JPS6050738B2 - High sulfate slag cement and its manufacturing method - Google Patents

High sulfate slag cement and its manufacturing method

Info

Publication number
JPS6050738B2
JPS6050738B2 JP54001025A JP102579A JPS6050738B2 JP S6050738 B2 JPS6050738 B2 JP S6050738B2 JP 54001025 A JP54001025 A JP 54001025A JP 102579 A JP102579 A JP 102579A JP S6050738 B2 JPS6050738 B2 JP S6050738B2
Authority
JP
Japan
Prior art keywords
slag
cement
water
high sulfate
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54001025A
Other languages
Japanese (ja)
Other versions
JPS5595651A (en
Inventor
義高 益田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP54001025A priority Critical patent/JPS6050738B2/en
Publication of JPS5595651A publication Critical patent/JPS5595651A/en
Publication of JPS6050738B2 publication Critical patent/JPS6050738B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳細な説明】 本発明はスラグセメント及びその製法に係るものであり
、更に詳細には高硫酸塩スラグセメントとその製法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a slag cement and a method for producing the same, and more particularly to a high sulfate slag cement and a method for producing the same.

高炉木枠スラグが水和によつて硬化する傾向のあること
は従来公知であり、この性質を利用してこのスラグをポ
ートランドセメントクリンカーと混合、粉砕したものは
安価でもあるので高炉セメントないし鉄ポートランドセ
メントとして用いられている。
It has been known that blast furnace wood frame slag has a tendency to harden due to hydration. Taking advantage of this property, this slag is mixed with Portland cement clinker and ground, which is inexpensive and can be used for blast furnace cement or iron. Used as Portland cement.

しかしながら、この場合でも、木枠スラグのみては硬化
に時間がかかり且つ強度も充分でないのでスラグはむし
ろポートランドセメントの増量材としての性質が強くス
ラグの含有率はたかだか30%内外てある。上記とは別
にシリトールセメントで代表されるところの高硫酸塩ス
ラグセメントも知られているノが、本邦においてはこれ
の製造に適する高炉木枠スラグが得られないこと、凝結
、硬化に時間がかかることならびに硬化体表面に脆弱質
部分が生ずるなどの欠点があるため実用化されていない
However, even in this case, since wooden frame slag alone takes time to harden and does not have sufficient strength, slag has strong properties as an extender for Portland cement, and the slag content is around 30% at most. In addition to the above, high sulfate slag cement, typified by silitol cement, is also known, but in Japan it is difficult to obtain blast furnace wooden frame slag suitable for manufacturing this, and it takes a long time to set and harden. It has not been put to practical use because of this problem and other drawbacks such as the formation of brittle parts on the surface of the cured product.

本発明は凝結、硬化が速かぜ且つ表面に脆弱質部分を生
じないすぐれた高硫酸塩スラグセメントならびにその製
法を与えるものである。公知の高硫酸塩スラグセメント
の代表であるシリトールセメントは前記の通りその製造
に適する高炉水砕スラグが本邦において得られないのみ
かその凝結始発に約5時間、終結に約1時間と硬化に時
間がかかりまた硬化体の表面は硬化がはなはだ悪く脆弱
であつて容易に崩かいする欠点がある。
The present invention provides an excellent high sulfate slag cement that sets and hardens quickly and does not produce any brittle parts on the surface, as well as a method for producing the same. As mentioned above, silitol cement, which is a representative of the known high sulfate slag cements, is not only unable to obtain granulated blast furnace slag suitable for its production in Japan, but also takes about 5 hours to start setting and about 1 hour to finish setting. It takes a long time and the surface of the cured product is difficult to cure and is brittle and easily crumbles.

本発明者は実用性のある高硫酸塩スラグセメントの開発
について鋭意検討の結果、本発明を完成した。
The present inventor completed the present invention as a result of intensive studies on the development of a practical high sulfate slag cement.

本発明の高硫酸塩スラグセメントは凝結始発が1〜3時
間、終結が約4〜6時間と早く、しかも表面に脆弱質部
分が生せず鋭角に成型が可能である。
The high sulfate slag cement of the present invention starts setting quickly in 1 to 3 hours and finishes setting in about 4 to 6 hours, and can be molded into acute angles without forming any brittle parts on the surface.

