JP3378965B2 - Method for improving strength of hardened cement - Google Patents

Method for improving strength of hardened cement

Info

Publication number
JP3378965B2
JP3378965B2 JP13181493A JP13181493A JP3378965B2 JP 3378965 B2 JP3378965 B2 JP 3378965B2 JP 13181493 A JP13181493 A JP 13181493A JP 13181493 A JP13181493 A JP 13181493A JP 3378965 B2 JP3378965 B2 JP 3378965B2
Authority
JP
Japan
Prior art keywords
cement
strength
curing
less
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13181493A
Other languages
Japanese (ja)
Other versions
JPH06345507A (en
Inventor
健嗣 黒羽
紀夫 丸嶋
浩 陣内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP13181493A priority Critical patent/JP3378965B2/en
Publication of JPH06345507A publication Critical patent/JPH06345507A/en
Application granted granted Critical
Publication of JP3378965B2 publication Critical patent/JP3378965B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/18Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、セメント等の水硬性物
質と細骨材および粗骨材と水と減水剤との新規な組合せ
調合と、従来にない混練手段と養生方法との組合せによ
り、コンクリートないしはセメント類硬化体の強度をコ
ンクリート構造物建設現場、或いはコンクリート2次製
品工場において、早期に、かつ長期的,飛躍的に大なら
しめるセメント類硬化体の強度向上方法に関する。
The present invention relates to a novel combination of hydraulic materials such as cement, fine aggregate and coarse aggregate, water and a water reducing agent, and a combination of unprecedented kneading means and curing method. The present invention relates to a method for improving the strength of a hardened cement material at a construction site of a concrete structure or a secondary concrete product factory at the early stage, for a long time, and dramatically increasing the strength of the hardened concrete material or the hardened cement material.

【0002】[0002]

【従来の技術】従来、建設現場におけるコンクリートは
工期短縮のため、或いは2次製品工場におけるコンクリ
ートは早期脱型と稼働率向上のため圧縮強度で400〜
1000[kgf/cm2]程度の高強度コンクリート
を必要とする。その場合には、次に示す表5のコンクリ
ート調合のように概ねセメント量を単に増加してすなわ
ち従来のW/Cを小さくして所謂セメントリッチなコン
クリートを調合して用いていた。なお、図7はW/Cが
20[%],25[%],35[%]の場合の養生最高
温度[℃]ごとの圧縮強度を示す。なお、この場合材令
は3[日]である。図で明らかなように養生最高温度が
高い方が圧縮強度が高く、W/Cの値が小さい方が圧縮
強度が高い。
2. Description of the Related Art Conventionally, concrete at a construction site has a compressive strength of 400 to 400% for shortening the construction period, or for concrete at a secondary product factory for early demolding and improvement of operating rate.
High strength concrete of about 1000 [kgf / cm 2 ] is required. In that case, as in the concrete mixing shown in Table 5 below, a so-called cement-rich concrete was mixed and used by simply increasing the amount of cement, that is, reducing the conventional W / C. Note that FIG. 7 shows the compressive strength for each maximum curing temperature [° C.] when W / C is 20 [%], 25 [%], and 35 [%]. In this case, the age is 3 [days]. As is clear from the figure, the higher the maximum curing temperature, the higher the compression strength, and the smaller the W / C value, the higher the compression strength.

【0003】[0003]

【表5】 [Table 5]

【0004】しかしながら、このような従来型方法によ
るコンクリートは、使用セメント量が多いために、現場
打ちで比較的断面の大なる部材においては、セメントの
水和発熱による温度上昇量が大きくなり、初期において
コンクリート温度は高温となる。そのため、図8に見ら
れるように、85[℃]の高温の養生のものは標準(2
0[℃])養生に比べて初期強度は大きいが長期強度の
伸びが小さく、前記標準養生を実施した供試体よりもむ
しろ低いレベルに留まるので、高強度発生の目的を達す
ることが出来ないという根本的に大きな欠点があった。
また、このような従来技術上の欠点問題点はオートクレ
ーブ加熱加圧養生によりプレキヤストコンクリート等の
コンクリート製品の場合においても同様に存在した。
However, since the concrete by such a conventional method uses a large amount of cement, in a member having a relatively large cross section when cast in situ, the temperature rise amount due to the heat of hydration of the cement becomes large, and the initial amount of cement increases. In the concrete temperature becomes high. Therefore, as shown in Fig.8, the one with a high temperature of 85 [℃] is standard (2
0 [℃]) Initial strength is higher than that of curing, but elongation of long-term strength is small, and it stays at a level lower than that of the specimens that have undergone the standard curing, so that the purpose of generating high strength cannot be achieved. There was a big flaw fundamentally.
In addition, such drawbacks in the prior art also existed in the case of concrete products such as precast concrete by heating and pressure curing in an autoclave.

