JPH09268084A - Production of lightweight foamed concrete - Google Patents

Production of lightweight foamed concrete

Info

Publication number
JPH09268084A
JPH09268084A JP8114296A JP8114296A JPH09268084A JP H09268084 A JPH09268084 A JP H09268084A JP 8114296 A JP8114296 A JP 8114296A JP 8114296 A JP8114296 A JP 8114296A JP H09268084 A JPH09268084 A JP H09268084A
Authority
JP
Japan
Prior art keywords
green
green slurry
expansion
reaction
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8114296A
Other languages
Japanese (ja)
Inventor
Fumiaki Matsushita
文明 松下
Yoshimichi Aono
義道 青野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP8114296A priority Critical patent/JPH09268084A/en
Publication of JPH09268084A publication Critical patent/JPH09268084A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/02Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing ALC(aerated lightweight concrete) excellent in appearance and quality by reducing voids produced in the circumference of rein forcing steel for reinforcing the interior of aerated lightweight concrete. SOLUTION: A blend amount and quality of a raw material of green slurry for pouring into a formwork in which reinforcing steel is arranged, especially quicklime are controlled. Thereby yield value of the green slurry is controlled to <=120Pa until expansion due to reaction of a foaming agent is finished and expansion and shrinkage of green slurry after expansion due to reaction of the foaming agent is finished or green body produced by hardening of the green slurry are suppressed to <=3.0%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、建築物の外壁等に
使用する蒸気養生した軽量気泡コンクリート(以下AL
Cという)の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steam-cured lightweight cellular concrete (hereinafter referred to as AL) used for an outer wall of a building or the like.
C)).

【0002】[0002]

【従来の技術】従来、ALCの一般的な製造方法では、
型枠内の所定位置に補強用鉄筋を予めセットした後、珪
砂、生石灰、セメント、石膏、及び繰り返し原料を配合
し、更に発泡剤としてアルミニウム粉等を添加混合した
グリーンスラリーを、上記型枠内に注入する。そして、
型枠内で発泡したスラリーがグリーンボディに硬化した
後、これをピアノ線により所定寸法に切断し、更にオー
トクレーブで蒸気養生することによりALCを製造して
いる。
2. Description of the Related Art Conventionally, in the general manufacturing method of ALC,
After setting the reinforcing bars in advance at a predetermined position in the mold, silica sand, quick lime, cement, gypsum, and a mixture of repetitive raw materials, and further added and mixed with aluminum powder as a foaming agent, the green slurry, in the above mold Inject. And
After the slurry foamed in the mold hardens into a green body, the green body is cut into a predetermined size with a piano wire, and then steam-cured in an autoclave to produce an ALC.

【0003】上記のALC原料の配合量は、メーカーに
よって異なるが、珪砂を35〜60重量%、生石灰を4
〜20重量%、セメントを5〜35重量%、石膏を0〜
10重量%、繰り返し原料を5〜40重量%の割合で配
合し、この粉体原料に対して外割で気泡剤のアルミニウ
ム粉等を0.06〜0.07重量%配合するのが一般的で
ある。尚、繰り返し原料とは、ピアノ線での切断時等に
発生するグリーンボディの解砕物や蒸気養生後のALC
の不良品等の微粉砕物である。
The blending amount of the above ALC raw material varies depending on the manufacturer, but silica sand is 35 to 60% by weight, and quick lime is 4%.
~ 20 wt%, cement 5-35 wt%, gypsum 0
It is general that 10% by weight and 5 to 40% by weight of the repeating raw material are blended, and 0.06 to 0.07% by weight of aluminum powder as a foaming agent is blended to the powder raw material. Is. Repeated raw materials are crushed green bodies that occur when cutting with a piano wire or ALC after steam curing.
It is a finely pulverized product such as defective product.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来のALCの製造方法においては、補強用鉄筋の周囲の
グリーンスラリーやグリーンボディに空洞が発生し、こ
れが蒸気養生後まで残ることから、ALC製品の外観及
び強度等の品質の上で大きな問題となっていた。また、
このALC中に残る空洞は、ALC製品の歩留りを悪化
させる一因になっていた。
However, in the above-mentioned conventional ALC manufacturing method, cavities are generated in the green slurry and the green body around the reinforcing bars, which remain until after steam curing. It was a big problem in terms of quality such as appearance and strength. Also,
The cavities left in the ALC contributed to the deterioration of the yield of ALC products.