本発明の高硫酸塩スラグセメントはCaO4O〜50%
、Ae2O3l4〜20%、SlO23O〜35%およ
びMgO5〜8%を不可欠の構成成分として含む水砕ス
ラグ80〜85%、好ましくは82〜85%、CaSO
4l3〜17%、ボートランドセメント1.5〜2.5
%、有機カルボン酸またはそのアルカリ金属塩0.1〜
0.5%、水溶性高分子化合物0.03〜0.6%及び
硫酸ナトリウム0.6〜2%から成り4500〜550
0cT1/gの−プレーン比表面積を有する微粉末混合
物である。
The high sulfate slag cement of the present invention has a CaO4O~50%
, Ae2O3l4-20%, SlO23O-35% and MgO 5-8% as essential constituents 80-85%, preferably 82-85%, CaSO
4l3-17%, Boatland cement 1.5-2.5
%, organic carboxylic acid or its alkali metal salt 0.1~
0.5%, water-soluble polymer compound 0.03-0.6% and sodium sulfate 0.6-2%, 4500-550
It is a fine powder mixture with a -plane specific surface area of 0 cT1/g.

上記のセメントの製法は高炉水砕スラグまたはそれにA
′203及び/迄はCaOを添加し均一に混合して再熔
融し水砕化したスラグ80〜85%、好ましくは82〜
85%、CaSO4l3〜17%、ボートランドセメン
ト1.5〜2.5%、有機カルボン酸またはそのアルカ
リ金属塩0.1〜0.5%、水溶性高分子化合物0.0
3〜0.6%及び硫酸ナトリウム0.6〜2%を混身、
粉砕ないしは粉砕、混合することにより4500〜55
00c盾/gの比表面積を有する微粉末混合物をJ得る
ものである。本発明の高硫酸塩スラグセメントにあつて
は用いるスラグの化学組成が重要であつて塩基度の高い
、CaO4O〜50%、A′20314〜20%、Si
O23O〜35%およびMgO5〜8%を含むスラグを
用いる必ζ要がある。
The above cement is manufactured using granulated blast furnace slag or A
'203 and/or 80 to 85%, preferably 82 to 85%, of slag, which is made by adding CaO, uniformly mixing it, remelting it, and pulverizing it.
85%, CaSO4l3-17%, Boatland cement 1.5-2.5%, organic carboxylic acid or its alkali metal salt 0.1-0.5%, water-soluble polymer compound 0.0
3-0.6% and sodium sulfate 0.6-2%,
4500-55 by crushing or crushing and mixing
A fine powder mixture with a specific surface area of 00c shield/g is obtained. For the high sulfate slag cement of the present invention, the chemical composition of the slag used is important; it has a high basicity, CaO4O~50%, A'20314~20%, Si
It is necessary to use a slag containing ~35% O23O and 5-8% MgO.

しかしながら現在日本で入手し得る高炉水砕スラグは一
般にCaO4O〜43%、Ae2O3l4〜16%、S
lO23O〜35%、MgO5〜8%、TiO2O.5
%、Sl.O%、FeOO.2%、程度のものに限定さ
れているので日本で今日入手し得る高炉水砕スラグは本
発明で用いるスラグの塩基度の下限をかろうじて満足す
るに足る品質にとどまる。塩基度が低いと硬化時間も長
くかかりまた強度が低下する。したがつて高炉水砕スラ
グの塩基度を高めるのが望ましい。しかし塩基度を高め
るためにAe2O3、CaOを単に添加、混合、粉砕し
たのみでは本発明の目的には適当でなくかえつて悪い結
果を与える。ノ 本発明者は高炉水砕スラグに希望量の
Ae2O3及び/又はCaOを添加、混合し再熔融し水
砕することによつて本発明の目的に合致するスラグが得
られることを見出した。
However, the granulated blast furnace slag currently available in Japan generally contains ~43% CaO4O, ~16% Ae2O3l4, and S
lO23O~35%, MgO5~8%, TiO2O. 5
%, Sl. O%, FeOO. 2%, the quality of the granulated blast furnace slag available in Japan today is barely sufficient to satisfy the lower limit of the basicity of the slag used in the present invention. If the basicity is low, the curing time will be longer and the strength will be lower. Therefore, it is desirable to increase the basicity of granulated blast furnace slag. However, simply adding, mixing, and pulverizing Ae2O3 and CaO to increase the basicity is not suitable for the purpose of the present invention and gives worse results. The present inventor has discovered that a slag meeting the object of the present invention can be obtained by adding a desired amount of Ae2O3 and/or CaO to granulated blast furnace slag, mixing it, remelting it, and pulverizing it.

Ae2O3、CaOの添加、混合、再熔融、水砕の工程
はしたがつて原料の高炉水砕スラグの化学組成が本発明
で必要とする塩基度以下、換言すれば前記の不可欠の構
成要件からはずれている場合には不可欠の工程であり、
一方使用する原料の水砕スラグの組成がすでに上記組成
範囲内に含まれている場合には任意工程である。
The steps of adding Ae2O3 and CaO, mixing, remelting, and granulation are performed so that the chemical composition of the raw material, granulated blast furnace slag, is below the basicity required by the present invention, in other words, it deviates from the above-mentioned essential constituent requirements. This is an essential process if
On the other hand, if the composition of the granulated slag used as the raw material is already within the above composition range, this is an optional step.