【0005】[0005]

【発明が解決しようとする課題】前記のように、建設技
術の進歩と現場,工場における稼働率の向上のために、
従来の1000[kgf/cm2]程度の高強度を超え
る超高強度コンクリートの需要は極めて大である。その
ため、よりW/Bの小さい過剰な調合とか、コンクリー
トを冷却するなど種々な試みが従来も行われて来た。し
かし、未だ現場或いは工場においては定常的に1000
[kgf/cm2]以上の超高強度コンクリートを得る
強度向上方法は確立されていない。
As described above, in order to advance the construction technology and improve the operating rate at the site and factory,
The demand for ultra-high strength concrete that exceeds the conventional high strength of about 1000 [kgf / cm 2 ] is extremely large. Therefore, various attempts have been made in the past, such as excessive mixing with a smaller W / B and cooling concrete. However, it is still 1000 at the site or factory.
A method for improving the strength to obtain ultra high strength concrete of [kgf / cm 2 ] or more has not been established.

【0006】本発明はかかる従来技術上の欠点を除去
し、問題点を解決して現場,工場の通常稼働の中で、従
来を超えた超高強度コンクリートを得るための新規なる
セメント類硬化体の強度向上方法を創出し提供すること
を目的とするものである。
The present invention eliminates the drawbacks of the prior art, solves the problems, and in the normal operation of the site and the factory, a novel hardened cement for obtaining super high strength concrete which exceeds the conventional level. The purpose is to create and provide a method for improving the strength of.

【0007】[0007]

【課題を解決するための手段】本発明の「セメント類硬
化体の強度向上方法」の特徴は、セメント、スラグ系粉
末、シリカ系粉末及びエトリンガイト系粉末を混合した
水硬性物質と、前記水硬性物質に対する水/水硬性物質
(以下、W/Bと表わす)が重量比で15[%]以上2
5[%]以下となる水と、前記水硬性物質に対し重量で
0.05ないし5倍の細骨材と、前記水硬性物質に対し
重量で0.05ないし5倍の粗骨材と、前記水硬性物質
に対し重量で0.1以下の減水剤とにより構成される組
成物を用い、先ず前記水硬物質と前記細骨材と前記水
と前記減水剤とを均一に混練した後、前記粗骨材を加え
て更に均一に混練し、次いで型枠中に打ち込み、必要に
応じ、温風及び/又は熱蒸気により養生の最高温度域を
50[℃]以上180[℃]以下とし、前記最高養生温
度域に到達する時間の範囲をコンクリート打ち込み後0
ないし48時間として、大気圧以上10[気圧]以下の
雰囲気圧力で養生するという構成をとったことである。
The feature of the "method for improving the strength of a hardened cement product" of the present invention is that it is a hydraulic substance obtained by mixing cement, slag powder, silica powder and ettringite powder. The weight ratio of water / hydraulic substance (hereinafter referred to as W / B) to the above-mentioned hydraulic substance is 15% or more 2
5% or less of water, 0.05 to 5 times by weight of the hydraulic substance, and 0.5 to 5 times of the coarse substance by weight of the hydraulic substance. using the composition composed of a 0.1 water reducing agent by weight relative to the hydraulic material, first it was uniformly kneaded with the hydraulic material and the fine aggregate and the water and the water-reducing agent , The coarse aggregate is added, and the mixture is further uniformly kneaded, and then driven into a mold, and if necessary, the maximum temperature range for curing is set to 50 [° C] or more and 180 [° C] or less by warm air and / or hot steam. After the concrete is poured into the range of the time to reach the maximum curing temperature range, 0
That is, it is configured to cure at an atmospheric pressure of not less than atmospheric pressure and not more than 10 [atm] for 48 hours to 48 hours.

【0008】本発明でW/Bの分母をセメントに混和物
を加えたものとしたのは、これら混和物は概して長期に
亘り水和化合物を作り強度発生に貢献するものだからで
ある。また、そのW/Bの下限を15[%]としたの
は、それ未満では混練が均一に出来なくなるからであ
り、上限を25[%]としたのは、それを超えると強度
を超高強度とする目的を達し得ないからである。
In the present invention, the denominator of W / B is the cement added with the admixture, because these admixtures generally form a hydrated compound for a long period of time and contribute to strength generation. Further, the lower limit of W / B is set to 15 [%], because if it is less than that, the kneading cannot be performed uniformly, and the upper limit is set to 25 [%]. This is because the purpose of strength cannot be achieved.