【0005】本発明は、上記の従来の事情に鑑みて、A
LC内部の補強用鉄筋の周囲に発生する空洞を低減さ
せ、外観及び品質の優れたALCの製造方法を提供する
ことを目的とする。
In view of the above conventional circumstances, the present invention is
It is an object of the present invention to provide a method for producing ALC having excellent appearance and quality by reducing voids generated around reinforcing reinforcing bars inside LC.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
め、本発明が提供するALC製造方法は、補強用鉄筋を
配設した型枠内に、軽量気泡コンクリートのグリーンス
ラリーを注入して発泡及び硬化させる軽量気泡コンクリ
ートの製造方法において、発泡剤の反応による膨張が終
了するまでグリーンスラリーの降伏値を120Pa以下
に調整すると共に、発泡剤の反応による膨張が終了した
後のグリーンスラリー又はその硬化により生成するグリ
ーンボディの膨張及び収縮を3.0%以下に抑えること
を特徴とするものである。
In order to achieve the above-mentioned object, the ALC manufacturing method provided by the present invention is such that a green slurry of lightweight cellular concrete is injected into a mold in which reinforcing reinforcing bars are arranged and foamed. In the method for producing lightweight cellular concrete to be cured, the yield value of the green slurry is adjusted to 120 Pa or less until the expansion due to the reaction of the foaming agent is completed, and the green slurry after the expansion due to the reaction of the foaming agent is completed or the hardening thereof. It is characterized in that the expansion and contraction of the green body generated by the above is suppressed to 3.0% or less.

【0007】[0007]

【発明の実施の形態】ALC内の補強用鉄筋の周囲に空
洞が発生する主な原因は、グリーンスラリーがアルミニ
ウム粉等の発泡剤の反応により膨張している間、グリー
ンスラリーの降伏値が大きく上昇して塑性変形し難くな
ること、及びアルミニウム粉等の発泡剤の反応による膨
張が終了した時点以降に、グリーンスラリー及びグリー
ンボディが更に膨張又は収縮を起こすことによるものと
考えられる。
BEST MODE FOR CARRYING OUT THE INVENTION The main cause of the formation of cavities around reinforcing bars in an ALC is that the yield value of the green slurry is large while the green slurry expands due to the reaction of a foaming agent such as aluminum powder. It is considered that this is because it rises and becomes difficult to be plastically deformed, and after the expansion due to the reaction of the foaming agent such as aluminum powder ends, the green slurry and the green body further expand or contract.

【0008】本発明者らは、原料の配合量及びその品質
を適切にコントロールすることによって、グリーンスラ
リーが発泡剤の反応により膨張している間のグリーンス
ラリーの降伏値の上昇を抑制できること、及び発泡剤の
反応による膨張が終了した時点以降のグリーンスラリー
及びグリーンボディの膨張及び収縮を抑える得ることを
見いだし、従来に比べて空洞の発生が極めて少ないAL
Cの製造方法に関する本発明に至ったものである。
The present inventors can suppress the increase in the yield value of the green slurry while the green slurry is expanding due to the reaction of the foaming agent by appropriately controlling the blending amount of the raw materials and the quality thereof, and It was found that the expansion and contraction of the green slurry and the green body after the completion of expansion due to the reaction of the foaming agent can be suppressed, and the generation of cavities is much less than in the conventional AL.
The present invention relates to a method for producing C.

