのような本発明について更
に説明するとこのようなコークスにおいて必要な強度を
得るためには平均炭化度および最高流動度を所定値以上
とすることが必要で、平均炭化度が1.10 %以下の
ような配合炭においては流動度が相当に高い場合におい
ても所定のコークス強度を得ることが困難であり、又流
動度に関しても200ddpm 以下であると仮りに平
均炭化度がそれなりに高いとしてもDI”0=92以上
のような好ましいコークス強度を得難い。然して斯かる
原料炭の乾留に際して装入される原料配合炭の密度を高
めるならば原料粒子間の距離を短縮し粒子間の反応ない
し溶融結合を容易且つ円滑化し得る結果として基質強度
の向上をもたらすととができる。このため斯様な装入原
料炭の圧密化処理に関してそれなりの設備ないし方法が
提案されているが、単に高密度化処理を如伺様に達成す
るかについて検討されているに止まり、該高密度化配合
炭をコークス化処理する場合の仔細については殆んど解
明されていない。そこで本発明者等はこのような場合の
コークス化過程との関係について検討を重ねた結果、装
入すべき配合炭の密度を単なる通常装入の場合(0,7
5T/−程度)より高くして0.8T/−〜Q、9T/
rr? のように嵩密度を乱めると、それによって得ら
れたコークスの強度を成程向上し得るとしても、o、c
++7m’を超え1.OT/n?を超えるような高密度
化となると却って得られるコークス強度が低下すること
を知った。即し1例として3+mn以下が80チで水分
9チの前記MOFダイアグラムにおいて好ましい配合炭
領域とされた原料配合炭は密度0.75T/m’の通常
操業の場合においてはDI30が91.6であって、こ
の配合炭を圧密11 処理して1.0T/rr?前後とすると前記ドラムイン
デックス値を948度まで向上し得る。ところがこのよ
うな配合炭について1.OT/−以上に高密度化した場
合のコークス強度は第1図に示す通りで、コークス強度
が次第に低下し、1.1T/−近くになるとD I :
 :が93程度となる。又コークス反応波強度(cok
e strength after Raction:
以下C8Rという)に関しても同様に1. OT 7m
1以上で低下傾向が認められることは別に第2図におい
て示す通りで、C3R値が1.0T/m’前後で50に
も達していたものが1.07〜1.08 T/rr?で
は35〜40となり、場合によっては30以下とすらな
る。
The present invention was devised after repeated studies in view of the above-mentioned circumstances, and the present invention is based on the following method: when carbonizing a coal blend with an appropriately selected average degree of coalification and maximum fluidity, the blended coal is press-molded. It is proposed that the cake density be set to 0.90 to 1.05. That is, to further explain the present invention, in order to obtain the necessary strength in such coke, it is necessary to make the average degree of carbonization and the maximum fluidity higher than predetermined values, and the average degree of carbonization is 1.10% or less. It is difficult to obtain a specified coke strength even when the fluidity is quite high in coal blends such as coal blends, and if the fluidity is less than 200 ddpm, even if the average degree of carbonization is high, the DI It is difficult to obtain a preferable coke strength such as 0=92 or higher. However, if the density of the raw coal blend charged during carbonization of such raw coal is increased, the distance between the raw material particles is shortened and the reaction or fusion bond between the particles is increased. As a result, the strength of the substrate can be improved as a result of making it easier and smoother.For this reason, certain equipment or methods have been proposed for the consolidation treatment of such charged coking coal, but it is difficult to simply densify it. However, the details of the coking treatment of the densified coal blend have not been clarified.The present inventors have therefore attempted to solve the problem in such a case. As a result of repeated studies on the relationship between this and the coking process, we found that the density of the coal blend to be charged was changed to the case of ordinary charging (0.7
5T/-) higher than 0.8T/-~Q, 9T/
rr? Although the strength of the coke obtained can be considerably improved by disturbing the bulk density, o, c
Exceeding ++7m'1. OT/n? It was learned that if the density of the coke exceeds 1, the strength of the coke actually decreases. Therefore, as an example, in the above MOF diagram where 3+mn or less is 80 cm and the moisture content is 9 cm, the raw coal blend that is set as the preferred coal blend region has a DI30 of 91.6 in the case of normal operation with a density of 0.75 T/m'. So, this blended coal was consolidated 11 times to produce 1.0T/rr? If it is before or after, the drum index value can be improved to 948 degrees. However, regarding this kind of blended coal, 1. The coke strength when the density is increased to OT/- or higher is as shown in Figure 1, and when the coke strength gradually decreases and approaches 1.1 T/-, DI:
: is about 93. In addition, the coke reaction wave intensity (cok
e strength after action:
The same applies to 1. (hereinafter referred to as C8R). OT 7m
As shown in Fig. 2, a decreasing tendency is observed when the C3R value is 1 or more, and the C3R value reached 50 at around 1.0 T/m', but the C3R value reached 50 at 1.07 to 1.08 T/rr? Then it becomes 35 to 40, and in some cases even less than 30.