【0009】次に、セメントに、スラグ系粉末,シリカ
系粉末,フライアッシュ系粉末,エトリンガイト系粉末
(セメントを含め水硬性物質と称す)のうちより、選択
的に混和材としてスラグ粉末のみを使用する場合におい
て、セメント使用の上限を90[%]としたのは、それ
を超えるとスラグの使用が少なくなり長期強度を充分に
発生し得ないからであり、また、下限を20[%]とし
たのは、それ未満では短期強度の発生が不充分となるか
らである。
Next, cement is mixed with slag powder and silica.
Powder, fly ash powder, ettringite powder
In the case where only slag powder is selectively used as an admixture from among (referred to as hydraulic materials including cement), the upper limit of cement usage is 90%. This is because the long-term strength cannot be sufficiently generated, and the lower limit is set to 20% because the short-term strength is insufficient at less than 20%.

【0010】次に、セメントに、スラグ系粉末,シリカ
系粉末,フライアッシュ系粉末,エトリンガイト系粉末
(セメントを含め水硬性物質と称す)のうちより、混和
材としてシリカ系粉末のみ使用し、選択的にシリカフュ
ームを用いる場合において、シリカフュームの使用下限
を5[%]としたのは、それ以下では長期強度の発生が
不充分となるからであり、上限を50[%]としたの
は、それを超えると短期強度が不充分となるからであ
る。
Next, cement is mixed with slag powder and silica.
Powder, fly ash powder, ettringite powder
In the case where only silica-based powder is used as an admixture and silica fume is selectively used, the lower limit of use of silica fume is set to 5 [%]. This is because the long-term strength is insufficiently generated, and the upper limit is set to 50 [%] because if it exceeds that, the short-term strength becomes insufficient.

【0011】次にまた、請求項に示す場合に、セメン
トを90[%]以下としたのは、それを超えると長期強
度の伸びが小さくなるからであり、下限を40[%]以
上としたのは、それ未満では短期強度の発生が不充分と
なるからである。尚、スラグ粉末を10[%]以上と
し、シリカフュームを5[%]以上としたのは、夫々そ
れを下まわると長期強度の伸びが小さくなりすぎるから
である。尚また、スラグ粉末もシリカフュームも50
[%]以下としたのは、それを上まわるとセメントの使
用量が少なくなりすぎて、短期強度が不充分となるから
である。
Next, in the case of claim 2 , the cement content is set to 90% or less because the elongation of the long-term strength decreases if it exceeds it, and the lower limit is set to 40% or more. The reason is that if it is less than that, short-term strength is insufficiently generated. The reason why the slag powder is 10% or more and the silica fume is 5% or more is because the elongation of the long-term strength becomes too small when the content is lower than that. In addition, slag powder and silica fume are 50
The reason why it is set to [%] or less is that if the amount is exceeded, the amount of cement used becomes too small and the short-term strength becomes insufficient.

【0012】更に、請求項に示すように現場打ちコン
クリートの場合、最高養生温度域の下限を50[℃]と
したのは、実験の結果それ未満では強度を超高強度の域
に達せしめるのが困難となるからであり、上限を120
[℃]としたのは、それを超えると冷却した場合、ひび
われが発生し易くなると同時に長期強度も超高強度には
なりにくいからである。
Furthermore, in the case of cast-in-place concrete as set forth in claim 3 , the lower limit of the maximum curing temperature range is set to 50 [° C.], and as a result of experiments, the strength can reach an extremely high strength range below that. This is because it becomes difficult to set the upper limit to 120
The reason why the temperature is set to [° C.] is that if the temperature is higher than that, cracking is likely to occur, and at the same time, the long-term strength does not easily become an ultrahigh strength.