スラグの使用量は高硫酸塩スラグセメントの総量の80
〜85%、好ましくは82〜85%である。
The amount of slag used is 80% of the total amount of high sulfate slag cement.
~85%, preferably 82-85%.

本発明で使用するCasO4、即ち石こう、は無水石こ
うでも焼石こうでもあるいは二水石こうでもよい。通常
は公害防止装置から得られる排煙脱硫石こうが用いられ
る。CasO4の使用量は無水石こうとして計算して1
3〜17%であり、これは二水石こうとして計算すれば
約16〜22%である。ボートランドセメントの使用量
は1.5〜2.5%で2〜2.5%が好ましい。有機カ
ルボン酸またはそのアルカリ金属塩の好ましい例として
は酒石酸、酒石酸ナトリウム、酒石酸カリウム、クエン
酸、クエン酸ナトリウム、クエン酸カリウム等をあげる
ことが出来る。
CasO4, ie, gypsum, used in the present invention may be anhydrous gypsum, calcined gypsum, or dihydrate gypsum. Usually flue gas desulfurization gypsum obtained from pollution control equipment is used. The amount of CasO4 used is calculated as anhydrous gypsum.
3 to 17%, which is about 16 to 22% when calculated as dihydrate gypsum. The amount of Boatland cement used is 1.5 to 2.5%, preferably 2 to 2.5%. Preferred examples of organic carboxylic acids or alkali metal salts thereof include tartaric acid, sodium tartrate, potassium tartrate, citric acid, sodium citrate, potassium citrate, and the like.

使用量は0.1〜0.5%である。この有機カルボン酸
またはそのアルカリ金属塩は凝結、硬化を促進する働き
をする。添加する水溶性高分子化合物の好ましい例とし
てはメチルセルロール、ステアリン酸カルシウムの如き
金属石けんあるいはまたラウリルベンゼンスルホン酸ナ
トリウム等をあげることが出来る。
The amount used is 0.1-0.5%. This organic carboxylic acid or its alkali metal salt functions to promote coagulation and hardening. Preferred examples of the water-soluble polymer compound to be added include metal soaps such as methylcellulose and calcium stearate, and sodium laurylbenzenesulfonate.

その使葉量は0.03〜0.6%てあつて、そのなかで
も例えばメチルセルロール、金属石けんの場合には0.
1〜0.6%、ラウリルベンゼンスルホン酸ナトリウム
の場合には0.03〜0.06%が好ましい。ラウリル
ベンゼンスルホン酸ナトリウムの過剰の添加は凝結、硬
化の速度を低下させる傾向がありあまり好ましくないが
、一方硬化体の強度は更に向上するのでその目的に応じ
て実際の使用量は決定されるべきである。上記の有機カ
ルボン酸またはその塩および水溶性高分子化合物はそれ
ぞれ一種ずつ用いることも出来るしあるいは複数種の化
合物を同時に用いることも出来る。
The amount used is 0.03 to 0.6%, and in the case of methyl cellulose and metal soap, for example, 0.03% to 0.6% is used.
1 to 0.6%, preferably 0.03 to 0.06% in the case of sodium laurylbenzenesulfonate. Adding an excessive amount of sodium laurylbenzenesulfonate tends to reduce the rate of coagulation and curing, which is not very preferable, but on the other hand, the strength of the cured product is further improved, so the actual amount used should be determined depending on the purpose. It is. The above-mentioned organic carboxylic acid or its salt and water-soluble polymer compound can be used individually or in combination.

硫酸ナトリウムの使用量は0.6〜2%である。The amount of sodium sulfate used is 0.6-2%.

硫酸カリウムを均等に使用できるが高価なだけで特に利
益はない。本発明の高硫酸塩スラグセメントはプレーン
比表面積で4500〜5500cイ/gの値を有するの
が好ましく、比表面積が小さいと硬化時間が長くなり、
一方5500cT1/g以上に微粉砕しても粉砕に要す
る仕事がふえる割に利益はない。
Potassium sulfate can be equally used, but it is expensive and provides no particular benefit. The high sulfate slag cement of the present invention preferably has a plain specific surface area of 4,500 to 5,500 c/g; the smaller the specific surface area, the longer the curing time;
On the other hand, even if it is pulverized to 5,500 cT1/g or more, there is no profit even though the work required for pulverization increases.