このように高密度化が充分に得られた場合においてコー
クスが一層高強度化が図られるべきでろるに拘わらず、
却って低下する事由についてはその仔細を充分に解明す
ることが困難であるが、上記のように高密度化された場
合においてはコークス化時に発生するガス分により組織
中に亀裂の発生を見るものと推定され、事実1.05T
/iを超え1.1T/rr?に近づくに従って前記した
ようなコークス強度低下が顕著となることは第1.2図
に示された通りである。 2 上記したように適当な範囲で高密度化することにより配
合炭の最高流動度や平均石炭化度に関しても充分な自由
度が得られる。即ちこの関係については第3図に要約し
て示す通りであって、従来技術においてドラム強度DI
D:=92程度を得るには石炭化度に関する平均反射率
Rτ=1.14以上を必要とし、又最高流動度(MF 
)に関しても200以上たることが不可欠であって、R
τ=0.90、MF200以下では前記)) 1 : 
:が82〜84、Ro=1.10でもD I : :が
87〜88程度であって所期するようなりI番−92前
後或いはそれ以上のドラム強度を得難いことは明かであ
る。これに対し本発明に従い1.OT/m’の圧密化を
なしたものにおいて、Ro=0.90、MF=1ooの
場合でもドラム強度が88.5程度まで向上し、同じR
o値およびMF値による従来のものくドラム強度82)
に比し大幅の向上を得しめており、若しMF値が500
以上のような場合においてはp 1:: −g 2以上
を得しめるであろう様相は明かである。又Reが1.0
0以上のものを1.0T/m’以上に圧密化するならば
MF値が100以上である限り p I: :を92以
上とすることが可能であり、何れにしても石炭化度(R
o)や最高流動度(MF)による配合炭厳選を必要とし
ないで目的のドラム強度を適切に得しめることは明かで
ある。
Even though coke should be made to have even higher strength when sufficient densification is achieved in this way,
Although it is difficult to fully elucidate the details of the reason for the decline, it is believed that in the case of high density as described above, cracks occur in the structure due to the gas generated during coking. Estimated and factual 1.05T
/i over 1.1T/rr? As shown in Fig. 1.2, the above-mentioned decrease in coke strength becomes more significant as the temperature approaches . 2. By increasing the density within an appropriate range as described above, a sufficient degree of freedom can be obtained regarding the maximum fluidity and average degree of coalification of the coal blend. That is, this relationship is summarized in FIG. 3, and in the prior art, the drum strength DI
In order to obtain D:=92, it is necessary to have an average reflectance Rτ=1.14 or more regarding the degree of coalification, and the maximum fluidity (MF
) is also essential to be 200 or more, and R
τ=0.90, above for MF200 or less)) 1:
Even if : is 82 to 84 and Ro=1.10, DI : is about 87 to 88, and it is clear that it is difficult to obtain the desired drum strength of around I-92 or higher. In contrast, according to the present invention, 1. In the case of OT/m' compacted drum, even when Ro=0.90 and MF=1oo, the drum strength improves to about 88.5, and the same R
Conventional drum strength according to o value and MF value 82)
This shows a significant improvement compared to the MF value of 500.
In the above case, it is clear that p 1:: -g 2 or more will be obtained. Also, Re is 1.0
If 0 or more is consolidated to 1.0T/m' or more, as long as the MF value is 100 or more, it is possible to make p I: 92 or more, and in any case, the degree of coalification (R
It is clear that the desired drum strength can be appropriately obtained without the need for careful selection of coal blends based on o) or maximum fluidity (MF).