【0013】更にまた、請求項に示すように工場製品
コンクリートの場合、最高養生温度域の下限の理由は前
記同様であるが、上限を180[℃]としたのは、12
0[℃]を超えても養生圧力を高めることにより超高強
度を発生し得るからであり、また、それを超える高温で
は、前記セメントと混和物による水和硬化鉱物の結晶の
生成が充分でなくなるからである。また、この場合、工
場製品コンクリートの養生圧力の上限を10[気圧]と
したのは、工場製品養生はオートクレーブ内蒸気養生に
よるため、その蒸気温度上限の約180[℃]に相当す
るからである。
Further, as described in claim 4 , in the case of factory concrete, the reason for the lower limit of the maximum curing temperature range is the same as above, but the upper limit is set to 180 [° C.].
This is because even if the temperature exceeds 0 ° C, ultrahigh strength can be generated by increasing the curing pressure, and at a temperature higher than that, the formation of hydrate-hardening mineral crystals by the cement and the admixture is insufficient. Because it will disappear. Further, in this case, the upper limit of the curing pressure of the factory product concrete is set to 10 [atm], because the factory product curing is performed by steam curing in the autoclave, which corresponds to the steam temperature upper limit of about 180 [° C]. .

【0014】なお、前記セメントは、例えば普通,早
強,超早強のポルトランドセメント等が含まれ混和材と
しては、例えば、ファインスラグ,シリカフューム,フ
ァインフライアッシュ,エトリンガイト微粉末も含まれ
る。ここに、エトリンガイトとは、高硫酸塩型カルシウ
ムアルミネート水和物で、理想的化学式はCa6Al
2(OH)12・(SO43・26H2Oにより表わすこと
が出来、膨張性を有する。本発明では必要に応じその微
粉末の少量を用いてコンクリートの強度をその上に一般
と増強せしめる様に構成するものである。
The cement includes, for example, normal, early-strength and ultra-early-strength Portland cement, and the admixture also includes, for example, fine slag, silica fume, fine fly ash, and ettringite fine powder. Here, ettringite is a high-sulfate calcium aluminate hydrate with an ideal chemical formula of Ca 6 Al.
2 (OH) 12 · (SO 4) can be represented by 3 · 26H 2 O, having expandable. In the present invention, a small amount of the fine powder is used, if necessary, so that the strength of the concrete can be further increased to the general level.

【0015】[0015]

【作用】本発明では、従来殆んど用いられていない、特
に小さいW/Bと可溶性シリカを含む各種混和剤を用い
た新規なコンクリート配合と、新規な養生最高温度域条
件との新しい組合せによって従来殆んど得られない超高
強度にコンクリート強度を向上させ得る。この超高強度
の発生のメカニズム作用は、混和物中の可溶性けい酸が
50[℃]以上120[℃]ないし180[℃]以下と
いう最適切な養生最高温度域で養生することにより、従
来よりも、すべて有効にけい酸カルシウム系水和結晶物
となり、超高強度を安定的に確実に発生し得るようにな
るものである。特に、従来殆んど着目されていなかった
点として、前記の可溶性けい酸がセメント中の遊離のカ
ルシウムと水和硬化物を生成する反応は前記範囲内で養
生温度の上昇に比例して上昇することにより無駄なく硬
化物の生成作用が促進されるようになる。従って、従来
を明らかに超える超高強度の発生をもたらす結果が得ら
れるのである。更に、前記必要に応じ使用することがあ
るエトリンガイトの作用としては、前記したように・2
6H2Oと非常に多くの結晶水を要求するので、硬化結
晶の成長圧が特に大となる作用を有するから膨張性も大
となるものである。依ってまた、エトリンガイトの微粉
末を未硬化コンクリート中に可及的均一に分散して用い
るならば、粗骨材,細骨材ないしは、比較的早期に結晶
硬化するカルシウムアルミネートの硬化粒等の間隙に存
在する未硬化部分に前記エトリンガイトの膨張粒子が押
し込まれ、非常に密実なコンクリート硬化物組織を生ず
ることになる。これが前記の新配合、新養生法と相まっ
て、従来を明らかに上まわる超高強度の発現作用となる
ものである。
According to the present invention, a novel combination of a novel concrete composition using various admixtures containing a particularly small W / B and soluble silica, which has been hardly used in the past, and a new curing maximum temperature range condition are used. The concrete strength can be improved to an ultra-high strength which has been hardly obtained in the past. The mechanism action of generation of this ultra-high strength is that the soluble silicic acid in the admixture is cured more than 50 [° C.] and 120 [° C.] to 180 [° C.] or less in the most suitable maximum curing temperature range, so that All of them effectively become calcium silicate-based hydrated crystals, which enables stable and reliable generation of ultrahigh strength. In particular, as a point that has not been paid much attention in the past, the reaction of the soluble silicic acid to form free calcium in cement and a hydrated cured product increases in proportion to an increase in curing temperature within the above range. As a result, the action of producing a cured product can be promoted without waste. Therefore, it is possible to obtain a result that causes the generation of ultra-high strength, which is significantly higher than the conventional one. Further, the action of ettringite which may be used as necessary is as described above.
Since 6H 2 O and a very large amount of water for crystallization are required, the growth pressure of the hardened crystal has a particularly large effect, so that the expandability is also large. Therefore, if fine powder of ettringite is used as dispersed as uniformly as possible in uncured concrete, coarse aggregate, fine aggregate, or hardened particles of calcium aluminate that crystallize relatively quickly can be obtained. The expanded particles of the ettringite are pushed into the uncured portions existing in the gaps, resulting in a very solid hardened concrete structure. This, combined with the above-mentioned new formulation and new curing method, has an extremely high strength exerting action which is clearly superior to the conventional one.

