JPH0218359B2 - - Google Patents

Info

Publication number
JPH0218359B2
JPH0218359B2 JP14778582A JP14778582A JPH0218359B2 JP H0218359 B2 JPH0218359 B2 JP H0218359B2 JP 14778582 A JP14778582 A JP 14778582A JP 14778582 A JP14778582 A JP 14778582A JP H0218359 B2 JPH0218359 B2 JP H0218359B2
Authority
JP
Japan
Prior art keywords
coal
coke
inert
total
bulk density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14778582A
Other languages
Japanese (ja)
Other versions
JPS5938279A (en
Inventor
Shigeru Kuwajima
Katsutoshi Igawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP14778582A priority Critical patent/JPS5938279A/en
Publication of JPS5938279A publication Critical patent/JPS5938279A/en
Publication of JPH0218359B2 publication Critical patent/JPH0218359B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coke Industry (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は冶金用コークスの製造方法に関する。 装入炭の嵩密度を増加させてコークス炉の生産
性および生成コークスの品質を向上させ、又は低
品位炭を利用しようとする試みは現在世界各国で
行なわれている。 我国では成型炭一部装入法が商業規模で実施さ
れている。この方式は装入炭のうち30%をブリケ
ツト状に成型して装入することにより装入炭嵩密
度の増加をはかるものであるが、増加率は10%程
度と小さい。 一方、欧州で稼動しているスタンピング法は装
入炭全量を圧縮成型するため、装入炭嵩密度は大
巾に増加し、増加率は40〜50%にも達する。装入
炭嵩密度を増加していくと石炭粒子が圧密され、
生成するコークスは組織が緻密化してコークス強
度、とりわけ摩耗強度の向上が顕著となる。しか
し、嵩密度を増加して炭化室内の単位容積に占め
る石炭重量を増加していくとコークスが細粒化す
る。その一因として加熱壁側と炭化室中心側との
温度差、所謂炭中温度勾配の増加を招くため、セ
ミコークス過程でセミコークスの収縮差にもとづ
く熱応力の高まりによつてコークス亀裂発生が大
きくなることが考えられる。このため嵩密度の増
加率が著るしいスタンピング法の場合、通常実施
されている重力装入と同様の配合ではコークスが
細粒化するので高炉用コークスとして使用し難く
なる難点があるため、コークス粒度を改善すべ
く、配合炭に粉コークスを添加している。しかし
ながら粉コークス添加によりコークス粒度を改善
する方法では、コークス摩耗強度の向上度が低下
することと、粉コークス添加によるコークス摩耗
強度の低下を防ぐ意味で粉コークスは0.2mm以下
に微粉砕して使用せねばならず、発塵対策を含む
粉砕コストが増加するなどの欠点を有する。 コークス細粒化防止対策として、装入原料を
300℃以下に予熱して水分を零とし、石炭系もし
くは石油系の重質油を添加して混合成型し炭化室
に装入するという方法が特開昭56−14579に記載
されている。この方式は、試料炭を予熱しておく
ことにより乾留時の壁側と炭中側との温度差を縮
小してコークスの亀裂発生原因となる熱応力を軽
減し、コークス粒度の低下を防ぐというものであ
る。しかしこの方法は現時点では大量処理する商
業規模設備の具体化がなされておらず、又重質油
を添加することによる原料コストの増加や炭化室
内へ装入する時の発煙や着火などの問題が生じて
くるなどの欠点がある。 本発明の目的はこのような欠点のない冶金用コ
ークスの製造方法を提供することである。 通常炉上より装入されている重力装入と比較し
て嵩密度が40〜50%高いブロツク状成型炭はセミ
コークス過程における亀裂発生が大きくなり生成
するコークスが細粒化する。 本願発明者等は、本発明の目的を達成するため
鋭意研究の結果、このセミコークス過程における
亀裂発生を抑制する手段として配合する全石炭中
の不活性成分と鉱物質との和(以下、トータルイ
ナートと略す)を調整する方法が効果的であるこ
とを見出し、この知見に基いて本発明に到達し
た。但し、無煙炭のビトリニツトは加熱時におい
て膨張、収縮を示さないので石炭中の不活性成分
に含めた。 本発明によれば配合する石炭中の不活性成分と
鉱物質(JIS M8816−1979の規格で用いている用
語)の和を調整することでコークス摩耗強度の向
上を損なうことなく、コークス粒度の改善をはか
ることが出来、不活性成分の多い炭種例えばカナ
ダ炭豪州炭および南アフリカ炭などを多量に使用
することが出来る。 上記石炭中の不活性成分の意味は、石炭の加熱
時において、その成分のうち膨張、収縮を示さな
い成分を意味し、これには上記した無煙炭のビト
リニツトの他に石炭のマセラルグループのイナー
チニツトが相当し、イナーチニツトにはミクリニ
ツト、スクレロチニツト、フジニツト、セミフジ
ニツトがある。 石炭中の不活性成分と鉱物質は加熱時における
膨張、収縮が小さいため、図1に示す如くトータ
ルイナートの多い配合炭ほど熱応力発生因子の1
つと考えられるセミコークス1次線収縮係数β1
低下させることが出来る。しかし、石炭中の不活
性成分と鉱物質は配合炭の流動性を低下させる要
因となるため、トータルイナートが多すぎると石
炭粒子間の溶融着が不良となりコークス強度が低
下する。 重力装入における装入炭嵩密度は0.70〜0.80湿
トン/m3であり、石炭真比重1.3〜1.4乾g/cm3
比較して約1/2と低いため、石炭の粒子間距離が
長くなり、硬質塊コークスを得るには粒子間の溶
融着を促すため、一般に配合炭の流動性がギース
ラープラストメータ値で200ddpm以上となるよ
うに管理されており、流動性低下要因となるトー
タルイナートは20〜25Vol%となつている。 一方、嵩密度が1.0湿トン/m3以上、好ましく
は1.15湿トン/m3以上を示すブロツク状成型炭に
おいては重力装入と比較して嵩密度が40〜50%増
加するため、石炭の粒子間距離が短かくなり、粘
結成分量を節減出来る。この結果、配合すべき全
石炭中のトータルイナートを27〜35Vol%に増加
しても重力装入と比較して高いコークス強度を得
ることが出来、コークス強度の向上を損うことな
くコークス粒度の改善をはかることが出来る。 トータルイナートを27〜35Vol%としたのは図
2に示す如く、トータルイナートが27Vol%以下
においてはコークス粒度の増加が小さく、トータ
