JP2003246657A - Hardening accelerator for cement containing incineration ash of sewerage sludge and cement composition - Google Patents

Hardening accelerator for cement containing incineration ash of sewerage sludge and cement composition

Info

Publication number
JP2003246657A
JP2003246657A JP2002049278A JP2002049278A JP2003246657A JP 2003246657 A JP2003246657 A JP 2003246657A JP 2002049278 A JP2002049278 A JP 2002049278A JP 2002049278 A JP2002049278 A JP 2002049278A JP 2003246657 A JP2003246657 A JP 2003246657A
Authority
JP
Japan
Prior art keywords
cement
amount
strength
incineration ash
cao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002049278A
Other languages
Japanese (ja)
Inventor
Yoshiharu Watanabe
芳春 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2002049278A priority Critical patent/JP2003246657A/en
Publication of JP2003246657A publication Critical patent/JP2003246657A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/10Burned or pyrolised refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/10Accelerators; Activators
    • C04B2103/14Hardening accelerators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hardening accelerator for cement with the incineration ash of sewerage sludge added in which the increase of the unit water content of the cement is suppressed, and the reduction of the initial and long term strength of the cement is improved, and to provide a cement composition. <P>SOLUTION: The hardening accelerator for cement containing the incineration ash of sewerage sludge essentially consists of quicklime and/or slaked lime. The cement composition is obtained by blending the incineration ash of sewerage sludge in 10 to 50 pts. and a quicklime and/or slaked lime-containing material in 1 to 15 pts. by an amount expressed in terms of free lime (f-CaO) (the total of the content of the f-CaO content and a value obtained by converting Ca(OH)<SB>2</SB>into an f-CaO content) to 100 pts. of cement. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、セメントの硬化促
進剤に関し、詳しくは、下水道汚泥の焼却灰を使用した
セメントペースト、モルタル又はコンクリートの凝結硬
化を促進し、かつ、長期強度の低下を軽減した下水道汚
泥の焼却灰を添加したセメント用硬化促進剤及びセメン
ト組成物である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hardening accelerator for cement, and more specifically, it promotes setting hardening of cement paste, mortar or concrete using incineration ash of sewer sludge, and reduces deterioration of long-term strength. A hardening accelerator for cement and a cement composition to which incineration ash of sewer sludge is added.

【0002】[0002]

【従来の技術】永久的、かつ、大量に発生する下水道汚
泥を熱処理しないで埋め立てると有害金属の溶出による
地下水汚染などの課題があるために、1400〜150
0℃の高温で溶融してガラス化(スラグと呼称されてい
る)して粉砕し、セメントペースト、モルタル又はコン
クリート(以下、単にコンクリートという)や建材など
の骨材や増量材として有効利用することが考えられてい
る。さらに、1400〜1500℃の高温炉の中に汚泥
の水分を調節したスラリーを酸素濃度の高い空気と一緒
に吹き込む新しい焼成方法では、脱水から溶融まで瞬間
的に行われ、直径数ミクロンの球状の微細なガラスビー
ズ(溶融パウダーと呼称されている)が生成し、粉砕し
ないでもそのままコンクリートや建材などの増量材とし
て有効利用することが出来、東京都下水道局ではコンク
リート製品各会社と共同研究を進めている(週間下水道
情報、第1181号、平成12年1月25日発行)。ガ
ラス化することにより、微粉末であってもコンクリート
の単位水量は増加しないので、コンクリートの増量材と
しては好ましい性質を有するが、不活性となることか
ら、ポゾラン活性作用による強度増加が期待できないこ
とと、ガラス化するまで(溶融するまで)焼成温度を上げ
ることは、スラグでも溶融パウダーでも前記した高温が
必要があり、設備の建設費や維持費が高価となり、不経
済になるという課題を有する。そのため、経済性を考慮
して溶融しない程度に焼成温度を下げて、800〜85
0℃で焼成したものを単に焼却灰と呼称し、この焼却灰
を一部コンクリート製品に利用されている。
2. Description of the Related Art If a large amount of sewer sludge, which is generated permanently and is not heat-treated, is filled up, there are problems such as groundwater pollution due to elution of harmful metals.
To be effectively used as an aggregate or extender for cement paste, mortar or concrete (hereinafter simply referred to as concrete), building materials, etc. by melting at high temperature of 0 ° C, vitrifying (called slag) and crushing. Is being considered. Furthermore, in a new firing method in which a slurry whose moisture content is adjusted is blown into a high-temperature furnace at 1400 to 1500 ° C together with air having a high oxygen concentration, dehydration to melting is instantaneously performed, and a spherical shape with a diameter of several microns is used. Fine glass beads (called molten powder) are produced and can be effectively used as an extender for concrete and building materials without being crushed. The Tokyo Sewer Bureau is promoting joint research with concrete product companies. (Weekly sewer information, No. 1181, issued January 25, 2000). By vitrifying, even if it is a fine powder, the unit water content of concrete does not increase, so it has preferable properties as an extender for concrete, but since it becomes inactive, it is not possible to expect an increase in strength due to the pozzolan activating action. And, raising the firing temperature until it becomes vitrified (until it melts) requires the above-mentioned high temperature for both slag and molten powder, which leads to an increase in equipment construction cost and maintenance cost, which is uneconomical. . Therefore, in consideration of economy, the firing temperature is lowered to the extent that it does not melt,
The thing burned at 0 degreeC is only called an incineration ash, and this incineration ash is used for some concrete products.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、この焼
却灰の二次粒子形は、バルク(粒子の形を呈さない)状
となり、コンクリートに添加すると著しく単位水量を増
加させるために強度が低下し、セメントに対して5%前
後の少量しか添加できないという課題が発生している。
さらに、焼却灰は、焼成温度を低くするとポゾラン活性
が高まるが、基本的な課題として焼却灰には、セメント
の凝結硬化を遅延する成分であるリン酸化合物を5〜1
5%と多量に含むために、セメントの初期及び長期強度
の発現を阻害するので、この点も焼却灰を多量に利用す
るという目的からは課題となっている。このリン酸塩の
課題を解決するために、焼成前の下水道汚泥中のリン酸
塩を苛性ソーダなどで抽出して取り出すなどの方法も提
案もされているが、本発明のように、リン酸塩を含んだ
ままの焼却灰を添加したセメントそのものの凝結硬化を
促進して初期強度を高め、かつ、長期強度の低下を軽減
した専用の硬化促進剤は提案されていない。一方、従来
よりセメントの凝結硬化促進剤としては、多数の無機化
合物や有機化合物が知られている。無機化合物として
は、古典的な塩化カルシウムなどの塩化物、硝酸塩や亜
硝酸塩のアルカリ金属又はアルカリ土類化合物、可溶性
の硫酸塩や亜硫酸塩のアルカリ金属又はアルミニウム化
合物、チオ硫酸塩のアルカリ金属又はアルカリ土類化合
物などが有り、さらに、促進剤よりも強力なセメント急
結剤としてアルカリ金属の炭酸塩及び重炭酸塩、ケイ酸
塩、アルミン酸塩などが知られている。しかしながら、
これらの促進剤は、その添加量を増加させても焼却灰を
配合したセメントの凝結硬化を促進する作用は小さく、
かつ、長期強度の低下を改善する効果も乏しいものであ
る。また、消石灰などを蒸気養生するコンクリート製品
の早期脱型に使用する方法は、既に提案されている(特
公昭57-1186号公報)が、この方法は、セメント
に不溶性無水石膏と消石灰及び/又は軟焼の生石灰を添
加したコンクリートを成型し、練上り温度よりも35〜
55度高い温度で蒸気養生して短時間に脱型強度を得る
というものであり、焼却灰のように強い凝結遅延作用を
有するものに対して、有効な硬化促進効果があるか否か
の記載はない。本発明者は、下水道焼却灰の抱える前記
課題を解決するために鋭意研究した結果、下水道汚泥の
焼却灰を使用したセメントの単位水量の増加を抑える方
法に加えて、多数ある硬化促進剤の中の特定成分が焼却
灰を添加したセメントの初期及び長期強度の低下を改善
することを知見し、本発明を完成させるに至った。
However, the secondary particle form of this incinerated ash becomes bulky (does not take the form of particles), and when added to concrete, the unit water amount is remarkably increased and the strength is lowered. There is a problem that only a small amount of about 5% can be added to cement.
Furthermore, in the incineration ash, the pozzolanic activity increases when the firing temperature is lowered, but as a basic problem, the incineration ash contains 5 to 1 of a phosphoric acid compound which is a component that delays the setting and hardening of cement.
Since it is contained in a large amount of 5%, the development of early and long-term strength of the cement is hindered, and this point is also a problem from the purpose of utilizing a large amount of incinerated ash. In order to solve the problem of the phosphate, a method of extracting the phosphate in the sewer sludge before firing by extracting with caustic soda is also proposed, but as in the present invention, the phosphate There is no proposal for a dedicated curing accelerator that accelerates the setting and hardening of the cement itself containing the incinerated ash containing as it increases the initial strength and reduces the decrease in long-term strength. On the other hand, a large number of inorganic compounds and organic compounds have been conventionally known as setting hardening accelerators for cement. Inorganic compounds include classical chlorides such as calcium chloride, alkali metal or alkaline earth compounds of nitrates or nitrites, alkali metal or aluminum compounds of soluble sulfates or sulfites, alkali metal or alkalis of thiosulfates. There are earth compounds and the like, and further, alkali metal carbonates, bicarbonates, silicates, aluminates, etc. are known as cement setting agents which are stronger than accelerators. However,
These accelerators have a small effect of accelerating the setting and hardening of the cement containing the incinerated ash even if the added amount is increased,
Moreover, the effect of improving the decrease in long-term strength is poor. Further, a method of using slaked lime or the like for early demolding of a concrete product for steam curing has already been proposed (Japanese Patent Publication No. 57-1186), but this method is an insoluble anhydrous gypsum and slaked lime in cement and / or Molded concrete with soft-calcined quick lime added, 35-35% higher than the kneading temperature
It is to cure by steam at a high temperature of 55 degrees to obtain demolding strength in a short time, and describes whether or not there is an effective hardening promoting effect for those having a strong setting retarding action such as incineration ash. There is no. The present inventor, as a result of diligent research for solving the above-mentioned problems of sewer incineration ash, in addition to a method for suppressing an increase in the unit water amount of cement using incineration ash of sewer sludge, among many hardening accelerators. It was found that the specific component of 1 improves the deterioration of initial and long-term strength of the cement to which the incinerated ash is added, and the present invention has been completed.