【0016】[0016]

【実施例】以下、本発明の実施例を図面および表を用い
て説明する。
Embodiments of the present invention will be described below with reference to the drawings and tables.

【0017】[0017]

【実施例1】W/B20%で表1に示すコンクリート調
合(1m3当り)のセメント類硬化体の材令[日]ごと
の圧縮強度の値を図1に示す。図中白丸は養生温度が2
0[℃]の標準養生の場合を示し、黒丸は初期に85
[℃]の高温履歴をうけた場合を示す。
[Example 1] Fig. 1 shows the values of the compressive strength for each age [day] of hardened cemented cement of concrete mix (per 1 m 3 ) shown in Table 1 with W / B 20%. The white circle in the figure has a curing temperature of 2.
The figure shows the case of standard curing at 0 ° C.
The case where a high temperature history of [° C] is received is shown.

【0018】[0018]

【表1】 [Table 1]

【0019】なお、表1において括弧内の数字は水硬性
物質(セメントにファインスラグ,シリカフューム等を
加えたもの)に対する重量比[%]又は倍率を示す。図
1に示すように85[℃]の高温養生のものは材令91
[日]においても20[℃]養生のものより圧縮強度は
高い。
In Table 1, the number in parentheses indicates the weight ratio [%] or the ratio to the hydraulic material (cement added with fine slag, silica fume, etc.). As shown in Fig. 1, the material with high temperature curing of 85 ° C is age 91.
Even on [day], the compressive strength is higher than that of 20 [° C] curing.

【0020】[0020]

【実施例2】W/B20[%]で表2に示すコンクリー
ト調合のセメント類硬化体の材令[日]ごとの圧縮強度
を図2に示す。図中、白丸は図1と同様に20[℃]の
養生温度の場合を示し、黒丸は85[℃]の高温養生の
場合を示す。
[Example 2] Fig. 2 shows the compressive strength of the hardened cemented cement of the concrete formulation shown in Table 2 for each age [day] in W / B 20 [%]. In the figure, the white circles indicate the case of a curing temperature of 20 [° C.] and the black circles indicate the case of a high temperature curing of 85 [° C.] as in FIG.

【0021】[0021]

【表2】 [Table 2]

【0022】表2に示すように、この水硬化セメントは
普通ポルトランドセメントを使用し、ファインスラグの
みを添加したものである。図2に示すように、85
[℃]の高温養生の方が材令[日]に無関係に高い圧縮
強度を示す。また、図1と図2を比較すると早強ポルト
ランドセメントを使用した方が普通ポルトランドセメン
トを用いた場合より圧縮強度は高い。
As shown in Table 2, as the water-hardening cement, ordinary Portland cement was used and only fine slag was added. As shown in FIG.
High temperature curing at [℃] shows higher compressive strength regardless of age [day]. Further, comparing FIG. 1 and FIG. 2, the compressive strength of the early-strength Portland cement is higher than that of the normal Portland cement.

【0023】[0023]

【実施例3】W/B22[%]で表3に示すコンクリー
ト調合のセメント類硬化体の材令[日]ごとの圧縮強度
を図3に示す。図中白丸および黒丸は前記実施例1,2
と同様に20[℃]および85[℃]の養生温度の場合
を示す。
[Embodiment 3] FIG. 3 shows the compressive strength for each age [day] of the hardened cemented cement of concrete mixing shown in Table 3 in W / B22 [%]. In the figure, white circles and black circles are the same as in the first and second embodiments
Similar to the above, the case of curing temperature of 20 [° C.] and 85 [° C.] is shown.