又本発明の実施に当って配合炭の粒度を適当に微細化す
ることは勿論有効であるが、微細化の程度が充分でなく
ても適切なドラム強度向上を得しめる。即ちこの関係は
第4図に示す通りで、従来法においてはDI: C,を
92以上とするには少くとも配合炭粒度−3問を80%
以上とすることが不可欠であり、水分についてもそれな
りに考慮すべきであるのに対し本発明によるものはこの
一3朔が70%でも93,5以上であり、この70チに
達しないときにおいても充分にDID:=92以上を得
しめることができ、特にこの−3鴫のチ値が高くなるに
従って圧密化しないペースのものの上昇程度よりもコー
クス強度上昇が顕著であり、−3ram 90チではD
I番が95に近い値すら得られ、一般的に一3哩を80
チ以上とすることが有利である。
In carrying out the present invention, it is of course effective to appropriately refine the grain size of the coal blend, but even if the degree of refinement is not sufficient, an appropriate improvement in drum strength can be achieved. In other words, this relationship is as shown in Figure 4, and in the conventional method, in order to make DI: C, 92 or more, at least the blended coal particle size -3 questions must be 80%.
It is essential that the water content be above 70%, and moisture content should also be taken into consideration. However, in the case of the present invention, even if the 13cm is 70%, it is 93.5 or more, and when it does not reach 70cm, In particular, as the chi value of this -3ram increases, the increase in coke strength is more remarkable than that of the non-consolidated pace, and at -3ram 90chi, D
I can even get values close to 95, and generally 13 miles is 80.
It is advantageous to make it greater than or equal to H.

勿論上記のように配合炭が圧密化されることによりコー
クス炉に対する装入量の増大を図り、即ち常法に比して
20〜40%程度の装入量増大が得られるので、成程乾
留時間がそれなりに長くなるとして生産性を適切に向上
し得ることは明かである。特にこの生産性については本
発明のように圧密化することにより炉壁温度を高くした
操栗を可能にするもので、例えば嵩密度0.75T/−
の従来法の場合において炉壁温度が950℃の場合のD
 I B Oは1!1 91.1であるのに対し嵩密度をi、oo’r/lr+
’の本発明の場合に炉壁温度が同じく950℃であると
 G:を93.6に向上でき、この炉壁温度を1000
℃、1050℃と高めてもDI: :が93又は928
 程度でろって好ましいコークス強度を有し、このよう
に炉温を高めるならばコークス化処理時間を短縮して充
分な生産性向上をもたらすことは明かである。
Of course, as mentioned above, by compacting the coal blend, the amount charged to the coke oven can be increased, that is, the amount charged can be increased by about 20 to 40% compared to the conventional method. It is clear that productivity can be appropriately improved even if the time is increased to a certain extent. In particular, regarding this productivity, it is possible to operate a chestnut with a high furnace wall temperature by compaction as in the present invention, for example, the bulk density is 0.75T/-
D when the furnace wall temperature is 950°C in the case of the conventional method of
I B O is 1!1 91.1, whereas the bulk density is i, oo'r/lr+
In the case of the present invention, if the furnace wall temperature is also 950°C, G: can be improved to 93.6, and this furnace wall temperature can be increased to 1000°C.
℃, even if raised to 1050℃, DI: : is 93 or 928
It is clear that the coke strength is preferable to a certain extent, and if the furnace temperature is raised in this way, the coking treatment time can be shortened and productivity can be sufficiently improved.

本発明方法によるものの具体的実施に当って、その圧密
化はスタンプ棒による圧密化、ロール押圧による圧密化
、加圧板による場合トラバース方法によるものなどを適
宜に採用し得る。圧密化されたケーキの幅は炉幅に対し
て適宜に選ぶことができるが、炉壁面とケーキ面との間
隔は圧密化ケーキを炉内に装入するのに支障のない範囲
で小とすることが好ましく、一般的に10〜20割(両
側で20〜40簡)の範囲内とすることが適切である。
In the specific implementation of the method of the present invention, compaction using a stamp bar, compaction using a roll press, a traverse method when using a pressure plate, etc. can be appropriately employed. The width of the consolidated cake can be selected as appropriate for the width of the furnace, but the distance between the furnace wall surface and the cake surface should be as small as it does not interfere with charging the consolidated cake into the furnace. Generally, it is appropriate to set it within the range of 10 to 200% (20 to 40% on both sides).

本発明によるものの具体的な実施例について説明すると
以下の通りである。
Specific examples according to the present invention will be described below.