【0004】[0004]

【課題を解決するための手段】すなわち、本発明は、生
灰及び/又は消石灰を主成分とする下水道汚泥の焼却灰
を含むセメント用硬化促進剤であり、セメント100部
に対して、下水道汚泥の焼却灰を10〜50部と、生石
灰及び/又は消石灰の含有物質を遊離石灰(f-Ca
O)換算量(f-CaO量及びCa(OH)2をf-CaO
量に換算した値の合計)で1〜15部配合することを特
徴とするセメント組成物である。
[Means for Solving the Problems] That is, the present invention is a hardening accelerator for cement containing incineration ash of sewer sludge containing green ash and / or slaked lime as a main component. 10 to 50 parts of incinerated ash of the above and free lime (f-Ca
O) conversion amount (f-CaO amount and Ca (OH) 2
The cement composition is characterized by being mixed in an amount of 1 to 15 parts by total of the values converted into the amount).

【0005】[0005]

【発明の実施の形態】以下、本発明を詳しく説明する。BEST MODE FOR CARRYING OUT THE INVENTION The present invention is described in detail below.

【0006】本発明の下水道汚泥の焼却灰(以下、単に
焼却灰という)とは、下水道汚泥を脱水したウェットケ
ーキ又は水分量を調節したスラリーを、通常は800〜
850℃で焼成して得られるものであるが、基本的には
溶融しない温度で焼成した粉末である。本発明におい
て、セメント100部に対して、焼却灰を10〜50部
配合する。焼却灰の配合量が10部未満では大量に発生
する汚泥を消化するには少なく、50部を超えると単位
水量の増加が大きくなり過ぎ、ポゾラン活性を加味して
も強度低下が大きくなるし、減水剤量を増加させても減
水率が大きくならないので好ましくない。焼却灰の配合
量は、好ましくは多くても40部である。なお、本発明
で使用する配合割合、添加量を示す部、%は、特に断り
が無い限り質量単位である。
The incineration ash of the sewer sludge of the present invention (hereinafter simply referred to as "incineration ash") is a wet cake obtained by dehydrating the sewer sludge or a slurry having an adjusted water content, usually from 800 to
Although it is obtained by firing at 850 ° C., it is basically a powder fired at a temperature at which it does not melt. In the present invention, 10 to 50 parts of incinerated ash is mixed with 100 parts of cement. If the content of incinerated ash is less than 10 parts, it is too small to digest a large amount of sludge, and if it exceeds 50 parts, the unit water content increases too much, and even if the pozzolanic activity is added, the strength decreases significantly. Even if the amount of the water reducing agent is increased, the water reducing rate does not increase, which is not preferable. The content of incineration ash is preferably at most 40 parts. In addition, the compounding ratio, the part showing the addition amount, and the% used in the present invention are mass units unless otherwise specified.