【0024】[0024]

【表3】 [Table 3]

【0025】この場合も最高養生の方が材令[日]に関
係なく圧縮強度が高いがセメントに対して水の量が増加
した分だけ図1のものより圧縮強度は下廻り、普通ポル
トランドセメントを用いたものよりも圧縮強度はやや低
い。
In this case as well, the highest curing has a higher compressive strength regardless of the age [day], but the compressive strength is lower than that of FIG. The compressive strength is slightly lower than that used.

【0026】[0026]

【実施例4】W/B25[%]で表4に示す普通ポルト
ランドセメントを用いたモルタル調合(重量比)の場合
の材令[日]に対する圧縮強度の値を図4に示し、普通
ポルトランドセメントの替りに早強ポルトランドセメン
トを用いた場合の圧縮強度を図5に示す。
[Example 4] The compressive strength value with respect to the age [day] in the case of the mortar formulation (weight ratio) using the ordinary Portland cement shown in Table 4 in W / B25 [%] is shown in Fig. 4, and the ordinary Portland cement is shown. Fig. 5 shows the compressive strength when early-strength Portland cement was used instead of.

【0027】[0027]

【表4】 [Table 4]

【0028】図4,図5に示すように85[℃]の最高
養生の方が20[℃]の標準養生よりも上廻り、圧縮強
度は早強ポルトランドセメントの方が高い。
As shown in FIGS. 4 and 5, the maximum curing at 85 [° C.] exceeds the standard curing at 20 [° C.], and the compressive strength of the early-strength Portland cement is higher.

【0029】図6は現場打ち構造体コンクリートの材令
ごとの温度履歴を示す線図である。実線は養生最高強度
が85[℃]の場合、点線は50[℃]の場合、2点鎖
線は20[℃]の場合を示す。いずれも材令が48[h
r]以下のところで最高温度の点が存在することがわか
る。
FIG. 6 is a diagram showing the temperature history of the cast-in-place concrete for each material age. The solid line shows the case where the maximum curing strength is 85 [° C], the dotted line shows the case of 50 [° C], and the two-dot chain line shows the case of 20 [° C]. In both cases, the age is 48 [h
It can be seen that there is a point of maximum temperature at a point of r] or less.

【0030】[0030]

【発明の効果】本発明によれば、次のような顕著な効果
を奏する。 1)セメントにスラグ系粉末やシリカ系粉末等を添加し
た水硬性物質と水との比を所定値範囲内に設定すると共
に、混練条件や養生温度域,最高養生温度に到達する時
間および雰囲気圧力等を所定範囲内に設定することによ
り、セメントの量を特に増加することなく超高強度のコ
ンクリートを得ることが出来る。 2)この超高強度コンクリートを製作する強度向上方法
は工場製品コンクリートのみならず現場打ちコンクリー
トに対しても容易に適用される。 3)この強度向上方法はコントロールすべき各条件範囲
が細かく決められているため、安定した超高強度コンク
リートを作ることが出来、かつ安定した超高強度を得る
ことが出来る。すなわち、製造の信頼性が高い。 4)セメント混合材の種類が豊富であり、普通ポルトラ
ンドセメントおよび早強ポルトランドセメントの双方が
使用出来るため適応性が広い。
According to the present invention, the following remarkable effects are obtained. 1) Set the ratio of hydraulic material, which is slag-based powder or silica-based powder added to cement, to water within a predetermined value range, kneading conditions, curing temperature range, time to reach the maximum curing temperature, and atmospheric pressure. By setting the above values within a predetermined range, it is possible to obtain an ultrahigh-strength concrete without particularly increasing the amount of cement. 2) The strength improving method for producing this ultra-high-strength concrete can be easily applied not only to factory-produced concrete but also to cast-in-place concrete. 3) In this strength improving method, since each condition range to be controlled is finely determined, stable ultrahigh strength concrete can be produced and stable ultrahigh strength can be obtained. That is, the manufacturing reliability is high. 4) There is a wide variety of cement admixtures, and both ordinary Portland cement and early-strength Portland cement can be used, so it has wide applicability.

【図面の簡単な説明】[Brief description of drawings]

【図1】W/C=20[%]の場合の養生強度の20
[℃],85[℃]におけるシリカフューム使用のコン
クリートの材令[日]と圧縮強度との関係を示す線図。
FIG. 1 shows a curing strength of 20 when W / C = 20 [%].
FIG. 6 is a diagram showing the relationship between the age [day] and the compressive strength of concrete using silica fume at [° C.] and 85 [° C.].