【0009】グリーンスラリーがアルミニウム粉等の発
泡剤の反応により膨張している間の降伏値の上昇は、主
に生石灰の水和反応、及び繰り返し原料の凝集や吸水に
起因し、アルミニウム粉等の反応による気泡の形成、並
びに珪砂中に含まれる粘土鉱物等の不純物なども影響す
る。即ち、生石灰や繰り返し原料の配合量を増やした場
合、グリーンスラリー量に対してアルミニウム粉等の発
泡剤の配合量を増やした場合、珪砂中に多量の粘土鉱物
等の不純物が混入していた場合などには、グリーンスラ
リーの降伏値が上昇することが分かった。
The increase in the yield value during the expansion of the green slurry due to the reaction of the foaming agent such as aluminum powder is mainly due to the hydration reaction of quicklime and the repeated agglomeration and water absorption of the raw material. The formation of bubbles due to the reaction and impurities such as clay minerals contained in silica sand also influence. That is, when the blending amount of quick lime or repeated raw materials is increased, when the blending amount of a foaming agent such as aluminum powder is increased with respect to the amount of green slurry, or when a large amount of impurities such as clay minerals are mixed in silica sand. It was found that the yield value of the green slurry increased.

【0010】これらの原因により、発泡剤の反応により
膨張している間のグリーンスラリーの降伏値が120P
aを越えると、グリーンスラリーが塑性変形し難くなる
ため、膨張時に発生する補強用鉄筋上部の空洞がグリー
ンスラリーによって埋まらないか、あるいは埋まるのが
遅れることにより、補強用鉄筋の周囲に空洞が残りやす
くなる。従って、本発明方法においては、発泡剤の反応
による膨張が終了するまでグリーンスラリーの降伏値を
120Pa以下、好ましくは1〜100Paの範囲に調
整する。
Due to these causes, the yield value of the green slurry during expansion due to the reaction of the foaming agent is 120 P.
When it exceeds a, the green slurry becomes difficult to be plastically deformed, so that the cavity at the upper part of the reinforcing rebar generated during expansion is not filled with the green slurry or the filling is delayed, so that the cavity remains around the reinforcing bar. It will be easier. Therefore, in the method of the present invention, the yield value of the green slurry is adjusted to 120 Pa or less, preferably in the range of 1 to 100 Pa until the expansion due to the reaction of the foaming agent is completed.

【0011】また、一般にアルミニウム粉等の発泡によ
るグリーンスラリーの膨張は、グリーンスラリーを型枠
内に注入した直後から始まり、注入後10〜30分間で
終了する。その後、グリーンスラリー中の生石灰やセメ
ントの水和反応によりグリーンスラリーが硬化するが、
この硬化によるグリーンボディへの移行中に、上記水和
反応熱による温度上昇でグリーンスラリーないしグリー
ンボディが熱膨張を起こし、更に内部の圧力の上昇が起
こる。そして、時間の経過と共に内部圧力の緩和や微細
組織の崩壊が生じるため、グリーンボディの収縮が起こ
るのである。
In general, the expansion of the green slurry due to foaming of aluminum powder or the like starts immediately after the green slurry is injected into the mold and ends 10 to 30 minutes after the injection. After that, the green slurry hardens due to the hydration reaction of quicklime and cement in the green slurry,
During the transition to the green body due to this curing, the temperature increase due to the heat of hydration reaction causes thermal expansion of the green slurry or the green body, which further increases the internal pressure. Then, with the passage of time, the internal pressure is relaxed and the fine structure is collapsed, so that the green body is contracted.

【0012】従って、発泡剤の反応による膨張が終了し
た後のグリーンスラリー及びグリーンボディの膨張と収
縮は、互いの要因がそれぞれ重複している部分が多く、
アルミニウム粉等の発泡剤の反応が終了した時点以降に
膨張が大きい場合には収縮も大きく、逆に膨張が小さい
場合には収縮も小さくなる。
Therefore, in the expansion and contraction of the green slurry and the green body after the expansion due to the reaction of the foaming agent is completed, there are many parts where the respective factors overlap each other,
If the expansion is large after the reaction of the foaming agent such as aluminum powder is completed, the contraction is large, and conversely, if the expansion is small, the contraction is small.

【0013】特に、グリーンスラリー及びグリーンボデ
ィの膨張と収縮を起こさせるのは、主には生石灰である
ことが分かった。生石灰の配合量を増やした場合には、
その水和反応による温度上昇が大きく、従って熱膨張が
大きくなり、その後の収縮も大きくなる。
In particular, it has been found that it is mainly quicklime that causes the green slurry and green body to expand and contract. If you increase the amount of quicklime,
The temperature increase due to the hydration reaction is large, so that the thermal expansion is large and the subsequent contraction is also large.