【0007】焼却灰は、褐色粉末で見かけ上、埃の立つ
ほど軽くて嵩密度の小さい粉末となるが、セメント業界
で使用する空気透過式のブレーン比表面積測定装置で
は、空気の透過速度が速すぎて測定できないほど粗い粉
末であるとの結果が得られる。この焼却灰は、セメント
に配合してコンクリートにすると単位水量が多くなり、
長期強度が低下するだけでなく、リン酸塩を多量に含有
するため初期強度の発現性も阻害する。焼却灰は、粉末
度を大きくすることによって単位水量が低下するとい
う、従来の常識とは異なった特性を有することが判明し
たが、その反面、リン酸塩が溶解し易くなり凝結遅延作
用も強くなるという二律背反的性質を示すようになる。
しかしながら、本発明の生石灰及び/又は消石灰を凝結
硬化促進剤として用いることにより、結果として、焼却
灰の粉末度は大きい方が不溶性のリン酸カルシウム塩を
生成する速度も速くなるので好ましいものである。した
がって、本発明の焼却灰は、粉砕してブレーン比表面積
法(JIS R5201に準じて測定)による粉末度を
5000cm2/g以上とするのが好ましく、6000
cm2/g以上がより好ましく、8000〜15000
cm2/gがさらに好ましい。5000cm2/g未満で
は、焼却灰の単位水量の増加を抑制する効果は小さいの
で好ましくない。また、15000cm2/gを超えて
も焼却灰の単位水量の増加を抑制する効果やポゾラン活
性作用が飽和に達し強度の増加は示されなくなり、これ
以上の粉砕は不経済となるので好ましくない。
[0007] The incineration ash is a brown powder, which is apparently light and dusty with a low bulk density, but the air permeation type brane specific surface area measuring device used in the cement industry has a high air permeation rate. The result is that the powder is too coarse to measure. When this incineration ash is mixed with cement to make concrete, the unit water amount increases,
Not only the long-term strength is lowered, but also the development of the initial strength is hindered because the phosphate is contained in a large amount. It was found that the incineration ash has a characteristic different from the conventional wisdom that the unit water content decreases with increasing the fineness, but on the other hand, the phosphate easily dissolves and the setting retarding effect is strong. It becomes an antinomy property of becoming.
However, by using quicklime and / or slaked lime of the present invention as a setting hardening accelerator, as a result, it is preferable that the incineration ash having a higher fineness has a higher rate of producing an insoluble calcium phosphate salt. Therefore, the incinerated ash of the present invention is preferably pulverized to have a fineness of 5,000 cm 2 / g or more by the Blaine specific surface area method (measured according to JIS R5201), and 6000.
cm 2 / g or more is more preferable, and 8000 to 15000
cm 2 / g is more preferable. If it is less than 5000 cm 2 / g, the effect of suppressing an increase in the unit water amount of the incinerated ash is small, which is not preferable. Further, even if it exceeds 15,000 cm 2 / g, the effect of suppressing an increase in the unit water amount of the incinerated ash and the pozzolanic activity effect reach saturation and the increase in strength is not exhibited, and further crushing is uneconomical, which is not preferable.

【0008】本発明の生石灰含有物質とは、特に限定さ
れるものではないが、例えば、1300℃以下で焼成さ
れる軟焼の生石灰及び仮焼ドロマイトなどである。13
00℃を超えるシンタリング領域の温度で硬焼された遊
離石灰を含む市販のセメント膨張材はそのままでは使用
できないが、消化させたり、過度に膨張しないように微
粉砕することによって使用可能となる。これらの中で軟
焼生石灰が最も好ましく、次いで仮焼ドロマイトが好ま
しい。また、本発明の消石灰含有物質とは、特に限定さ
れるものではないが、例えば、遊離石灰を主成分とする
ものを消化させて得られるものである。遊離石灰よりも
凝結硬化を促進する作用は弱いが、長期強度の低下を軽
減する効果を有する。本発明における生石灰及び/又は
消石灰の含有物質の遊離石灰(以下、f-CaOとい
う)換算量とは、生石灰及び/又は消石灰の含有物質中
のf-CaO量及びCa(OH)2をf-CaO量に換算し
た値の合計である。
The quicklime-containing substance of the present invention is not particularly limited, but examples thereof include soft-baked quicklime and calcined dolomite which are calcined at 1300 ° C. or lower. Thirteen
Although a commercial cement expansive material containing free lime hardened at a sintering region temperature of more than 00 ° C. cannot be used as it is, it can be used by digesting it or finely pulverizing it so as not to expand excessively. Of these, soft-baked quicklime is most preferred, and then calcined dolomite is preferred. Further, the slaked lime-containing substance of the present invention is not particularly limited, but it is obtained, for example, by digesting a substance containing free lime as a main component. Although it has a weaker effect of promoting setting and hardening than free lime, it has an effect of reducing a decrease in long-term strength. The free lime (hereinafter, referred to as f-CaO) equivalent amount of the substance containing quick lime and / or slaked lime in the present invention means the amount of f-CaO and Ca (OH) 2 in the substance containing quick lime and / or slaked lime to f-. It is the sum of the values converted into the amount of CaO.

【0009】本発明において、軟焼生石灰や消石灰及び
仮焼ドロマイトの粉末度は、セメントと同等以上であれ
ば特に制限されないが、粉末度が大きくなるほど初期強
度の発現を促進する傾向を示ものである。特に、f-C
aOを含む膨張材を利用する場合は、市販のものを微粉
砕して膨張を抑制するため5000cm2/g以上の細
かさにするのが好ましく、より好ましくは6000cm
2/g以上である。
In the present invention, the fineness of soft-calcined quicklime, slaked lime and calcined dolomite is not particularly limited as long as it is equal to or higher than that of cement. However, the higher the fineness of powder, the more the tendency to promote the development of initial strength. is there. Especially f-C
When an expansive material containing aO is used, a commercially available material is preferably finely pulverized to have a fineness of 5000 cm 2 / g or more in order to suppress expansion, and more preferably 6000 cm 2 .
2 / g or more.

【0010】本発明において、セメント100部に対し
て、下水道汚泥の焼却灰を10〜50部配合したもの
に、さらに、生石灰及び/又は消石灰をf-CaO換算
で1〜15部となるように配合する。生石灰及び/又は
消石灰がf-CaO換算で1部未満では凝結硬化を促進
する作用に乏しく、15部を超えると初期及び長期強度
が低下する逆転現象が生ずるので好ましくない。好まし
くは2〜12部であり、より好ましくは3〜10部であ
る。
In the present invention, 10 to 50 parts of incinerated ash of sewer sludge is mixed with 100 parts of cement, and quick lime and / or slaked lime is added to 1 to 15 parts in terms of f-CaO. Compound. If the amount of quicklime and / or slaked lime in terms of f-CaO is less than 1 part, the effect of accelerating the setting and hardening is poor, and if it exceeds 15 parts, the initial and long-term strength decreases, which is not preferable. It is preferably 2 to 12 parts, and more preferably 3 to 10 parts.