ルイナートが35Vol%以上では石炭粒子の溶融着
性が不充分なものとなりコークスの強度低下が著
るしいためである。 石炭の粉砕粒度に関する制限は特になく経済性
を考えると通常重力装入で実施している範囲で充
分であるが、トータルイナートの特に多い石炭は
2mm以下に微粉砕した方がよい。 又、粉コークス、石油コークスおよび揮発分10
%以下を示すチヤー等の不活性材料(成分)を添
加する場合も、これら不活性材料と石炭マセラル
のトータルイナートとの総和が27〜35Vol%とな
るように配合することが出来る。 実施例 表1に示す性状を有する原料炭を用い、粉砕粒
度−3mm85、全水分10%の配合炭とし、成型圧
100Kg/cm2で圧縮成型して総重量10Kgの円筒ブロ
ツク状成型炭となし、鉄製レトルトに入れ外熱式
電気炉で最高温度1000℃で乾留してコークス粒度
および強度を測定した。 マセラルグループの測定はJIS法に準拠して測
定し、トータルイナートは式(A)の如く算出した。 トータルイナート=(フジニツト)+2/3(セミフジ
ニツト)+(ミクリニツト) +(スクレロチニツト)+(ミネラルマター)……(A
) セミコークス1次線収縮係数の測定は島津製作
所製熱機械的分析装置を用い (1) 試料粒度を100mesh以下、全水分を10%に調
整する。 (2) 前記(1)の試料を加圧して直径7ψmm、長さ5
〜6mmとなるように成型してテストピースを得
る。 (3) 前記(2)で得られたテストピースを測定装置に
セツトし荷重を加えながら窒素ガス気流中で昇
温して800℃まで加熱する。 (4) セミコークス1次線収縮係数β1は式(B)の如く
算出して求める。 β1=1/l0 (dl/dt)/(dθ/dt) −(B) l0……固化点での試料長さ dl……長さ変化量 dt……時間変化量 dθ……温度変化量
The present invention relates to a method for producing metallurgical coke. Attempts are currently being made in various countries around the world to improve the productivity of coke ovens and the quality of produced coke by increasing the bulk density of charged coal, or to utilize low-rank coal. In Japan, the briquette coal partial charging method is implemented on a commercial scale. This method attempts to increase the bulk density of the charged coal by molding 30% of the charged coal into briquettes, but the increase rate is only about 10%. On the other hand, in the stamping method used in Europe, the entire amount of charged coal is compressed and molded, so the bulk density of the charged coal increases significantly, reaching an increase rate of 40 to 50%. As the bulk density of the charged coal increases, the coal particles are consolidated,
The resulting coke has a dense structure, and the coke strength, particularly the abrasion strength, is significantly improved. However, if the bulk density is increased and the weight of coal per unit volume in the coking chamber is increased, the coke becomes finer. One of the reasons for this is the temperature difference between the heating wall side and the center side of the coking chamber, which leads to an increase in the so-called temperature gradient in the coal, which causes coke cracking to occur due to the increase in thermal stress due to the difference in shrinkage of semi-coke during the semi-coking process. It is possible that it will become larger. For this reason, in the case of the stamping method, which has a remarkable increase rate in bulk density, if the coke is mixed in the same way as the gravity charging, which is usually practiced, the coke becomes fine particles, making it difficult to use as coke for blast furnaces. Powdered coke is added to the coal blend to improve particle size. However, with the method of improving coke particle size by adding coke powder, the degree of improvement in coke abrasion strength decreases, and in order to prevent the reduction in coke abrasion strength due to the addition of coke powder, coke powder is finely pulverized to 0.2 mm or less. However, this method has disadvantages such as increased pulverization costs including measures to prevent dust generation. As a measure to prevent coke granulation, charging raw materials