【0014】また、生石灰の品質の面では、硬焼き生石
灰を用いると、その水和反応が遅いために、グリーンボ
ディへ移行した後に水との水和反応が激しくなり、膨張
及び収縮の挙動が非常に大きくなる。尚、硬焼き生石灰
とは、石灰生成時の焼成温度が1350℃程度の高温で
焼成された生石灰であり、その試験法としては生石灰粗
粒滴定法による10分間の4N−HClの滴下量が約2
00〜250cc以下の生石灰であるとされている。
Further, in terms of quality of quick lime, when hard baked quick lime is used, its hydration reaction is slow, so that the hydration reaction with water becomes intense after the transfer to the green body, and the behavior of expansion and contraction. Grows very large. The hard-baked quick lime is quick lime burned at a high temperature of about 1350 ° C. when lime is produced, and the test method therefor is a drop amount of 4N-HCl for 10 minutes by the quick lime coarse-grain titration method. Two
It is said that it is quick lime of 0 to 250 cc or less.

【0015】上記のようなアルミニウム粉等の発泡剤の
反応が終了した後の膨張及び収縮が3.0%を越えるほ
ど大きい場合には、この間にグリーンスラリー又はグリ
ーンボディが、500Paを越えるような極めて大きな
降伏値を持つ状況下で、補強用鉄筋との間に相対的な動
きを起こすことになるため、補強用鉄筋の周囲に空洞を
残す結果になりやすいことが分かった。このため、本発
明方法においては、発泡剤の反応が終了した後のグリー
ンスラリー又はグリーンボディの膨張及び収縮を3.0
%以下に調整する。
When the expansion and contraction after the reaction of the foaming agent such as aluminum powder as described above is so large as to exceed 3.0%, the green slurry or green body may exceed 500 Pa during this period. It has been found that in a situation where the yield strength is extremely large, a relative movement is caused between the reinforcing bar and the reinforcing bar, which tends to leave a cavity around the reinforcing bar. Therefore, in the method of the present invention, the expansion and contraction of the green slurry or green body after the reaction of the foaming agent is completed is 3.0.
Adjust to less than%.

【0016】本発明方法においては、上記のごとく発泡
剤の反応による膨張が終了するまでのグリーンスラリー
の降伏値を120Pa以下に調整し、且つ発泡剤の反応
が終了した後のグリーンスラリー又はグリーンボディの
膨張及び収縮を3.0%以下に抑えるが、これらは原料
の配合量の調整、特に生石灰と繰り返し原料の配合量の
調整、及び特に生石灰の品質の管理により行うことがで
きる。
In the method of the present invention, the yield value of the green slurry until the expansion due to the reaction of the foaming agent is completed is adjusted to 120 Pa or less as described above, and the green slurry or the green body after the reaction of the foaming agent is completed. The expansion and contraction of lime are suppressed to 3.0% or less, but these can be controlled by adjusting the blending amount of the raw materials, particularly the blending amount of the quick lime and the repeated raw material, and particularly controlling the quality of the quick lime.

【0017】即ち、従来一般的に行われている珪砂35
〜60重量%、生石灰4〜20重量%、セメント5〜3
5重量%、石膏0〜10重量%、繰り返し原料5〜40
重量%、及びこれら粉体原料に対して外割で気泡剤0.
06〜0.07重量%としていた配合に対して、本発明
では特に生石灰の水和反応や繰り返し原料による吸水を
抑制するため、この両者の配合量を低下させ、品質面で
は水和反応の遅れによる膨張原因となる硬焼きの生石灰
を使用しないことが必要である。
That is, the silica sand 35 which is generally used in the past
~ 60 wt%, quicklime 4-20 wt%, cement 5-3
5% by weight, gypsum 0-10% by weight, repeated raw material 5-40
% By weight, and a foaming agent in proportion to these powder raw materials of 0.
In the present invention, in order to suppress the hydration reaction of quicklime and water absorption due to repeated raw materials, the compounding amount of both is decreased, and the hydration reaction is delayed in terms of quality, in contrast to the compounding amount of 06 to 0.07% by weight. It is necessary not to use hard-baked quicklime that causes expansion due to.