【0011】本発明において、焼却灰や硬化促進剤の状
態やその投入方法は、特に限定されるものではないが、
(1)焼却灰と本硬化促進剤を別々に粉砕して混合した
ものをコンクリートを練混ぜるときに添加する方法や、
(2)両者を混合して粉砕したものをコンクリートを練
混ぜるときに添加する方法及び(3)予め焼却灰の中に
規定量のf−CaOが残存するように調合して焼成し、
粉砕したものをコンクリートを練混ぜるときに添加する
方法など、いずれでもよいが、(4)焼却灰と硬化促進
剤を別々に粉砕し、混合しないでおいてコンクリートを
練混ぜるときに、両成分の任意量を組み合わせて添加す
る方が強度発現性状を調節できるのでより好ましい。
In the present invention, the state of the incineration ash or the curing accelerator and the method of adding the same are not particularly limited,
(1) A method of adding a mixture of incinerated ash and a main curing accelerator separately crushed and mixed when concrete is mixed,
(2) A method in which both are mixed and pulverized and added when kneading concrete, and (3) preliminarily prepared and burned so that a specified amount of f-CaO remains in the incinerated ash,
Any method such as adding a crushed product when kneading concrete is acceptable, but (4) crushing the incineration ash and the hardening accelerator separately and mixing both concrete components without mixing them It is more preferable to add an arbitrary amount in combination, because the strength developing property can be adjusted.

【0012】本発明において、コンクリートに添加して
練混ぜるに際して、特別な方法は必要なく、通常のミキ
サを使用し、他のコンクリート材料と一緒に粉末状態で
ミキサに投入して、通常の練混ぜ時間で練混ぜ、土木建
築構造物の建設やコンクリート二次製品の製造に使用さ
れる。
In the present invention, a special method is not required for adding and mixing to concrete, using a normal mixer, and adding it to other mixers in powder state together with other concrete materials, and mixing with the normal mixing. It is kneaded in time and used for construction of civil engineering structures and production of secondary concrete products.

【0013】本発明において、使用するセメントの種類
は、特に限定されるものではなく、各種ポルトランドセ
メント、混合セメント、エトリンガイトの生成による急
硬性セメントなどである。
In the present invention, the type of cement used is not particularly limited, and various portland cements, mixed cements, rapid hardening cements by the production of ettringite, and the like.

【0014】本発明において、リグニンスルホン酸塩系
やポリオール系、オキシカルボン酸塩系などの一般的な
減水剤や高性能減水剤及び高性能AE減水剤も使用され
るが、特に好ましいのは、減水率の大きいポリアルキル
アリルスルホン酸塩系やメラミン樹脂スルホン酸塩系な
どの高性能減水剤、ポリカルボン酸塩系の高性能AE減水
剤である。
In the present invention, general water reducing agents such as lignin sulfonate type, polyol type, oxycarboxylate type, high performance water reducing agent and high performance AE water reducing agent are also used, but particularly preferable are: It is a high-performance water reducing agent such as polyalkylallyl sulfonate type and melamine resin sulfonate type, which has a large water reduction rate, and a high performance AE water reducing agent of polycarboxylic acid type.

【0015】本発明において、コンクリート強度の低下
を防止したり、より高強度化するために、石膏を主成分
とする高強度混和材やシリカフュームやメタカオリン及
び20ミクロン以下に分級したしたフライアッシュなど
の活性シリカを主成分とする高強度混和材を併用するこ
とが出来、ひび割れを低減するためやケミカルプレスト
レスコンクリートを製造するために、市販の膨張材を併
用することも出来る。
In the present invention, in order to prevent a decrease in concrete strength or to increase the strength, a high-strength admixture containing gypsum as a main component, silica fume, metakaolin and fly ash classified to 20 μm or less are used. A high-strength admixture containing activated silica as a main component can be used together, and a commercially available expansive material can also be used together in order to reduce cracks and to produce a chemical prestressed concrete.

【0016】[0016]

【実施例】以下、本発明を実施例にて詳細に説明する
が、これらに限られるものではない。
EXAMPLES The present invention will now be described in detail with reference to examples, but the invention is not limited thereto.

【0017】実施例1 普通ポルトランドセメント800g、新潟県姫川産川砂
1200g、水210g、高性能減水剤(ポリアルキル
アリルスルホン酸塩系)10g、JIS R 5201
によるフロー値180〜190mmのモルタルに、セメ
ント100部に対して、焼却灰と硬化促進剤の種類とf
-CaO換算量を表1、表2に示すように変えて(硬化
促進剤中のf-CaO以外の不純物も含めて砂と置き換
えて)外割添加して練混ぜた。焼却灰の配合によりフロ
ーが低下する分は、練混ぜ水の加水によってフロー値が
180〜190mmに入るように調節して練混ぜ、4×
4×16cmの3連型枠に成型し、標準養生した時の材
齢1日(1本)と28日(2本)強度を測定した。水量
の変動と、標準養生した時の強度測定結果を表1に示
す。なお、モルタルの練混ぜとフロー値の測定、供試体
の成型、圧縮強度の測定方法はJIS R5201によ
るセメントの物理試験方法によった。f-CaO量は、
アセト酢酸メチルとイソブタノールアルコール溶液でf
-CaOを溶解抽出させて、60%過塩素酸−イソブタ
ノールアルコール溶液で滴定する改良フランケ法により
分析した。また、Ca(OH)2も同様の分析方法でf−
CaO量に換算した。f-CaOとCa(OH)2が共存す
る場合は、改良フランケ法により全体のf-CaO量を
測定し、さらに、熱重量分析と示差熱分析が同時にでき
るTG−DTAと呼ばれる分析装置により、Ca(OH)
2の脱水ピークの確認と脱水量(重量減少量)からその
含有量を求め、改良フランケ法による分析結果と合わせ
てf-CaO量とCa(OH)2量を算出した。
Example 1 800 g of ordinary Portland cement, 1200 g of river sand produced in Himekawa, Niigata, 210 g of water, 10 g of high-performance water reducing agent (polyalkylallyl sulfonate type), JIS R 5201
According to the mortar with a flow value of 180 to 190 mm, with respect to 100 parts of cement, the types of incineration ash and hardening accelerator and f
The amount of -CaO conversion was changed as shown in Tables 1 and 2 (excluding impurities other than f-CaO in the curing accelerator and replaced with sand), and external addition was added and mixed. The amount that the flow decreases due to the composition of the incineration ash is adjusted by adding water to the flow value so that the flow value falls within 180 to 190 mm, and mixed 4 ×
It was molded into a 4 × 16 cm triple mold and the strength was measured for standard ageing for 1 day (1 piece) and 28 days (2 pieces). Table 1 shows the fluctuations in the amount of water and the strength measurement results after standard curing. The method of mixing mortar, measuring the flow value, molding the sample, and measuring the compressive strength were based on the physical test method for cement according to JIS R5201. The amount of f-CaO is
F with methyl acetoacetate and isobutanol alcohol solution
-CaO was dissolved and extracted and analyzed by a modified Franke method in which it was titrated with a 60% perchloric acid-isobutanol alcohol solution. In addition, Ca (OH) 2 was also analyzed by the same analysis method as f-
It was converted to the amount of CaO. When f-CaO and Ca (OH) 2 coexist, the total f-CaO amount is measured by the modified Franke method, and further, by an analyzer called TG-DTA capable of thermogravimetric analysis and differential thermal analysis at the same time, Ca (OH)
The amount of f-CaO and the amount of Ca (OH) 2 were calculated from the confirmation of the dehydration peak of 2 and the content thereof from the dehydration amount (weight reduction amount), and together with the analysis result by the modified Franke method.