本発明の高硫酸塩スラグセメントの製法は上記より容易
に理解し得るように高炉水砕スラグまた.はこれにA′
203及び/又はCaOを添加、混合、再熔融、水砕し
たスラグに石こう、ボルトランドセメント、有機カルボ
ン酸またはそのアルカリ金属塩、水溶性高分子化合物及
び硫酸ナトリウムを上記の割合で配合したものを所定の
プレーン比表面積が得られる迄微粉砕するかあるいは上
記各成分を個々にないしは複数種とりまとめて微粉砕し
、しかるのちそれらを所定割合で均一に混合して所定の
比表面積を有する混合物を得るものてある。
As can be easily understood from the above, the method for producing the high sulfate slag cement of the present invention is based on granulated blast furnace slag or granulated blast furnace slag. is A' for this
203 and/or CaO added, mixed, remelted, and pulverized slag is mixed with gypsum, Bortland cement, organic carboxylic acid or its alkali metal salt, water-soluble polymer compound, and sodium sulfate in the above proportions. Finely pulverize until a predetermined plain specific surface area is obtained, or finely pulverize each of the above components individually or in combination, and then mix them uniformly in a predetermined ratio to obtain a mixture having a predetermined specific surface area. There are things.

本発明の高硫酸塩スラグセメントが従来公知のシリトー
ルセメントにくらべてなせ顕著にすぐれた急速凝結、硬
化をなすのかその理由、発明の詳細な説明はいまだ充分
につくされていないが、本発明者は、以下の説明によつ
て本発明は拘束されるものてはないが、次のように考え
ている。
The reason why the high sulfate slag cement of the present invention exhibits significantly superior rapid setting and hardening compared to conventionally known silitol cement, and the detailed explanation of the invention have not yet been fully explained, but the present invention Although the present invention is not limited to the following explanation, the inventor believes as follows.

すなわち、本発明の高硫酸塩スラグセメントに適当量の
水を加え、混練すると添加されている有機カルホン酸な
いしはそのアルカリ金属塩の解離によつて直接あるいは
間接的に生するNa2O,.K2Oのスラグ溶解作用と
有機カルホン酸の石こう溶解作用の促進と、それによつ
て生成するCa(0H)2による水溶液の高アルカリ化
とにより、溶液中へのスラグのCaO..Ae2O3の
溶出と石こう溶液濃度の増大が、液相中での分子間の衝
突の確率を大ならしめ、反応を速進することにより、塩
析する水不透性の緻密なSiO2を含むケイ酸ゲルの生
成を抑制し、生じるケイ酸ゲルは粗い多孔質構造となり
水の浸入を容易ならしめ、エトリンジヤイトの生成を促
進させ、カルシウムシリケート系水和物の生成を次々に
進め、反応の進行に伴ない液相中のCaO−A′203
、CaO−SO4の濃度が低下し、アルミナ水和物(A
e2O3−3H20)のゲル組織の生成が進み、SiO
2ゲルとともにスラグ粒子表面に結晶性の粒子が生成、
更にイオン反応による網目構造を形成し、エトリンジヤ
イトの空隙を充填、固結する。この一連の反応は添加物
の加水分解に伴なう溶媒作用による溶質の急速分解によ
つて液相の飽和がはやめられることによつて促進され、
したがつて凝結の始発及び終結時間の短縮がもたらさる
ものと考えている。一方、添加される金属石けん、メチ
ルセルロース、ラウリルベンゼンスルホン酸ナトリウム
塩の如き水溶性高分子は溶解して硬化体表面にフィルム
を構成し、空気を遮断することにより脆弱質部分の発生
を防止するとともにセメント粒子の分散を促進し減水効
果を与えるために硬化体の密度、強度を高めるものであ
る。
That is, when an appropriate amount of water is added to the high sulfate slag cement of the present invention and kneaded, Na2O, . The CaO. .. The elution of Ae2O3 and the increase in the concentration of the gypsum solution increase the probability of collisions between molecules in the liquid phase and accelerate the reaction, resulting in water-impermeable dense SiO2-containing silicic acid salting out. Gel formation is suppressed, and the resulting silicic acid gel has a rough porous structure that allows water to easily penetrate, promoting the formation of ettringite, promoting the formation of calcium silicate-based hydrates, and as the reaction progresses. CaO-A'203 in the liquid phase without
, the concentration of CaO-SO4 decreases, and alumina hydrate (A
The formation of gel structure of e2O3-3H20) progresses, and SiO
2. Along with the gel, crystalline particles are formed on the surface of the slag particles.
Furthermore, a network structure is formed by ionic reaction, filling the voids of ettringite and solidifying it. This series of reactions is accelerated by the rapid decomposition of the solute due to the action of the solvent accompanying the hydrolysis of the additive, which prevents the saturation of the liquid phase.
Therefore, it is believed that the time required for the initiation and completion of coagulation is shortened. On the other hand, added water-soluble polymers such as metal soap, methyl cellulose, and sodium laurylbenzenesulfonate dissolve and form a film on the surface of the cured product, blocking air and preventing the formation of fragile parts. It increases the density and strength of the hardened material in order to promote the dispersion of cement particles and provide a water-reducing effect.