【0018】更に具体的には、生石灰の配合量を10重
量%以下、繰り返し原料の配合量を20重量%以下とす
ることが好ましい。生石灰又は繰り返し原料のいずれか
の配合量が上記の範囲を越えると、グリーンスラリーの
降伏値が120Paを越えるか、又は膨張及び収縮が
3.0%を越え、空洞の少ないALCを得ることが出来
なくなる。また、アルミニウム粉等の発泡剤の配合量に
ついても、同様の理由から0.07重量%を越えないこ
とが必要である。更に、多量の粘土鉱物等の不純物が含
まれる珪砂の使用も避けることが好ましい。
More specifically, it is preferable that the content of quick lime is 10% by weight or less and the content of repetitive raw materials is 20% by weight or less. If the compounding amount of either quicklime or repeated raw materials exceeds the above range, the yield value of the green slurry exceeds 120 Pa, or the expansion and contraction exceeds 3.0%, and ALC with few voids can be obtained. Disappear. Further, the amount of the foaming agent such as aluminum powder to be blended should not exceed 0.07% by weight for the same reason. Further, it is preferable to avoid the use of silica sand containing a large amount of impurities such as clay minerals.

【0019】[0019]

【実施例】以下、実施例に基づいて本発明によるALC
の製造方法を具体的に説明する。各試料ごとに珪砂、生
石灰、セメント、石膏、繰り返し原料の各粉体原料を配
合し、発泡剤としてアルミニウム粉を添加混合した。各
試料における粉末原料の合計量、及びアルミニウム混合
の粉末原料に対する外割での配合量を、下記表1に示し
た。また、グリーンスラリーの水固体比は、全ての試料
で0.66(一定)とした。
EXAMPLES ALCs according to the present invention will be described below based on examples.
The manufacturing method will be specifically described. Powder raw materials such as silica sand, quick lime, cement, gypsum, and repeated raw materials were blended for each sample, and aluminum powder was added and mixed as a foaming agent. Table 1 below shows the total amount of the powder raw materials in each sample and the blending amount of aluminum mixed with the powder raw materials. Further, the water-solid ratio of the green slurry was set to 0.66 (constant) for all the samples.

【0020】[0020]

【表1】 ALC原料の配合量(重量%) 試料 珪砂 生石灰 セメント 石膏 繰り返し原料 Al粉 原料品質特記事項 1 46 3 30 7 14 0.05 なし 2 55 7 30 8 0 0.06 なし 3 49 3 26 7 15 0.06 なし 4* 46 15 24 5 10 0.06 なし 5* 41 6 22 6 35 0.06 なし 6* 48 6 26 6 14 0.08 なし 7* 48 6 26 6 14 0.06 珪砂中の粘土多い 8* 48 6 26 6 14 0.06 硬焼き生石灰使用 (注)表中の*を付した試料は比較例である。[Table 1] ALC raw material content (% by weight) Sample Quartz sand quicklime cement Gypsum Repeated raw material Al powder Raw material Quality Special notes 1 46 3 30 7 14 0.05 None 2 55 7 30 8 0 0.06 None 3 49 3 26 7 15 0.06 None 4 * 46 15 24 5 10 0.06 None 5 * 41 6 22 6 35 0.06 None 6 * 48 6 26 6 14 0.08 None 7 * 48 6 26 6 14 0.06 A lot of clay in silica sand 8 * 48 6 26 6 14 0.06 Hard baking Use of quick lime (Note) Samples marked with * in the table are comparative examples.

【0021】得られた各グリーンスラリーを、補強用鉄
筋を配設した型枠内に注入し、型枠内で発泡したスラリ
ーがグリーンボディに硬化した後、これをピアノ線によ
り所定寸法に切断し、更にオートクレーブで蒸気養生す
ることにより、それぞれALCパネルを製造した。尚、
型枠注入時のグリーンスラリー温度は、全ての試料にお
いて48℃(一定)とした。
Each of the obtained green slurries was poured into a mold provided with reinforcing bars, and the slurry foamed in the mold hardened into a green body, which was then cut into a predetermined size with a piano wire. ALC panels were manufactured by steam curing in an autoclave. still,
The green slurry temperature at the time of pouring the mold was set to 48 ° C. (constant) in all the samples.