【0018】「使用材料」 (1)焼却灰: 東京都下水道局新河岸焼却場のもの、五酸化リン8.5
%、f-CaO換算量0%、比重2.60 A-1:比表面積測定不可(未粉砕品) A-2:比表面積5000cm2/g(粉砕品) A-3:比表面積6020cm2/g(粉砕品) A-4:比表面積8080cm2/g(粉砕品) A-5:比表面積10000cm2/g(粉砕品) A-6:比表面積15040cm2/g(粉砕品) (2)石灰類: 生石灰(ガス焼き軟焼生石灰)、f-CaO換算量9
8.0%、電気化学工業(株)製 a-1:比表面積5010cm2/g(粉砕品) a-2:比表面積6090cm2/g(粉砕品) a-3:比表面積9030cm2/g(粉砕品) 消石灰(aの生石灰を消化させたもの)、f−CaO換
算量74.2% b-1:比表面積10100cm2/g(粉砕品) 膨張材(市販膨張材の微粉砕品、電気化学工業(株)製
商品名デンカCSA#20)、f-CaO量20.0% c-1:比表面積6100cm2/g(粉砕品) c-2:比表面積9300cm2/g(粉砕品) 焼成ドロマイト(850℃焼成)、f-CaO換算量2
9.5%、実験室の電気炉で焼成 d-1:比表面積8020cm2/g(粉砕品)
"Materials used" (1) Incinerated ash: Phosphorus pentoxide 8.5 from Shin-Kagashi Incinerator, Sewerage Bureau, Tokyo
%, F-CaO equivalent 0%, specific gravity 2.60 A-1: Specific surface area cannot be measured (unground product) A-2: Specific surface area 5000 cm 2 / g (ground product) A-3: Specific surface area 6020 cm 2 / g (crushed product) A-4: specific surface area 8080 cm 2 / g (crushed product) A-5: specific surface area 10000 cm 2 / g (crushed product) A-6: specific surface area 15040 cm 2 / g (crushed product) (2) Limes: quick lime (gas burned soft burned quick lime), f-CaO equivalent 9
8.0%, manufactured by Denki Kagaku Kogyo Co., Ltd. a-1: Specific surface area 5010 cm 2 / g (ground product) a-2: Specific surface area 6090 cm 2 / g (ground product) a-3: Specific surface area 9030 cm 2 / g (Pulverized product) Slaked lime (digested quicklime of a), f-CaO equivalent amount 74.2% b-1: Specific surface area 10100 cm 2 / g (pulverized product) Expansion material (finely pulverized product of commercially available expansion material, Denka Chemical Industry Co., Ltd. product name Denka CSA # 20), f-CaO amount 20.0% c-1: specific surface area 6100 cm 2 / g (crushed product) c-2: specific surface area 9300 cm 2 / g (crushed product) ) Firing dolomite (firing at 850 ° C), f-CaO equivalent 2
9.5%, fired in an electric furnace in the laboratory d-1: specific surface area 8020 cm 2 / g (ground product)

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】表1に示されるように、本発明の硬化促進
剤を併用するしないに拘らず、焼却灰を粉砕して粉末度
を大きくすると水量は低下する。特に、未粉砕の焼却灰
に対して粉末度5000cm2/g以上で顕著となり、
さらに、粉末度が大きくなるほど順次水量は低下するが
10000cm2/g以上では頭打ちとなることが判
る。この際、1日強度の発現性状は、促進剤を併用しな
い比較例では粉末度が大きくなるほど初期強度発現性は
阻害され、強度値も数N/mm2以下である。これに対して
本発明の実施例では十数N/mm2の高い強度を示す。ま
た、材齢28日強度も粉末度が大きくなるほど単位水量
が低減されることから順次高くなるが、比較例ではポゾ
ラン効果が十分発揮されなく、本発明の実施例では、比
較例の強度に対して10N/mm2前後の高い値を示し、f
-CaOによりポゾラン反応が活性化していることが窺
われる(実験No.1-2〜1-5、No.1-8、No.1-12の比較例とN
o.2-1、2-4、2-7、2-11の本発明の実施例の比較)。強度
の面からも焼却灰の粉末度は、5000cm2/g以上
が好ましく、6000cm2/gがより好ましく、80
00cm2/g以上が最も好ましいが、15000cm2
/g以上としても頭打ちとなることも容易に推察される
(実験No.2-1、2-4、2-7、2-11の本発明の実施例)。
As shown in Table 1, regardless of whether or not the curing accelerator of the present invention is used in combination, when the incineration ash is crushed to increase the fineness, the amount of water decreases. In particular, it becomes remarkable when the fineness is 5000 cm 2 / g or more with respect to uncrushed incinerated ash,
Further, it can be seen that the water amount decreases gradually as the fineness increases, but it reaches the ceiling when it is 10000 cm 2 / g or more. At this time, in the expression properties of 1-day strength, in the comparative example in which the accelerator is not used in combination, the initial strength expression property is inhibited as the fineness of powder becomes larger, and the strength value is several N / mm 2 or less. On the other hand, the examples of the present invention show a high strength of a dozen N / mm 2 . The 28-day strength also gradually increases as the fineness increases as the unit water amount decreases, but the pozzolanic effect is not sufficiently exerted in the comparative example, and in the example of the present invention, the strength of the comparative example is higher than that in the comparative example. Shows a high value of around 10 N / mm 2 and f
-CaO suggests that the pozzolanic reaction is activated (Comparative examples of Experiment Nos. 1-2 to 1-5, No. 1-8 and No. 1-12 and N
o.2-1, 2-4, 2-7, 2-11 comparing the examples of the present invention). Fineness of ash from the standpoint of strength is preferably at least 5000 cm 2 / g, more preferably 6000 cm 2 / g, 80
Most preferred is 00 cm 2 / g or more, but 15000 cm 2
It is easily inferred that it will reach the ceiling even if it exceeds / g.
(Examples of the present invention in Experiment Nos. 2-1, 2-4, 2-7, and 2-11).