材令の進行に伴い、水和物の組成は定着、融合し防水能
を保持する安定した硬化体を与える。
As the age of the material progresses, the composition of the hydrates settles and fuses, giving a stable hardened material that maintains waterproofing ability.

以下に実施例を示して本発明を更に具体的に説明するが
、これらは単に例示の目的で記述するものではない。』
尚、本明細書において%は特記しない限り重量%であ
る。
EXAMPLES The present invention will be explained in more detail with reference to Examples below, but these are not merely for the purpose of illustration. ”
In this specification, % is by weight unless otherwise specified.

実施例1 新日本製鉄広畑工場て得られたCaO4l.8%、Af
2O3l4%、SlO234%、MgO7%、MnOO
.5%、7T1021.0%、Sl.O%、FeOO.
2%及び灼熱減量0.5%、塩基度1.85の化学組成
をする高炉水砕スラグを愛知県豊田市の中央化工機(株
)のステンレス製振動微粉砕機(炭素鋼ロッド及びホー
ル)にて5000c1t/gに微憤砕したもの83%に
、タイセル網干工9場て得られたCaO32.3〜33
%、SO344.8〜45.5%、H2O2O.7〜2
0.9%、Fe2O3O.O5〜0.12%、SO.O
5〜0.92%、CO2O.4l〜0.82%、C′0
.03〜0.05%、H2SO4O.O7%、水溶性ア
ルカリ0.07〜0.23%、MgOO.Ol%、A′
2030.01%、CasO4・21120としての純
度96.4〜97.8%、PH8〜9.6の化学組成を
有する排煙脱硫石こう18%(無水石こう換算13.8
%)及びボルトランドセメント2%、クエン酸0.2%
、金属石けん0.3%、硫酸ナトリウム0.6%、メチ
ルセルロース0.1%を混合し、乳体にてよくらいかい
し高硫酸塩スラグセメントを製した。
Example 1 CaO4l. obtained at Nippon Steel's Hirohata Plant. 8%, Af
2O3l4%, SlO234%, MgO7%, MnOO
.. 5%, 7T1021.0%, Sl. O%, FeOO.
Granulated blast furnace slag with a chemical composition of 2%, loss on ignition 0.5%, and basicity 1.85 was processed into a stainless steel vibratory pulverizer (carbon steel rods and holes) manufactured by Chuo Kakoki Co., Ltd. in Toyota City, Aichi Prefecture. 83% of the powder was finely crushed to 5,000 c1t/g, and 32.3 to 33
%, SO344.8-45.5%, H2O2O. 7-2
0.9%, Fe2O3O. O5-0.12%, SO. O
5-0.92%, CO2O. 4l~0.82%, C'0
.. 03-0.05%, H2SO4O. O7%, water-soluble alkali 0.07-0.23%, MgOO. Ol%, A'
Flue gas desulfurization gypsum 18% (anhydrous gypsum equivalent: 13.8
%) and Bortland cement 2%, citric acid 0.2%
, 0.3% of metallic soap, 0.6% of sodium sulfate, and 0.1% of methyl cellulose were mixed and mixed to form a milky mass to produce a high sulfate slag cement.

このセメントにw/c比28%で加水し、混練してモル
タルとなし注型した。
Water was added to this cement at a w/c ratio of 28%, and the mixture was kneaded to form mortar and cast.

温度10〜20゜C1湿度78%で凝結始発1時間3紛
、終結4時間3紛であつた。注型物の表面にはフィルム
が構成され、失透した。
At a temperature of 10 to 20° C. and a humidity of 78%, 3 powders were set in the first 1 hour and 3 powders were set in the final 4 hours. A film was formed on the surface of the cast product and it became devitrified.

24時間後に脱型、脆弱質部分の生成を認めす、表面乳
白色、底面は青緑色を呈した。
After 24 hours, the mold was demolded and the formation of brittle parts was observed, the surface was milky white and the bottom surface was blue-green.