【0022】上記のALCパネルの製造工程において、
各グリーンスラリーの降伏値の経時変化をブルックフィ
ールド社製レオゼット粘度計で測定し、アルミニウム粉
の反応によるグリーンスラリーの膨張が終了するまでの
最大値を求めた。また、型枠内におけるグリーンスラリ
ー及びグリーンボディの上面の高さを経時的に測定し、
アルミニウム粉の反応終了後における高さを100とし
て計算して、膨張率及び収縮率を求めた。
In the manufacturing process of the above ALC panel,
The change with time of the yield value of each green slurry was measured with a Rheoset viscometer manufactured by Brookfield Company, and the maximum value until the expansion of the green slurry due to the reaction of the aluminum powder was completed was obtained. In addition, the height of the upper surface of the green slurry and the green body in the mold is measured over time,
The height after the reaction of the aluminum powder was calculated as 100, and the expansion rate and the contraction rate were obtained.

【0023】更に、オートクレーブによる蒸気養生後、
それぞれの型枠の中の所定の位置から抜き出した各試料
ごとに18枚のパネルを、それぞれ所定の5カ所で切断
し、補強用鉄筋の周囲における空洞の発生状況を確認し
た。これらの結果を下記表2にまとめた。尚、ALCパ
ネル内の空洞発生状況については、補強用鉄筋上部に発
生していた空洞の型枠上下方向における長さの平均値で
示した。
Further, after steam curing by an autoclave,
Eighteen panels for each sample extracted from a predetermined position in each form were cut at predetermined five positions, and the generation of cavities around the reinforcing bars was confirmed. The results are summarized in Table 2 below. The state of cavities in the ALC panel was shown by the average value of the cavities generated in the upper part of the reinforcing bars in the vertical direction of the mold.

【0024】[0024]

【表2】 (注)表中の*を付した試料は比較例である。[Table 2] (Note) Samples marked with * in the table are comparative examples.

【0025】上記の結果から分かるように、試料1では
生石灰、繰り返し原料、アルミニウム粉の各配合量の減
量調整によりグリーンスラリーの降伏値が100Pa以
下に抑えられ、また生石灰や繰り返し原料の配合量を少
なくしたためにアルミニウム粉反応終了後の膨張及び収
縮が全くなく、ALCパネル内に空洞は全く発生してい
なかった。
As can be seen from the above results, in sample 1, the yield value of the green slurry was suppressed to 100 Pa or less by adjusting the reduction amounts of the quicklime, the repeated raw material, and the aluminum powder, and the quicklime and the repeated raw material were mixed in the yield value. Since the amount was reduced, there was no expansion or contraction after the completion of the aluminum powder reaction, and no void was generated in the ALC panel.

【0026】試料2では、繰り返し原料を配合しなかっ
たことからグリーンスラリー降伏値が更に小さくなった
が、生石灰の配合量が試料1よりも多いため膨張及び収
縮が起こり、パネル内部に空洞が若干発生した。また、
試料例3では、試料1よりも繰り返し原料及びアルミニ
ウム粉の配合量が若干多いためグリーンスラリーの降伏
値が上昇したが、生石灰の配合量が減量調整されている
ために膨張多いため収縮が非常に小さく、パネル内の空
洞もかなり小さくなっている。
In Sample 2, the green slurry yield value was further reduced because the raw materials were not blended repeatedly, but since the blending amount of quicklime was larger than in Sample 1, expansion and contraction occurred, and some cavities were formed inside the panel. Occurred. Also,
In Sample Example 3, the yield value of the green slurry increased because the blending amount of the starting material and the aluminum powder was slightly larger than that of Sample 1, but the shrinkage was very large due to the large expansion due to the reduction amount of the quicklime mixture being adjusted. It's small, and the cavities inside the panel are quite small.