【図2】W/C=20[%]の場合の養生温度20
[℃],85[℃]におけるファインスラグ使用のコン
クリートの材令[日]と圧縮強度との関係を示す線図。
FIG. 2 Curing temperature 20 when W / C = 20 [%]
The line graph which shows the relationship between the age [day] and the compressive strength of the concrete using fine slag at [° C] and 85 [° C].

【図3】W/C=22[%]における材令[日]と圧縮
強度の関係を示す線図。
FIG. 3 is a diagram showing the relationship between age [day] and compressive strength at W / C = 22 [%].

【図4】W/C=25[%]で普通ポルトランドセメン
トを使用した場合の材令[日]と圧縮強度との関係を示
す線図。
FIG. 4 is a diagram showing the relationship between the age [day] and the compressive strength when ordinary Portland cement is used with W / C = 25 [%].

【図5】W/C=25[%]で早強ポルトランドセメン
トを使用した場合の材令[日]と圧縮硬度の関係を示す
線図。
FIG. 5 is a diagram showing the relationship between the age [day] and the compression hardness when using early-strength Portland cement at W / C = 25 [%].

【図6】構造体コンクリートの強度履歴と材令[hr]
との関係を示す線図。
[Fig. 6] Strength history of structural concrete and age [hr]
FIG.

【図7】W/Cの異なるセメントペーストにおける養生
最高強度と圧縮強度の関係を示す線図。
FIG. 7 is a diagram showing a relationship between maximum curing strength and compressive strength in cement pastes having different W / C.

【図8】従来の技術におけるW/C=30[%]の場合
の材令[日]と圧縮強度との関係を示す線図。
FIG. 8 is a diagram showing the relationship between age [day] and compressive strength when W / C = 30 [%] in the conventional technique.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−283650(JP,A) 特開 平4−124054(JP,A) 特開 昭62−36059(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 28/02 - 28/12 C04B 18/14 C04B 40/02 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-2-283650 (JP, A) JP-A-4-124054 (JP, A) JP-A-62-36059 (JP, A) (58) Field (Int.Cl. 7 , DB name) C04B 28/02-28/12 C04B 18/14 C04B 40/02

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】セメント、スラグ系粉末、シリカ系粉末
エトリンガイト系粉末を混合した水硬性物質と、前記
水硬性物質に対する水/水硬性物質(以下、W/Bと表
わす)が重量比で15[%]以上25[%]以下となる
水と、前記水硬性物質に対し重量で0.05ないし5倍
の細骨材と、前記水硬性物質に対し重量で0.05ない
し5倍の粗骨材と、前記水硬性物質に対し重量で0.1
以下の減水剤とにより構成される組成物を用い、先ず前
記水硬物質と前記細骨材と前記水と前記減水剤とを均
一に混練した後、前記粗骨材を加えて更に均一に混練
し、次いで型枠中に打ち込み、必要に応じ、温風及び/
又は熱蒸気により養生の最高温度域を50[℃]以上1
80[℃]以下とし、前記最高養生温度域に到達する時
間の範囲をコンクリート打ち込み後0ないし48時間と
して、大気圧以上10[気圧]以下の雰囲気圧力で養生
することを特徴とするセメント類硬化体の強度向上方
法。
1. Cement, slag-based powder, silica-based powder and
A hydraulic substance mixed with fine ettringite-based powder, the hydraulic material to water / hydraulic substance (hereinafter referred to as W / B) and water is 15% or more 25% or less by weight, The fine aggregate has a weight of 0.05 to 5 times the weight of the hydraulic material, the coarse aggregate has a weight of 0.05 to 5 times the weight of the hydraulic material, and the fine aggregate has a weight of 0. 1
Using composition comprised by the following water-reducing agent, first it was uniformly kneaded with the water reducing agent and the hydraulic material and the fine aggregate and the water, further uniform by adding the coarse aggregate Knead, then pour into the mold, and, if necessary, warm air and / or
Or the maximum temperature range of curing by hot steam is 50 [℃] or more 1
Curing of cement at 80 [° C.] or less and curing at an atmospheric pressure of not less than atmospheric pressure and not more than 10 [atmosphere], with the range of time for reaching the above-mentioned maximum curing temperature range being 0 to 48 hours after concrete driving. How to improve body strength.
【請求項2】前記水硬性物質の組成が重量比で、セメン
ト90[%]以下40[%]以上、スラグ系粉末10
[%]以上50[%]以下、シリカ系粉末5[%]以上
50[%]以下のものである請求項1記載のセメント類
硬化体の強度向上方法。
2. The composition of the hydraulic material is a cement in a weight ratio.
90% or less 40% or more, slag-based powder 10
[%] Or more and 50 [%] or less, silica powder 5 [%] or more
Cement according to claim 1, which is 50% or less.
A method for improving the strength of a cured product.
【請求項3】前記養生条件が現場打ちコンクリートの場
合であって、最高養生温度域が50[℃]以上120
[℃]以下であり、雰囲気圧力が大気圧である請求項1
又は2に記載のセメント類硬化体の強度向上方法。
3. When the curing condition is cast-in-place concrete
The maximum curing temperature range is 50 [℃] or more and 120
The temperature is not higher than [° C.] and the atmospheric pressure is atmospheric pressure.
Or the method for improving the strength of a hardened cement material according to item 2.
【請求項4】前記養生条件が、工場製品コンクリートの
場合であって、最高養生温度域が50[℃]以上180
[℃]以下であり、雰囲気圧力が大気圧以上10[気
圧]以下である請求項1又は2に記載のセメント類硬化
体の強度向上方法。
4. The curing condition is that of factory product concrete.
In some cases, the maximum curing temperature range is 50 [℃] or more 180
[° C] or lower, and the atmospheric pressure is higher than or equal to atmospheric pressure and
Pressure] is less than or equal to 3. The cement hardening according to claim 1 or 2.
How to improve body strength.
JP13181493A 1993-06-02 1993-06-02 Method for improving strength of hardened cement Expired - Lifetime JP3378965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13181493A JP3378965B2 (en) 1993-06-02 1993-06-02 Method for improving strength of hardened cement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13181493A JP3378965B2 (en) 1993-06-02 1993-06-02 Method for improving strength of hardened cement