水中27日養生した材令28日の硬化体は強度大で膨張
、収縮ま認めらTl,4かつた。圧縮強度試験結果実施
例2実施例1で用いたスラグを83%、二水石こうを1
8%、ボルトランドセメントを2%混合した試料にステ
アリン酸カルシウム0.45%、メチルセルロース0.
1%、酒石酸ナトリウム0.21%、硫酸ナトリウム0
.6%、クエン酸三カリウム(K3C6H5O7・H2
O)0.2%を添加、乳体にてらいかいした。
A 28-day-old cured material cured in water for 27 days had high strength and no swelling or contraction was observed, with a Tl of 4. Compressive strength test results Example 2 83% of the slag used in Example 1, 1% of dihydrate gypsum
Calcium stearate 0.45%, methyl cellulose 0.8%, Bortland cement 2% mixed sample.
1%, sodium tartrate 0.21%, sodium sulfate 0
.. 6%, tripotassium citrate (K3C6H5O7・H2
O) 0.2% was added and applied to the milk.

これにw/c比28%て加水し、混練してモルタルを製
し、10〜20゜Cの温度、湿度78%で注型した。凝
結始発2時間、終結5時間であつた。表面にフィルムを
構成し、失透した。24時間後に脱型し底面は緑色、表
面も青緑色を呈した。
Water was added to this at a w/c ratio of 28%, kneaded to prepare a mortar, and the mortar was cast at a temperature of 10 to 20°C and a humidity of 78%. It took 2 hours to start condensing and 5 hours to finish condensation. A film was formed on the surface and devitrified. After 24 hours, the mold was removed and the bottom surface was green and the surface was also blue-green.

水中養生14日て表面の青色は増し硬化体全体が青色と
なり、表面は光沢を呈した。強度は大であり膨張、収縮
は認められずこれは気乾養生後も変らなかつた。実施例
3実施例1のスラグ、二水石こう及びセメント混合物に
ステアリン酸カルシウム0.3%、メチルセルロース0
.3%、クエン酸カリウム0.21%、硫酸ナトリウム
0.6%を添加、らいかいし、w/c比26%で加水し
、混練し、注型し、10〜20゜Cで湿度・78%で硬
化せしめた。
After 14 days of curing in water, the blue color on the surface increased, and the entire cured product turned blue, and the surface became glossy. The strength was high, and no expansion or contraction was observed, which remained unchanged even after air-drying. Example 3 The slag, gypsum dihydrate and cement mixture of Example 1 contains 0.3% calcium stearate and 0 methylcellulose.
.. 3%, potassium citrate 0.21%, and sodium sulfate 0.6% were added, and water was added to the limestone at a w/c ratio of 26%, kneaded, and cast. %.

凝結始発1時間5紛、終結5時間であり、表面にフィル
ムを構成しプリジング水はなく、面は失透した。2?間
後に脱型したところ、表面は乳白色、脆弱質部分は認め
られず、底面はマダラ状に青色を呈した。
The initial setting time was 1 hour and 5 hours, and the final setting time was 5 hours, a film was formed on the surface, there was no precipitated water, and the surface was devitrified. 2? When the mold was demolded after that time, the surface was milky white, no brittle parts were observed, and the bottom surface had a spotted blue color.

水中養生の結果は実施例2の状態と同じであつた。実施
例4 実施例1のスラグ、二水石こう及びセメントの混合物に
メチルセルロース0.3%、ステアリン酸カルシウム0
.2%、硫酸ナトリウム0.7%、酒石酸カリウム0.
1%及びラウリルベンゼンスルホン酸ナトリウム0.0
1%を添加、らいかいし10〜200Cべ湿度78%、
w/c比25%で加水し、混練してモルフタル状となし
て注型した。
The results of underwater curing were the same as in Example 2. Example 4 0.3% methyl cellulose and 0 calcium stearate in the mixture of slag, gypsum dihydrate and cement of Example 1
.. 2%, sodium sulfate 0.7%, potassium tartrate 0.
1% and sodium laurylbenzenesulfonate 0.0
1% added, 10-200C, humidity 78%,
Water was added at a w/c ratio of 25%, kneaded to form a morphthal, and cast.

凝結始発2時間4紛、終結は5時間2紛であり、表面に
フィルムを構成し、ブリジング水が僅かに認められた。
2ff間後に脱型したが脆弱質部分はなく、コーナーも
鋭角であり、表面は白色、底面は淡青色を呈した。
The initial setting was 4 particles in 2 hours, and the final setting was 2 particles in 5 hours. A film was formed on the surface, and a slight amount of bridging water was observed.
The mold was demolded after 2ff, but there were no brittle parts, the corners were sharp, the surface was white, and the bottom was pale blue.

そ7の後気乾養生のみで観察したところ、淡青色ま消失
したが硬化は良好であつた。気乾7日後、水中養生28
日を実施した例ては硬化体に膨張、収縮、ひび割れ、崩
かい現象は認められずまたコーナーを鋭角であつた。ノ
実施例1〜4と同様、本発明の組成を有するセメント
についての他の7例の試験もほぼ同様の結果を与えた。
After step 7, only air-drying was performed, and observation showed that the pale blue color had disappeared, but the curing was good. After 7 days of air drying, water curing for 28 days.
In the case of the cured product, no swelling, shrinkage, cracking, or crumbling phenomena were observed, and the corners were at acute angles. Similarly to Examples 1 to 4, the other seven tests on cement having the composition of the present invention gave almost similar results.