Japanese Patent Laid-Open No. 14579/1983 describes a method in which the mixture is preheated to 300° C. or lower to reduce moisture to zero, coal-based or petroleum-based heavy oil is added, the mixture is molded, and the mixture is charged into a carbonization chamber. This method reduces the temperature difference between the wall side and the inside of the coal during carbonization by preheating the sample coal, reduces the thermal stress that causes cracks in the coke, and prevents a decrease in coke particle size. It is something. However, this method has not yet been implemented in commercial-scale equipment for mass processing, and there are problems such as increased raw material costs due to the addition of heavy oil and smoke and ignition when charging into the carbonization chamber. There are drawbacks such as: The object of the present invention is to provide a method for producing metallurgical coke that does not have these drawbacks. Compared to gravity charging, which is normally charged from the top of the furnace, block-shaped briquette coal has a bulk density that is 40 to 50% higher, and the cracks generated during the semi-coking process become larger, resulting in finer coke particles. As a result of intensive research to achieve the purpose of the present invention, the inventors of the present application have determined that the sum of inert components and mineral substances in the total coal (hereinafter referred to as total It was discovered that a method for adjusting the inert (abbreviated as "inert") is effective, and based on this knowledge, the present invention was achieved. However, vitrinite, which is anthracite coal, does not expand or contract when heated, so it was included as an inert component in the coal. According to the present invention, by adjusting the sum of inert components and mineral substances (term used in the JIS M8816-1979 standard) in the blended coal, the coke particle size can be improved without sacrificing the improvement in coke wear strength. Therefore, it is possible to use a large amount of coal types containing many inert components, such as Canadian coal, Australian coal, and South African coal. The above-mentioned inert components in coal mean those components that do not expand or contract when the coal is heated.In addition to the vitrinite of the anthracite mentioned above, this includes inertinites of the maceral group of coal. Inertinites include miclinites, sclerotinites, fujinites, and semifujinites. Since the inert components and minerals in coal have smaller expansion and contraction during heating, the coal blend with more total inert has a higher thermal stress generation factor, as shown in Figure 1.
It is possible to reduce the linear linear contraction coefficient β 1 of semi-coke, which is considered to be one of the most important factors. However, inert components and mineral substances in the coal are factors that reduce the fluidity of the coal blend, so if the total inert content is too large, the fusion bond between the coal particles becomes poor and the coke strength decreases. The bulk density of charged coal in gravity charging is 0.70 to 0.80 wet tons/ m3 , which is approximately 1/2 lower than the coal true specific