【0027】比較例である試料4では、特に生石灰の配
合量が多いために、グリーンスラリーの降伏値が大き
く、且つまた膨張及び収縮も非常に大きくなり、パネル
内部には非常に大きい空洞が発生した。試料5では、繰
り返し原料の配合量を増やしたため、グリーンスラリー
の降伏値が非常に大きくなり、パネル内に大きな空洞が
発生した。また、試料6では、アルミニウム粉の配合量
を増やしたため、グリーンスラリーの降伏値が大きくな
り、やはり大きな空洞が発生した。
In sample 4 which is a comparative example, the yield value of the green slurry is large and the expansion and contraction are also very large because the amount of quicklime is particularly large, and a very large cavity is generated inside the panel. did. In Sample 5, since the blending amount of the raw material was repeatedly increased, the yield value of the green slurry became very large and a large void was generated in the panel. Further, in sample 6, since the blending amount of aluminum powder was increased, the yield value of the green slurry was increased, and again a large void was generated.

【0028】試料7では、粉末原料の珪砂中に不純物で
ある粘度鉱物が多量に含まれていたため、グリーンスラ
リーの降伏値が大きく上昇し、やや大きな空洞が発生し
た。更に、試料8では、硬焼き生石灰を使用したため
に、アルミニウム粉の発泡反応終了後に生石灰による水
和反応が活発となり、グリーンスラリー及びグリーンボ
ディの膨張大きな収縮が非常に大きくなって、パネル内
部に非常に大きい空洞が発生した。
In sample 7, since the silica sand used as the powder raw material contained a large amount of viscous minerals as impurities, the yield value of the green slurry was greatly increased and a slightly large void was generated. Further, in sample 8, since the hard-baked quicklime was used, the hydration reaction by quicklime became active after the foaming reaction of the aluminum powder was completed, and the large expansion and contraction of the green slurry and the green body became very large, and the inside of the panel was extremely damaged. There was a large cavity in the.

【0029】[0029]

【発明の効果】本発明によれば、原料の配合量並びにそ
の品質を管理調整して、発泡剤の反応による膨張が終了
するまでグリーンスラリーの降伏値を120Pa以下に
抑制し、且つ発泡剤の反応による膨張が終了した後のグ
リーンスラリー又はグリーンボディの膨張及び収縮を
3.0%以下に抑えることにより、補強用鉄筋の周囲に
発生する空洞を無くし又は低減させ、外観及び品質の優
れた軽量気泡コンクリートを製造することができる。
According to the present invention, the yield value of the green slurry is controlled to 120 Pa or less until the expansion due to the reaction of the foaming agent is controlled by controlling and adjusting the blending amount of the raw materials and the quality thereof, and By suppressing the expansion and contraction of the green slurry or green body after the expansion due to the reaction to 3.0% or less, the cavities generated around the reinforcing bars are eliminated or reduced, and the appearance and quality are lightweight. Aerated concrete can be produced.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 //(C04B 28/18 14:06 22:06 22:04 22:14 18:16) ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display area // (C04B 28/18 14:06 22:06 22:04 22:14 18:16)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 補強用鉄筋を配設した型枠内に、軽量気
泡コンクリートのグリーンスラリーを注入して発泡及び
硬化させる軽量気泡コンクリートの製造方法において、
発泡剤の反応による膨張が終了するまでグリーンスラリ
ーの降伏値を120Pa以下に調整すると共に、発泡剤
の反応による膨張が終了した後のグリーンスラリー又は
その硬化により生成するグリーンボディの膨張及び収縮
を3.0%以下に抑えることを特徴とする軽量気泡コン
クリートの製造方法。
1. A method for producing a lightweight cellular concrete in which a green slurry of lightweight cellular concrete is injected into a formwork provided with reinforcing reinforcing bars to foam and cure,
The yield value of the green slurry is adjusted to 120 Pa or less until the expansion due to the reaction of the foaming agent is completed, and the expansion and contraction of the green slurry after the expansion due to the reaction of the foaming agent is completed or the green body produced by the curing thereof is 3 or less. A method for producing lightweight cellular concrete, which is characterized by suppressing the content to 0.0% or less.
【請求項2】 軽量気泡コンクリート原料中の生石灰と
して硬焼き石灰を使用せず、且つ生石灰の配合量を10
重量%以下、繰り返し原料の配合量を20重量%以下と
することを特徴とする、請求項1に記載の軽量気泡コン
クリートの製造方法。
2. Hard baked lime is not used as the quick lime in the lightweight cellular concrete raw material, and the quick lime content is 10.
The method for producing a lightweight cellular concrete according to claim 1, wherein the content of the repeating raw material is 20% by weight or less, and the compounding amount of the repeating raw material is 20% by weight or less.
JP8114296A 1996-04-03 1996-04-03 Production of lightweight foamed concrete Pending JPH09268084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8114296A JPH09268084A (en) 1996-04-03 1996-04-03 Production of lightweight foamed concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8114296A JPH09268084A (en) 1996-04-03 1996-04-03 Production of lightweight foamed concrete