最高流動度MFを200ddmとし石炭化度(ビトリニ
ット平均反射率:Rτ)を1.10とされた15I8柄
より成る含水率9%、−3煽が80係の配合炭をブレス
トラバース法によって幅375II+II+で高さが9
00 tan、長さ900咽とした嵩密度1.0’l’
/iのケーキとなし、このものを炉壁幅が410目のコ
ークス炉内に装入し、炉壁温度950℃で乾留処理した
A blended coal consisting of 15I8 patterns with a maximum fluidity MF of 200 ddm and a degree of coalification (vitrinite average reflectance: Rτ) of 1.10, a moisture content of 9%, and a -3 ratio of 80 was processed using the breath traverse method to create a width of 375II+II+ and the height is 9
Bulk density 1.0'l' with 00 tan and length 900 mm
This cake was charged into a coke oven having a wall width of 410 mm, and subjected to carbonization treatment at a wall temperature of 950°C.

即ちこのような処理で得られたコークスについてD I
 30を測定した結果は93,6であり、上記配合炭を
圧密処理しない0.75T/7F1′の条件で炉内に装
入し乾留した場合のベース強度であるDx::=91.
xのものに比しそのコークス強度を充分に向上せしめて
いることが確認された。
That is, for the coke obtained by such treatment, D I
The result of measuring 30 is 93.6, which is the base strength Dx::=91.
It was confirmed that the coke strength was sufficiently improved compared to that of No. x.

なお上記配合炭について嵩密度を0.99 T /n?
としたものはその他の条件において総べて前記同様の場
合にDID:=94のコークス強度を得しめ、最高状態
のコークス強度であり、反対に嵩密度を1.07 T/
n?とじたものではDI番=93.2であった。
The bulk density of the above coal blend is 0.99 T/n?
Under all other conditions, a coke strength of DID = 94 was obtained under the same conditions as above, which is the highest coke strength, and on the other hand, a bulk density of 1.07 T/
n? The bound version had a DI number of 93.2.

又嵩密度を1.0Tldとしたものを炉壁温度1000
℃で乾留した場合のDID:は93.1であり、105
0℃の場合には92.9であって、成程炉温か高くなる
ことによって強度低下が認められるとしても、なお前記
したベース強度(91,1)よりは相当に高いものであ
った。
Also, when the bulk density is 1.0 Tld, the furnace wall temperature is 1000
DID when carbonized at ℃ is 93.1 and 105
In the case of 0° C., the strength was 92.9, and even though a decrease in strength was observed as the furnace temperature increased, it was still considerably higher than the above-mentioned base strength (91,1).

以上説明したような本発明によるときはとの種コークス
製造用配合炭を0.90〜1.05 T/ly/の特定
範囲に圧密化して乾留処理することにより得られるコー
クス強度を有効に向上せしめ、従って斯様な配合炭にお
ける最高流動度や石炭化度による選択範囲を適宜に拡大
して所定強度をもったコークスを得しめ、又低コストに
所定品質をもった製品を提供し得るものでろって、1與
的にその効果の大きい発明である。
As explained above, the strength of the coke obtained by compacting the blended coal for producing coke of Tokihato seed coke according to the present invention to a specific range of 0.90 to 1.05 T/ly/ and carbonizing it is effectively improved. Therefore, it is possible to appropriately expand the range of selection based on the maximum fluidity and coalification degree of such blended coal, to obtain coke with a specified strength, and to provide a product with a specified quality at a low cost. It is, after all, an invention with great effects.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の技術的内容を示すものであって、第1図
は配合炭の圧密度とその乾留処理によって得られたコー
クス強度D 1: : との関係を要約して示した図表
、第2図は同じく配合炭の圧密度とコークス反応後強度
との関係を示した図表、第3図は石炭化匿を種々に変更
せしめたものについて通常ベースのものと1.OT/l
tlに圧密化したものとを比較して配合炭流動度とドラ
ム強度との関係を示した図表、第4図は配合炭粒度分布
別によるドラム強度を通常ベースのものと圧密度1.O
T/−の本発明法によるものとを要約して示した図表で
おる。 特許出願人 日本鋼管株式会社 発 明 者 根 本 謙 − 同 渋 谷 悌 二 同 加 藤 友 則 同 藤 村 武 生 同 佐 野 芳 夫 同 斎 藤 汎 ■ ■ ■ ■ 配+泉滉シ+、li−(MF) −3rn瓜2
The drawings show the technical contents of the present invention, and Fig. 1 is a diagram summarizing the relationship between the compaction density of the coal blend and the coke strength D1 obtained by carbonization treatment. Figure 2 is a chart showing the relationship between the compaction density of the coal blend and the strength after coke reaction, and Figure 3 shows the normal base and 1. OT/l
Figure 4 shows the relationship between the fluidity of the blended coal and the drum strength by comparing the coal blends consolidated to tl. O
This is a diagram summarizing T/- according to the method of the present invention. Patent Applicant: Nippon Kokan Co., Ltd. Inventor: Ken Nemoto - Takashi Shibuya, Tomo Kato, Norito Kato, Takeshi Fujimura, Yoshio Sano, Fudo Hiroshi Saito ■ ■ ■ ■ Kai+Koshi Izumi+, li -(MF) -3rn melon 2