Publications (2)

Publication Number Publication Date
JPH06345507A JPH06345507A (en) 1994-12-20
JP3378965B2 true JP3378965B2 (en) 2003-02-17

Family

ID=15066735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13181493A Expired - Lifetime JP3378965B2 (en) 1993-06-02 1993-06-02 Method for improving strength of hardened cement

Country Status (1)

Country Link
JP (1) JP3378965B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154213A (en) * 2003-11-27 2005-06-16 Fuji Ps Corp Binder composition in high durable concrete, product of high durable concrete and method of manufacturing the same
JP2007119257A (en) * 2005-10-24 2007-05-17 Mitsubishi Materials Corp Method for producing high-strength concrete material and high-strength hardened body
JP2019210170A (en) * 2018-06-01 2019-12-12 大成建設株式会社 Spraying material

Also Published As

Publication number Publication date
JPH06345507A (en) 1994-12-20

Similar Documents

Publication Publication Date Title
US4997484A (en) Hydraulic cement and composition employing the same
EP0346350B1 (en) Cement composition curable at low temperatures
KR960700976A (en) Cement type kneaded molded article having high bending strength and compressive strength, and method of production
JP3547268B2 (en) Cement admixture and cement composition
JPH0680456A (en) Fluid hydraulic composition
JP2001039748A (en) High-early-strength cement admixture and concrete and concrete product containing the same
JP3382754B2 (en) Cement composition, hardened cement body using the same, and method for producing the same
JP4181224B2 (en) Cement composition and concrete and concrete product manufacturing method using the same
JP4428590B2 (en) Ultra-high strength cement admixture and cement composition
JP3378965B2 (en) Method for improving strength of hardened cement
JP6985177B2 (en) Hydraulic composition and concrete
JP3584723B2 (en) Manufacturing method of hardened cement
JP3813374B2 (en) Construction method of sprayed cement concrete using setting modifier slurry
JP3565062B2 (en) Hardened body using steelmaking slag
JP2001294460A (en) Ultra high-early-strength expansive admixture for concrete and production process of concrete product using the same
JPH11314947A (en) Cement composition
JPS59102849A (en) Super high strength cement hardened body
JP2004284865A (en) Hydraulic composition, and concrete or mortar having excellent pump forced-feeding property
JP2003171161A (en) Heat resisting, high strength concrete, and production method therefor
JPH05116996A (en) Cement admixture and production of cement hardened body
JPH09286651A (en) Hardening regulating method of cement
GB2039271A (en) Cement compositions
JP2503772B2 (en) Fast-curing self-leveling flooring composition
JP2002087867A (en) Method of manufacturing cement material
JP5383045B2 (en) Cement composition for grout and grout material using the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091213

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091213

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101213

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111213

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111213

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121213

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121213

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131213

Year of fee payment: 11

EXPY Cancellation because of completion of term