gravity of 1.3 to 1.4 dry g/ cm3 , so the distance between coal particles is In order to promote melt adhesion between particles in order to obtain hard lump coke, the fluidity of the blended coal is generally controlled to be 200 ddpm or more as measured by the Giesler plastometer. Inert is 20-25Vol%. On the other hand, for block-shaped briquette coal with a bulk density of 1.0 wet ton/m 3 or more, preferably 1.15 wet ton/m 3 or more, the bulk density increases by 40 to 50% compared to gravity charging. The distance between particles is shortened, and the amount of adhesive component can be reduced. As a result, even if the total inert in the total coal to be blended is increased to 27 to 35 Vol%, it is possible to obtain higher coke strength compared to gravity charging, and the coke particle size can be reduced without sacrificing the improvement in coke strength. Improvements can be made. The reason for setting the total inert to 27 to 35 Vol% is that as shown in Figure 2, when the total inert is 27 Vol% or less, the increase in coke particle size is small, and when the total inert is 35 Vol% or more, the melting and adhesion of coal particles is insufficient. This is because the strength of coke is significantly reduced. There are no particular restrictions on the particle size of pulverized coal, and from the economic point of view, gravity charging is usually sufficient, but coal with a particularly large amount of total inert should be pulverized to 2 mm or less. Also, coke powder, petroleum coke and volatile content 10
Even when adding an inert material (component) such as char, which shows an amount of less than 20% by volume, it can be blended so that the sum of these inert materials and the total inert of the coal maceral is 27 to 35 Vol%. Example Using raw coal having the properties shown in Table 1, a blended coal with a pulverized particle size of -3 mm85 and a total moisture content of 10% was used, and the molding pressure was
The coal was compression molded at 100 kg/cm 2 to form a cylindrical block shaped coal with a total weight of 10 kg, which was placed in an iron retort and carbonized at a maximum temperature of 1000°C in an externally heated electric furnace to measure the coke particle size and strength. The maceral group was measured in accordance with the JIS method, and the total inert was calculated as shown in formula (A). Total inert = (Fujinite) + 2/3 (Semi-Fujinite) + (Mikulinite) + (Sclerotinite) + (Mineral matter)……(A
) The primary linear shrinkage coefficient of semi-coke is measured using a Shimadzu thermomechanical analyzer (1) Adjust the sample particle size to 100mesh or less and total moisture to 10%. (2) Pressurize the sample from (1) above to a diameter of 7ψmm and a length of 5mm.
A test piece is obtained by molding it to a thickness of ~6 mm. (3) The test piece obtained in (2) above is set in a measuring device and heated to 800°C in a nitrogen gas stream while applying a load. (4) The semi-coke linear shrinkage coefficient β 1 is calculated as shown in equation (B). β 1 = 1/l 0 (dl/dt)/(dθ/dt) −(B) l 0 ... Sample length dl at solidification point ... Length change dt ... Time change dθ ... Temperature amount of change