ラウリルベンゼンスルホン酸ナトリウムの添加量を過大
とし添加水量も大きくした他の1例では硬化に長時間を
要したが硬化体の強度−は大であつた。実施例5 高炉水砕スラグの塩基度を高めるために実施例1で用い
たスラグにCaOとAf2O3を加えて再熔融し水砕し
CaO45.Ol%、Af2O3l8.28%、SlO
229.87%、MgO6.lO%、MnOO.25%
、TlO2O.4%、SO.7%、Fe2O3O.l%
、灼熱減量未測定の化学組成を有する塩基度2.32の
水砕スラグを得た。
In another example in which the amount of sodium laurylbenzenesulfonate added was too large and the amount of water added was also large, it took a long time to cure, but the strength of the cured product was high. Example 5 In order to increase the basicity of granulated blast furnace slag, CaO and Af2O3 were added to the slag used in Example 1, and the slag was remelted and granulated to obtain CaO45. Ol%, Af2O3l8.28%, SlO
229.87%, MgO6. lO%, MnOO. 25%
, TlO2O. 4%, SO. 7%, Fe2O3O. l%
A granulated slag with a basicity of 2.32 and a chemical composition whose loss on ignition has not been measured was obtained.

このスラグ83%、ボルトランドセメント2%、二水石
こう19%(CasO4換算14.6%)、メチルセル
ロース0.15%、ステアリン酸カルシウム0.2%、
硫酸ナトリウム0.6%、酒石酸ナトリウム0.05%
、酒石酸カリウム0.1%を混合しこれをステンレスス
チール製ドラムにて比表面積5000cr1/gになる
まて微粉砕し、適量の水を加えて混練しモルタルとなし
て注型した。10〜20゜Cて湿度72%の条件て硬化
せしめた。
This slag 83%, Bortland cement 2%, dihydrate gypsum 19% (CasO4 equivalent 14.6%), methyl cellulose 0.15%, calcium stearate 0.2%,
Sodium sulfate 0.6%, sodium tartrate 0.05%
, and 0.1% potassium tartrate were mixed and pulverized in a stainless steel drum to a specific surface area of 5000 cr1/g, mixed with an appropriate amount of water, and cast as a mortar. It was cured at 10-20°C and 72% humidity.

24時間後に脱型したが脆弱質部分を認めす、硬化体は
濃青色を呈し、水中養生27日、材令28日でひび割れ
、膨張、収縮、変型を認めず崩かい部分もなかつた。
The mold was demolded after 24 hours, but brittle parts were observed.The cured product had a dark blue color, and after 27 days of underwater curing and 28 days of age, no cracks, expansion, shrinkage, or deformation were observed, and there was no crumbling part.

Claims (1)

【特許請求の範囲】 1 CaO40〜50%、Al_2O_314〜20%
、SiO_230〜35%およびMgO5〜8%を不可
欠の構成成分として含む水砕スラグ80〜85%、Ca
SO_413〜17%、ポートランドセメント1.5〜
2.5%、有機カルボン酸またはこのアルカリ金属塩0
.1〜0.5%、水溶性高分子化合物0.03〜0.6
%及び硫酸ナトリウム0.6〜2%から成り、4500
〜5500cm^2/gのブレーン比表面積を有する高
硫酸塩スラグセメント。 2 水砕スラグの量が82〜85%、ポートランドセメ
ントの量が2〜2.5%である特許請求の範囲第1項に
記載のセメント。 3 CaO40〜50%、Al_2O_314〜20%
、SiO_230〜35%およびMgO5〜8%を不可
欠の構成成分として含む水砕スラグ80〜85%、Ca
SO_413〜17%、ポートランドセメント1.5〜
2.5%、有機カルボン酸またはそのアルカリ金属塩0
.1〜0.5%、水溶性高分子化合物0.03〜0.6
及び硫酸ナトリウム0.6〜2%を混合、粉砕ないし粉
砕、混合し4500〜5500cm^2/gのブレーン
比表面積を有する微粉末混合物を得ることから成る高硫
酸塩スラグセメントの製法。 4 高炉水砕スラグにAl_2O_3及び/又はCaO
を添加、混合、再熔融、水砕することにより該水砕スラ
グを製する特許請求の範囲第3項に記載の製法。
[Claims] 1 CaO 40-50%, Al_2O_314-20%
, SiO_2 30-35% and MgO 5-8% as essential constituents 80-85%, Ca
SO_413~17%, Portland cement 1.5~
2.5%, organic carboxylic acid or its alkali metal salt 0
.. 1-0.5%, water-soluble polymer compound 0.03-0.6
% and sodium sulfate 0.6-2%, 4500
High sulfate slag cement with Blaine specific surface area of ~5500 cm^2/g. 2. The cement according to claim 1, wherein the amount of granulated slag is 82 to 85% and the amount of Portland cement is 2 to 2.5%. 3 CaO40-50%, Al_2O_314-20%
, SiO_2 30-35% and MgO 5-8% as essential constituents 80-85%, Ca
SO_413~17%, Portland cement 1.5~
2.5%, organic carboxylic acid or its alkali metal salt 0
.. 1-0.5%, water-soluble polymer compound 0.03-0.6
A method for producing a high sulfate slag cement, which comprises mixing, crushing or pulverizing and mixing 0.6 to 2% of sodium sulfate to obtain a fine powder mixture having a Blaine specific surface area of 4500 to 5500 cm^2/g. 4 Al_2O_3 and/or CaO in granulated blast furnace slag
The manufacturing method according to claim 3, wherein the granulated slag is manufactured by adding, mixing, remelting, and pulverizing.
JP54001025A 1979-01-11 1979-01-11 High sulfate slag cement and its manufacturing method Expired JPS6050738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54001025A JPS6050738B2 (en) 1979-01-11 1979-01-11 High sulfate slag cement and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54001025A JPS6050738B2 (en) 1979-01-11 1979-01-11 High sulfate slag cement and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS5595651A JPS5595651A (en) 1980-07-21
JPS6050738B2 true JPS6050738B2 (en) 1985-11-09