Claims (1)

【特許請求の範囲】 1、 平均石炭化度および最高流動度を適当に選んだ配
合炭を乾留するに当り、該配合炭を加圧成形してケーキ
密度を0.90〜1.05とすることを特徴とする冶金
用コークスの製造法。 2.3篤以下を80−以上とされた配合炭を用いるI特
許請求の範囲@1項に記載の冶金用コークスの製造法。
[Claims] 1. When carbonizing a blended coal whose average degree of coalification and maximum fluidity are appropriately selected, the blended coal is pressurized to a cake density of 0.90 to 1.05. A method for producing metallurgical coke, characterized by: 2. A method for producing metallurgical coke according to claim 1, using a coal blend whose hardness is less than 3 and more than 80.
JP15797283A 1983-08-31 1983-08-31 Production of coke for metallurgy Pending JPS6051781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15797283A JPS6051781A (en) 1983-08-31 1983-08-31 Production of coke for metallurgy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15797283A JPS6051781A (en) 1983-08-31 1983-08-31 Production of coke for metallurgy

Publications (1)

Publication Number Publication Date
JPS6051781A true JPS6051781A (en) 1985-03-23

Family

ID=15661453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15797283A Pending JPS6051781A (en) 1983-08-31 1983-08-31 Production of coke for metallurgy

Country Status (1)

Country Link
JP (1) JPS6051781A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013081129A1 (en) * 2011-12-02 2013-06-06 Jfeスチール株式会社 Method for producing metallurgical coke

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187384A (en) * 1981-05-14 1982-11-18 Kansai Coke & Chem Co Ltd Preparation of metallurgical coke
JPS5938279A (en) * 1982-08-27 1984-03-02 Kawasaki Steel Corp Production of metallurgical coke

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187384A (en) * 1981-05-14 1982-11-18 Kansai Coke & Chem Co Ltd Preparation of metallurgical coke
JPS5938279A (en) * 1982-08-27 1984-03-02 Kawasaki Steel Corp Production of metallurgical coke

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013081129A1 (en) * 2011-12-02 2013-06-06 Jfeスチール株式会社 Method for producing metallurgical coke
JP2013116964A (en) * 2011-12-02 2013-06-13 Jfe Steel Corp Method for producing metallurgical coke

Similar Documents

Publication Publication Date Title
CN113604238B (en) Coking method for improving tamping coke lumpiness and tamping coke prepared by method
KR101751289B1 (en) Method for producing cokes
JPS6051781A (en) Production of coke for metallurgy
JPH026815B2 (en)
JPH0259196B2 (en)
JPS6047095A (en) Preparation of coke for metallurgy
JP3270602B2 (en) Manufacturing method of coke for blast furnace
US4105501A (en) Method for producing metallurgical coke
JPS60110785A (en) Production of raw material for coke and production of coke
US4110169A (en) Method for manufacturing high-strength formed coke in slight mutual agglomeration using horizontal type coke oven battery
JP2540628B2 (en) Charcoal manufacturing method
JPS61106691A (en) Preparation of metallurgical coke
JP4099920B2 (en) Method for producing highly reactive coke
JPH0218359B2 (en)
SU1699910A1 (en) Method of preparation of moulding powder
JP5470855B2 (en) Manufacturing method of ferro-coke for metallurgy
FR2306251A1 (en) High-strength formed coke - produced by briquetting low-quality fines of specified reflectance/agglomeration property index
SU1754653A1 (en) Method of producing molding power for making carbon products
JPS6339637B2 (en)
JPS6246593B2 (en)
US2808326A (en) Method of melting ferrous metals
JPH06330052A (en) Production of formed coal
JPS6340234B2 (en)
JPH0297412A (en) Production of activated coke
JPH05287278A (en) Production of coke