【表】【table】

【表】 結果を表2に示す。ブロツク状成型炭において
トータルイナートが重力装入並の20〜25Vol%を
示すケース、の場合、重力装入と比較してコ
ークス強度D150 15が向上しているもののコーク
スの細粒化が著るしくなつている。また、ケース
の場合は重力装入()と比較してコークス強
度DIが低下しているのは本発明のトータルイナ
ートの上限を越えているためである。 本発明であるトータルイナートを27〜35Vol%
としたケース、、はコークス粒度が大巾に
増加しており、コークス強度D150 15もケース
の重力装入嵩密度0.75湿Kg/と比較してすぐれ
た値が得られている。
[Table] The results are shown in Table 2. In the case where the total inert in block shaped coal shows 20 to 25 Vol%, which is similar to gravity charging, although the coke strength D 150 15 is improved compared to gravity charging, the coke grains become significantly finer. It's getting better. Furthermore, in the case of case, the reason why the coke strength DI is lower than that of gravity charging ( ) is because the upper limit of total inert according to the present invention is exceeded. The total inert of the present invention is 27~35Vol%
In case 2, the coke particle size has greatly increased, and the coke strength D 150 15 is also excellent compared to the gravity charging bulk density of case 0.75 wet Kg/.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

図1はトータルイナートとセミコークス1次線
収縮係数との関係を示すグラフで、横軸はトータ
ルイナートの容積%、縦軸はセミコークス1次線
収縮係数β1を示す、図2はトータルイナートとコ
ークス粒度及びコークス強度の関係を示すグラフ
で、横軸はトータルイナートの容積%、縦軸
(左)はコークスの平均粒度を縦軸(右)はコー
クス強度を示す。
Figure 1 is a graph showing the relationship between total inert and semi-coke linear shrinkage coefficient.The horizontal axis shows the volume % of total inert, and the vertical axis shows semi-coke linear shrinkage coefficient β1.Figure 2 shows the relationship between total inert and semi-coke linear shrinkage coefficient. This is a graph showing the relationship between coke particle size and coke strength, where the horizontal axis shows the volume % of total inert, the vertical axis (left) shows the average particle size of coke, and the vertical axis (right) shows coke strength.

Claims (1)

【特許請求の範囲】[Claims] 1 配合炭を室炉よりやや小さい寸法のブロツク
状に成型して嵩密度1.0湿トン/m2以上とした後
に室炉へ装入して乾留する方法において、配合す
べき全石炭の不活性成分と鉱物質の和が27〜
35Vol%となるように石炭を配合することを特徴
とする冶金用コークスの製造方法。
1 In the method of forming coal blend into a block with a size slightly smaller than that of an indoor furnace to give a bulk density of 1.0 wet tons/m 2 or more and then charging it into an indoor furnace and carbonizing it, the inert components of the total coal to be blended are and the sum of minerals is 27~
A method for producing metallurgical coke, characterized by blending coal so that it becomes 35 Vol%.
JP14778582A 1982-08-27 1982-08-27 Production of metallurgical coke Granted JPS5938279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14778582A JPS5938279A (en) 1982-08-27 1982-08-27 Production of metallurgical coke

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14778582A JPS5938279A (en) 1982-08-27 1982-08-27 Production of metallurgical coke

Publications (2)

Publication Number Publication Date
JPS5938279A JPS5938279A (en) 1984-03-02
JPH0218359B2 true JPH0218359B2 (en) 1990-04-25

Family

ID=15438138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14778582A Granted JPS5938279A (en) 1982-08-27 1982-08-27 Production of metallurgical coke

Country Status (1)

Country Link
JP (1) JPS5938279A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6051781A (en) * 1983-08-31 1985-03-23 Nippon Kokan Kk <Nkk> Production of coke for metallurgy
JPH01178447A (en) * 1988-01-06 1989-07-14 Toyo Alum Kk Aluminum laminate
JP6870528B2 (en) * 2017-08-09 2021-05-12 日本製鉄株式会社 Manufacturing method of coke for blast furnace

Also Published As

Publication number Publication date
JPS5938279A (en) 1984-03-02

Similar Documents

Publication Publication Date Title
JP5884159B2 (en) Method for producing metallurgical coke
RU2713143C1 (en) Carbonaceous reducing agent for production of technical silicon and method of its production
KR20120070300A (en) Method and apparatus for manufacturing partially-carbonized coal briquettes, and apparatus for manufacturing molten irons
JPH026815B2 (en)
KR101751289B1 (en) Method for producing cokes
JPH0218359B2 (en)
US2869990A (en) Process of producing carbides
KR101767800B1 (en) Method for producing metallurgical coke
US2808370A (en) Metallurgical coke
US3058821A (en) Manufacture of coke
US4105501A (en) Method for producing metallurgical coke
JP2937659B2 (en) Coke production method
JP7493121B1 (en) Coke manufacturing method
JPS59126495A (en) Production of metallurgical coke
KR102288801B1 (en) Method of manufacturing coke
RU2796955C2 (en) Briquetted mixture for smelting technical silicon
JPH0259196B2 (en)
US2808326A (en) Method of melting ferrous metals
JPH08231962A (en) Production of metallurgical coke
JP3552510B2 (en) Coke production method
WO2015182529A1 (en) Method for manufacturing blast furnace coke, and blast furnace coke
JP5470855B2 (en) Manufacturing method of ferro-coke for metallurgy
JPS6023479A (en) Production of metallurgical coke mainly aiming by- production of coke powder
JPH11116969A (en) Charging of dried coal into coke oven
JPS61106691A (en) Preparation of metallurgical coke