Family

ID=11490017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54001025A Expired JPS6050738B2 (en) 1979-01-11 1979-01-11 High sulfate slag cement and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS6050738B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03103951U (en) * 1990-02-06 1991-10-29
JP2604738Y2 (en) * 1992-10-14 2000-06-05 株式会社日建設計 Fire damper

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4865167B2 (en) * 2001-09-12 2012-02-01 ヴォプフィンガー シュタイン ウント カルクヴェルケ シュミット ウント コンパニー Hydraulic binder
JP6747034B2 (en) * 2016-04-22 2020-08-26 宇部興産株式会社 Cement composition and method for producing the same
JP7333019B2 (en) * 2020-03-11 2023-08-24 住友大阪セメント株式会社 Cement composition and method for producing hardened cement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03103951U (en) * 1990-02-06 1991-10-29
JP2604738Y2 (en) * 1992-10-14 2000-06-05 株式会社日建設計 Fire damper

Also Published As

Publication number Publication date
JPS5595651A (en) 1980-07-21

Similar Documents

Publication Publication Date Title
KR100799949B1 (en) Non-efflorescing cementitious bodies
EP0312323A2 (en) Cement compositions
US4328039A (en) High sulphate slag cement and method for manufacturing this cement
EP0140156B1 (en) A process for producing a hardened product of coal ash
JPS6050738B2 (en) High sulfate slag cement and its manufacturing method
CN108328996A (en) A kind of lightweight concrete, raw material proportioning and preparation method thereof
JP6694313B2 (en) Method for producing quick-hardening concrete
FI63735B (en) PULVERFORMED COMPOSITION FOR ANALYZING SOM EXPANDERMEDEL FOR CEMENT COMPOSITION FOERFARANDE FOER DESS FRAMSTAELLNIN OH DESS ANVAENDNING
JPS5828222B2 (en) cement quick hardening material
JP2003246657A (en) Hardening accelerator for cement containing incineration ash of sewerage sludge and cement composition
JP2000239054A (en) Setting-adjusting material, setting-adjusting material slurry, and application method of spray cement concrete using the same
CA1131664A (en) High sulphate slag cement and the method for manufacturing this cement
JPH08301638A (en) Solidification and materialization of kaolin powder with geopolymer
KR0118631B1 (en) High Strength Hardener Composition
JPS5926963A (en) Hydraulic composition
JP7312385B1 (en) Method for producing concrete composition and method for producing concrete
JP3025401B2 (en) Manufacturing method of hydrated cured product
GB2141421A (en) Portland cement and method of manufacture thereof
KR101958911B1 (en) Binder for cement-based hardened product and concrete comprising the same, and structure manufactured by the same
JPH02302352A (en) Rapid hardening type self-leveling composition for floor covering material
JP2832860B2 (en) Quick-setting agent for shotcrete
JP2001122649A (en) Cement admixture and cement composition
JPS5858305B2 (en) Fluorite gypsum composition
JP4948724B2 (en) Non-fired cement cured body and method for producing the same
JPS6360180A (en) Manufacture of lightweight concrete