【0022】硬化促進剤を併用するしないに拘らず、焼
却灰の配合量を多くして行くと水量は順次増加するが、
特に40部以上で著しい。これに伴って、比較例の1日
強度は順次低下してその値も数N/mm2以下である。
本発明の実施例では、十数N/mm2の高い強度を示す
が、焼却灰が40部以上では急に低下する傾向を示す。
また、28日強度も順次低下するが、ポゾラン活性の低
い比較例に対して、本発明の実施例では、いずれの添加
量でも10N/mm2以上高い強度を示す。さらに、焼
却灰の配合量が40部以上では、単位水量の増加がポゾ
ラン効果を上回り、強度は急に低下する傾向を示し、焼
却灰は10〜50部で好ましくは多くても40部である
ことが判る(実験No.1-6〜1-11の比較例とNo.2-5〜No.2-
10の本発明の実施例の比較)。
Although the amount of incinerated ash is increased, the amount of water increases in sequence, regardless of whether or not a curing accelerator is used in combination.
Especially, it is remarkable at 40 parts or more. Along with this, the daily strength of the comparative example gradually decreases, and the value is also several N / mm 2 or less.
In the examples of the present invention, a high strength of ten and several N / mm 2 is exhibited, but when the incinerated ash is 40 parts or more, it tends to be rapidly decreased.
Although the 28-day strength also gradually decreases, in contrast to the comparative example having a low pozzolanic activity, the examples of the present invention show a strength higher by 10 N / mm 2 or more at any addition amount. Furthermore, when the content of incinerated ash is 40 parts or more, the increase in the unit water amount exceeds the pozzolanic effect, and the strength tends to decrease sharply, and the incinerated ash is 10 to 50 parts, preferably at most 40 parts. It is understood that (Comparative examples of Experiment Nos. 1-6 to 1-11 and No. 2-5 to No. 2-
Comparison of 10 inventive examples).

【0023】硬化促進剤の添加量を多くして行くと1日
及び28日強度は順次高くなるが、f-CaO換算量が
15部を超えると低下する傾向を示す。したがって、硬
化促進剤はf-CaO換算量で1〜15部、好ましくは
2〜12部、より好ましくは3〜10部であることが判
る(実験No.1-8の比較例とNo.2-12〜2-18の本発明の実施
例の比較)。硬化促進剤が消石灰の場合は、1日強度は
それほど高くならないが、28日強度は生石灰の場合よ
りも強度の絶対値は多少低いが、同傾向の強度発現性を
示す(実験No.2-21〜2-26)。硬化促進剤が焼成ドロマイ
トの場合は、1日強度及び28日強度は生石灰の場合と
ほぼ同様であるが、材齢28日強度は僅かに低い傾向を
示す(実験No.2-29〜2-32)。また、硬化促進剤は粉末度
を大きくすると、1日及び28日強度は高くなる傾向を
示す(実験No.2-7、2-19、2-20、2-27、2-28)。
When the amount of the curing accelerator added is increased, the 1-day and 28-day strengths gradually increase, but when the f-CaO conversion amount exceeds 15 parts, it tends to decrease. Therefore, it is understood that the curing accelerator is 1 to 15 parts, preferably 2 to 12 parts, and more preferably 3 to 10 parts in terms of f-CaO (Comparative Examples of Experiment No. 1-8 and No. 2). -Comparison of examples of the present invention from -12 to 2-18). When the hardening accelerator is slaked lime, the 1-day strength does not become so high, but the 28-day strength exhibits a slightly lower absolute value of the strength than the case of quick lime, but shows the same tendency of strength development (Experiment No. 2- 21 to 2-26). When the hardening accelerator is calcined dolomite, the 1-day strength and the 28-day strength are almost the same as those of quicklime, but the 28-day-old strength tends to be slightly lower (Experiment No. 2-29 to 2- 32). Further, the hardening accelerator tends to increase in strength for 1 and 28 days when the fineness is increased (Experiment No. 2-7, 2-19, 2-20, 2-27, 2-28).

【0024】実施例2 実施例1の実験No.1-1とNo.1-8に対して、No.2-5〜2-1
0、No.2-12〜2-18のモルタルに実施例1用いた減水剤を
増量して水量を少なくして、実施例1と同様の試験を行
った結果を表3に示す。
Example 2 Nos. 2-5 to 2-1 for the experiments No. 1-1 and No. 1-8 of Example 1.
Table 3 shows the results of the same test as in Example 1 in which the water reducing agent used in Example 1 was added to the mortar Nos. 2-12 to 2-18 to increase the amount of water reducing agent.

【0025】[0025]

【表3】 [Table 3]

【0026】表3に示されるように、減水剤量を増加さ
せて行くと1日強度は低下する傾向を示し、特に、減水
剤量が40g(セメントに対して5%)以上で著しくな
る。また、減水剤量を増加させると水量は少なくなるの
で28日強度は高くなるが、焼却灰の配合量が40部を
超えるようになると減水剤を増量しても水量は下がり難
くなり強度の低下も大きくなる。この場合も焼却灰の配
合量は、多くても40部が最も好ましいことが判る。硬
化促進剤の添加量を多くした場合も、実施例1と同様の
傾向を示す(実験No.3-9とNo.3-15)。
As shown in Table 3, the daily strength tends to decrease as the amount of the water-reducing agent increases, and in particular, it becomes remarkable when the amount of the water-reducing agent is 40 g (5% of cement) or more. Also, as the amount of water reducing agent increases, the amount of water decreases, so the 28-day strength increases, but when the amount of incinerated ash exceeds 40 parts, the amount of water does not easily decrease even if the amount of water reducing agent is increased, and the strength decreases. Also grows. Also in this case, it is understood that the most preferable amount of incineration ash is 40 parts. Even when the amount of the curing accelerator added was increased, the same tendency as in Example 1 was exhibited (Experiments No. 3-9 and No. 3-15).