Publications (1)

Publication Number Publication Date
JPH09268084A true JPH09268084A (en) 1997-10-14

Family

ID=13738170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8114296A Pending JPH09268084A (en) 1996-04-03 1996-04-03 Production of lightweight foamed concrete

Country Status (1)

Country Link
JP (1) JPH09268084A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003246657A (en) * 2002-02-26 2003-09-02 Denki Kagaku Kogyo Kk Hardening accelerator for cement containing incineration ash of sewerage sludge and cement composition
CN103253976A (en) * 2013-06-12 2013-08-21 许庆华 Serpentine composite type foaming agent
CN103265326A (en) * 2013-06-12 2013-08-28 许庆华 Talcum composite flame-retardant foaming agent
CN103265325A (en) * 2013-06-12 2013-08-28 许庆华 Compound cement foaming agent
CN103265329A (en) * 2013-06-12 2013-08-28 许庆华 Kaolin composite foaming agent

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003246657A (en) * 2002-02-26 2003-09-02 Denki Kagaku Kogyo Kk Hardening accelerator for cement containing incineration ash of sewerage sludge and cement composition
CN103253976A (en) * 2013-06-12 2013-08-21 许庆华 Serpentine composite type foaming agent
CN103265326A (en) * 2013-06-12 2013-08-28 许庆华 Talcum composite flame-retardant foaming agent
CN103265325A (en) * 2013-06-12 2013-08-28 许庆华 Compound cement foaming agent
CN103265329A (en) * 2013-06-12 2013-08-28 许庆华 Kaolin composite foaming agent

Similar Documents

Publication Publication Date Title
JPS61111983A (en) Manufacture of foamed concrete
JPH09268084A (en) Production of lightweight foamed concrete
JPH11228251A (en) Production of light-weight foamed concrete
JP2000301531A (en) Manufacture of concrete product
JP2001294460A (en) Ultra high-early-strength expansive admixture for concrete and production process of concrete product using the same
JPH06206745A (en) Improved portland cement and production of alc
JP3378965B2 (en) Method for improving strength of hardened cement
JP2846232B2 (en) Improved Portland cement and method for producing ALC
JP2001089260A (en) Production process of alc
JPH0665637B2 (en) Method for producing lightweight foam concrete body
JP2007269591A (en) Method of producing concrete product, and concrete product
JPS6055472B2 (en) Manufacturing method for lightweight cellular concrete products
JP2001328876A (en) Method for producing alc
JP2775116B2 (en) Cement for ALC production
JPH0328395B2 (en)
JPH0212915B2 (en)
JPH026378A (en) Production of lightweight cellular concrete
JP2000016879A (en) Production of alc(air-bubbled lightweight concrete)
JPH06263557A (en) Production of lightweight cellular concrete
CN113800841A (en) Lime-free aerated concrete product and production method thereof
JPS623057A (en) Manufacture of cement set body
JP3226964B2 (en) Manufacturing method of lightweight cellular concrete
JPH04331783A (en) Production of lightweight aerated concrete thin plate
JPH06199583A (en) Production of alc and cement for producing alc
JPH03223185A (en) Production of steam-cured light-weight cellular concrete