【0027】実施例3 実施例2の実験No.2-1~2-8のモルタルの空気量を2%
(体積)とし、1m3となるように粗骨材(最大寸法2
5mmの砂利)を配合したコンクリートを練混ぜて供試
体を作製し、標準養生における材齢1日と28日強度を
測定した結果を表4に示した。なお、スランプは8cm
±2cmの範囲であり、供試体の作製方法と強度測定方
法は、JIS A 1132とJIS A 1108に
準じた。
Example 3 The air content of the mortars of Experiment Nos. 2-1 to 2-8 of Example 2 was 2%.
And (volume), coarse aggregate so that the 1 m 3 (maximum dimension 2
Table 4 shows the results obtained by mixing concrete mixed with 5 mm of gravel) to prepare a test piece, and measuring the strength of the material for 1 day and 28 days in standard curing. The slump is 8 cm
It was within a range of ± 2 cm, and the method for producing the test piece and the method for measuring the strength were in accordance with JIS A 1132 and JIS A 1108.

【0028】[0028]

【表4】 [Table 4]

【0029】表4から、コンクリートとした場合も実施
例2のモルタルと同様の強度発現性状を示すことが判
る。
From Table 4, it can be seen that even when the concrete is used, the same strength development properties as the mortar of Example 2 are exhibited.

【0030】実施例4 実施例3のコンクリートを横型のキャップレス型枠に成
形して、20℃で8時間前養生してから3時間で85℃
まで上げ、そのまま5時間保持してから放置冷却し、翌
日の脱型強度と標準養生した材齢28日強度を測定した
結果を表5に示した。
Example 4 The concrete of Example 3 was molded into a horizontal capless mold and precured at 20 ° C. for 8 hours, and then at 85 ° C. for 3 hours.
Table 5 shows the results of measuring the demolding strength on the next day and the standard-aged 28-day-old strength on the next day.

【0031】[0031]

【表5】 [Table 5]

【0032】表5より、蒸気養生した場合も、実施例3
の標準養生したコンクリートの材齢28日強度と同様の
傾向を示すことが判る。
From Table 5, Example 3 is also shown when steam curing is performed.
It can be seen that the same tendency as the 28-day-old strength of the standard cured concrete of No. 1 shows the same tendency.

【0033】[0033]

【本発明の効果】本発明の焼却灰を添加したセメント用
の硬化促進剤使用することにより、 従来の焼却灰の有する凝結遅延性や長期強度の低下を
改善する。 従来の焼却灰の大部分は産業廃棄物として処理されて
いるが、本硬化促進剤を併用すると、セメント混和材と
して活用できるので資源化することが出来、グリーン調
達にも役立つ。 低温焼成であるので焼却炉の建設費や維持費が安価と
なり経済的である。 などの効果を奏する。
EFFECTS OF THE INVENTION By using the hardening accelerator for cement to which the incinerated ash of the present invention is added, the set retardation property and the decrease in long-term strength of the conventional incinerated ash are improved. Most of the conventional incineration ash is treated as industrial waste, but when this curing accelerator is used together, it can be utilized as a cement admixture and can be recycled as resources, which is also useful for green procurement. Since it is fired at a low temperature, the construction cost and maintenance cost of the incinerator are low and it is economical. And other effects.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 生石灰及び/又は消石灰を主成分とする
下水道汚泥の焼却灰を含むセメント用の硬化促進剤。
1. A hardening accelerator for cement containing incineration ash of sewer sludge containing quicklime and / or slaked lime as a main component.
【請求項2】 セメント100部に対して、下水道汚泥
の焼却灰を10〜50部と、生石灰及び/又は消石灰の
含有物質を遊離石灰(f-CaO)換算量(f-CaO量
及びCa(OH)2をf-CaO量に換算した値の合計)で
1〜15部配合することを特徴とするセメント組成物。
2. 10 to 50 parts of incinerated ash of sewer sludge and 100 parts of cement, and a substance containing quick lime and / or slaked lime in terms of free lime (f-CaO) (f-CaO amount and Ca ( 1 to 15 parts by weight of OH) 2 converted to the amount of f-CaO).
JP2002049278A 2002-02-26 2002-02-26 Hardening accelerator for cement containing incineration ash of sewerage sludge and cement composition Pending JP2003246657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002049278A JP2003246657A (en) 2002-02-26 2002-02-26 Hardening accelerator for cement containing incineration ash of sewerage sludge and cement composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002049278A JP2003246657A (en) 2002-02-26 2002-02-26 Hardening accelerator for cement containing incineration ash of sewerage sludge and cement composition

Publications (1)

Publication Number Publication Date
JP2003246657A true JP2003246657A (en) 2003-09-02

Family

ID=28661831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002049278A Pending JP2003246657A (en) 2002-02-26 2002-02-26 Hardening accelerator for cement containing incineration ash of sewerage sludge and cement composition

Country Status (1)

Country Link
JP (1) JP2003246657A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005037730A1 (en) * 2003-10-16 2005-04-28 Tokuyama Corporation Cement setting accelerator
WO2006111225A1 (en) * 2005-04-19 2006-10-26 Construction Research & Technology Gmbh Hydraulic binding agent
WO2008034616A1 (en) * 2006-09-20 2008-03-27 Heidelbergcement Ag Binder comprising portland cement and lime hydrate
CN100439273C (en) * 2003-10-16 2008-12-03 株式会社德山 Cement setting accelerator
NL1036620C2 (en) * 2009-02-24 2010-08-25 A & G Holding B V METHOD FOR STABILIZING AND IMMOBILIZING INORGANIC SALT FLOWS
WO2014073634A1 (en) * 2012-11-08 2014-05-15 株式会社柏木興産 Pozzolan admixture
ITRM20130310A1 (en) * 2013-05-29 2014-11-30 Chimica Edile S R L PROCEDURE FOR THE PREPARATION OF A GRANULAR INORGANIC PRODUCT, THE PRODUCT SO OBTAINED AND ITS USE AS AN ACCELERATING AGENT OF THE POZZOLAN REACTION IN MORTARS AND CONCRETE.
PL422988A1 (en) * 2017-09-27 2019-04-08 Mo-Bruk Spółka Akcyjna Cement with the sulfate regulator of setting time
WO2019244856A1 (en) * 2018-06-22 2019-12-26 日鉄セメント株式会社 Heavy metal-insolubilized solidification material and technique for improving contaminated soil

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08333145A (en) * 1995-06-01 1996-12-17 Denki Kagaku Kogyo Kk Cement admixture, cement composition, and grouting material
JPH0947741A (en) * 1995-08-09 1997-02-18 Chichibu Onoda Cement Corp Treatment of incineration ash
JPH09268084A (en) * 1996-04-03 1997-10-14 Sumitomo Metal Mining Co Ltd Production of lightweight foamed concrete
JPH1179822A (en) * 1997-09-04 1999-03-23 Denki Kagaku Kogyo Kk Hydraulic composition and mortar or concrete using the same
JPH11171628A (en) * 1997-12-05 1999-06-29 Kawasaki City Cement composition using burnt ash of sewage sludge, use of the same cement composition and formed product and structure using the same composition
JP2000063168A (en) * 1998-08-10 2000-02-29 Taiheiyo Cement Corp Cement hardened product composition and cement hardened product
JP2001270764A (en) * 2000-03-29 2001-10-02 Iwate Prefecture Concrete composition using waste matter
JP2001354465A (en) * 2000-04-13 2001-12-25 Tokyoto Gesuido Service Kk Concrete

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08333145A (en) * 1995-06-01 1996-12-17 Denki Kagaku Kogyo Kk Cement admixture, cement composition, and grouting material
JPH0947741A (en) * 1995-08-09 1997-02-18 Chichibu Onoda Cement Corp Treatment of incineration ash
JPH09268084A (en) * 1996-04-03 1997-10-14 Sumitomo Metal Mining Co Ltd Production of lightweight foamed concrete
JPH1179822A (en) * 1997-09-04 1999-03-23 Denki Kagaku Kogyo Kk Hydraulic composition and mortar or concrete using the same
JPH11171628A (en) * 1997-12-05 1999-06-29 Kawasaki City Cement composition using burnt ash of sewage sludge, use of the same cement composition and formed product and structure using the same composition
JP2000063168A (en) * 1998-08-10 2000-02-29 Taiheiyo Cement Corp Cement hardened product composition and cement hardened product
JP2001270764A (en) * 2000-03-29 2001-10-02 Iwate Prefecture Concrete composition using waste matter
JP2001354465A (en) * 2000-04-13 2001-12-25 Tokyoto Gesuido Service Kk Concrete

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005037730A1 (en) * 2003-10-16 2005-04-28 Tokuyama Corporation Cement setting accelerator
EP1690841A1 (en) * 2003-10-16 2006-08-16 Tokuyama Corporation Cement setting accelerator
EP1690841A4 (en) * 2003-10-16 2011-01-26 Tokuyama Corp Cement setting accelerator
US7662229B2 (en) 2003-10-16 2010-02-16 Tokuyama Corporation Cement setting accelerator
CN100439273C (en) * 2003-10-16 2008-12-03 株式会社德山 Cement setting accelerator
JP2008536788A (en) * 2005-04-19 2008-09-11 コンストラクション リサーチ アンド テクノロジー ゲーエムベーハー Hydraulic binder
EP2128108A1 (en) * 2005-04-19 2009-12-02 SCHWENK Zement KG Hydraulic bonding agent
EP1719742A1 (en) * 2005-04-19 2006-11-08 SCHWENK Zement KG Hydraulic binder
WO2006111225A1 (en) * 2005-04-19 2006-10-26 Construction Research & Technology Gmbh Hydraulic binding agent
US8257487B2 (en) 2005-04-19 2012-09-04 Constuction Research & Technology Gmbh Hydraulic binding agent
NO342902B1 (en) * 2006-09-20 2018-08-27 Heidelbergcement Ag Process for accelerating the compressive strength development of hydraulic curing compositions with binder based on Portland cement, as well as binder composition and applications thereof.
WO2008034616A1 (en) * 2006-09-20 2008-03-27 Heidelbergcement Ag Binder comprising portland cement and lime hydrate
NL1036620C2 (en) * 2009-02-24 2010-08-25 A & G Holding B V METHOD FOR STABILIZING AND IMMOBILIZING INORGANIC SALT FLOWS
WO2014073634A1 (en) * 2012-11-08 2014-05-15 株式会社柏木興産 Pozzolan admixture
JP5873568B2 (en) * 2012-11-08 2016-03-01 株式会社柏木興産 Pozzolanic admixture
JPWO2014073634A1 (en) * 2012-11-08 2016-09-08 株式会社柏木興産 Pozzolanic admixture
ITRM20130310A1 (en) * 2013-05-29 2014-11-30 Chimica Edile S R L PROCEDURE FOR THE PREPARATION OF A GRANULAR INORGANIC PRODUCT, THE PRODUCT SO OBTAINED AND ITS USE AS AN ACCELERATING AGENT OF THE POZZOLAN REACTION IN MORTARS AND CONCRETE.
PL422988A1 (en) * 2017-09-27 2019-04-08 Mo-Bruk Spółka Akcyjna Cement with the sulfate regulator of setting time
WO2019244856A1 (en) * 2018-06-22 2019-12-26 日鉄セメント株式会社 Heavy metal-insolubilized solidification material and technique for improving contaminated soil
JPWO2019244856A1 (en) * 2018-06-22 2021-07-08 日鉄セメント株式会社 Improvement method for heavy metal insolubilized solidifying material and contaminated soil
JP7422071B2 (en) 2018-06-22 2024-01-25 日鉄セメント株式会社 Heavy metal insolubilization solidification material and method for improving contaminated soil

Similar Documents

Publication Publication Date Title
US8080104B2 (en) Filling material for reinforcing joint and construction method of filling reinforcing joint
RU2705646C1 (en) Cement-free binder and use thereof
TWI701228B (en) Concrete composition and method for producing the same
JP4781285B2 (en) Blast furnace slag cement
CN112537920B (en) Nano reinforcing agent for sodium sulfate and sodium carbonate alkali-activated cementing material and preparation method and application thereof
JP2020055696A (en) Geopolymer composition and mortar and concrete using the same
JP2003246657A (en) Hardening accelerator for cement containing incineration ash of sewerage sludge and cement composition
JPH11221821A (en) Manufacture of concrete
JP3871594B2 (en) Curing accelerator and cement composition
JP3549644B2 (en) Cement composition
US20060180052A1 (en) Chemical admixture for cementitious compositions
JP2002068804A (en) Concrete composition
CN114685069A (en) Sulfate-excited fly ash cementing material and preparation method and application thereof
JP2007131477A (en) Fly ash cement composition and concrete mold using it
JP2004210551A (en) Expansive clinker mineral and expansive composition containing the same
JP2010195601A (en) Cement composition
JPH01275456A (en) Quick hardening cement composition
JP5350770B2 (en) Cement composition
EP4324806A1 (en) Method of producing concrete-like material from waste materials
JP4128374B2 (en) Concrete composition for pressure or pressure vibration molding
JP2012126629A (en) Hardening accelerator and cement composition using the same
JP5160763B2 (en) Cement mortar composition
JP5383045B2 (en) Cement composition for grout and grout material using the same
JP2747294B2 (en) Admixture for cement mortar and concrete
Li et al. Effect of reductant on property and CO 2 sequestration for belite cement from phosphogypsum

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070712

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070904

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100922