JP4428590B2 - Ultra-high strength cement admixture and cement composition - Google Patents

Ultra-high strength cement admixture and cement composition Download PDF

Info

Publication number
JP4428590B2
JP4428590B2 JP24246899A JP24246899A JP4428590B2 JP 4428590 B2 JP4428590 B2 JP 4428590B2 JP 24246899 A JP24246899 A JP 24246899A JP 24246899 A JP24246899 A JP 24246899A JP 4428590 B2 JP4428590 B2 JP 4428590B2
Authority
JP
Japan
Prior art keywords
cement
ultra
weight
parts
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24246899A
Other languages
Japanese (ja)
Other versions
JP2001064058A (en
Inventor
茂 富岡
実 盛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP24246899A priority Critical patent/JP4428590B2/en
Publication of JP2001064058A publication Critical patent/JP2001064058A/en
Application granted granted Critical
Publication of JP4428590B2 publication Critical patent/JP4428590B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主に、土木・建築業界において使用される超早強セメント混和材及びセメント組成物に関するものである。
【0002】
【従来の技術】
近年、セメント・コンクリートに要求される性能は益々高まっており、特に、セメント・コンクリートの超早強化や高強度化の研究は盛んに行われている。本来、セメント・コンクリートの強度は、水/セメント比に依存するところが大きく、水/セメント比をできるだけ小さくする目的で、JIS A 6204「コンクリート用化学混和剤」で規定されているように、減水剤や高性能減水剤を使用することが一般的に普及している。しかしながら、水/セメント比の低減には限界があり、作業性を犠牲にしなければならないという課題があった。
【0003】
一方、水/セメント比の低減によらず、セメントの水和を促進することで超早強化や高強度化を実現する方法が数多く提案されている。例えば、硝酸カルシウム、亜硝酸カルシウム、塩化カルシウム、ギ酸類、硝酸ナトリウム及びギ酸カルシウム、並びに乳酸とその塩類等の促進剤を使用してセメント・コンクリートの強度を増進する方法が種々提案されている(米国特許第3427175号、特開昭50-80315号公報、特開昭50-10998号公報、特開昭55-71653号公報、米国特許第3801338号、もしくは、英国特許第1522501号や英国特許第1522502号等)。
【0004】
【発明が解決しようとする課題】
さらに、これらの促進剤を混和したコンクリートに高性能AE減水剤を併用して、超早強化や高強度化を図っている。しかしながら、高性能AE減水剤を多量に混和すると遅延性が高まり、コンクリートの材料分離が発生し易く、強度に悪影響を与えるため限度があった。そこで、本発明者らは、前記課題を解決すべく種々努力を重ねた結果、特定の超早強セメント混和材を使用することにより、前記課題を解決できるとの知見を得て本発明を完成するに至った。
【0005】
【課題を解決するための手段】
即ち、本発明は、高性能AE減水剤と、ベントナイトと、ギ酸、乳酸及び酢酸からなる群より選ばれた一種又は二種以上の合計100重量部中、高性能AE減水剤を固形分換算で2.5〜35重量部、ベントナイトを15〜80重量部、ギ酸、乳酸、酢酸及びそれらの塩類からなる群より選ばれた一種又は二種以上を5〜80重量部とを含有してなる超早強セメント混和材であり、セメントと、該超早強セメント混和材とを含有してなるセメント組成物である。
【0006】
【発明の実施の形態】
以下、本発明をさらに詳しく説明する。
【0007】
本発明の高性能AE減水剤とは、特に限定されるものではないが、例えば、ポリカルボン酸系の液状タイプ及び粉末タイプのものが使用可能であり、その具体例としては、グレースケミカルズ社製商品名「ダーレックススーパー200」、NMB社製商品名「レオビルドSP-8HS」及び竹本油脂社製商品名「チューポールHP-11」等が挙げられる。又、この他にも各種の高性能AE減水剤が市販されており、何れも使用される。
【0008】
高性能AE減水剤の配合割合は、超早強セメント混和材100重量部中、固形分換算で35重量部以下が好ましく、2.5〜20重量部がより好ましい。35重量部を超えると材料分離を生じたり、十分な早強性が得られない場合がある。
【0009】
本発明のベントナイトは、特に限定されるものではないが、Si/Alモル比が1.0〜3.0が好ましく、1.0〜2.0がより好ましい。この範囲を外れるとコンクリートの材料分離が発生し易くなる場合がある。ベントナイトの粒度は、市販品として入手できるものをそのまま使用することが可能であり、通常の200〜350メッシュ程度以下の粗いものでも十分効果が期待できる。
【0010】
ベントナイトの配合割合は、超早強セメント混和材100重量部中、15〜80重量部が好ましく、25〜60重量部がより好ましい。コンクリート温度、減水剤の配合量及びコンクリート中の単位セメント量等により適正配合量は異なってくるので、一律に規定することは難しいが、これらの変動要因を考慮しても15重量部未満では、配合効果は余り期待できなく、80重量部を超えると、減水剤の減水率等を極端に低下させる場合もあるので好ましくない。コンクリート温度が高く、単位セメント量が少なく、減水剤の配合量が少い方ほど、ベントナイトの配合量は少なくて済む傾向にある。
【0011】
本発明のギ酸、乳酸、酢酸及びそれらの塩類(以下、ギ酸類という)とは、ギ酸、乳酸及び酢酸、並びにそれらのナトリウム塩、カリウム塩、リチウム塩、カルシウム塩、マグネシウム塩、バリウム塩、アルミニウム塩、亜鉛塩及びアンモニウム塩等の塩が挙げられる。
【0012】
ギ酸類の配合割合は、超早強セメント混和材100重量部中、5〜80重量部が好ましく、10〜60重量部がより好ましい。5重量部未満では十分な早強性が得られない場合があり、80重量部を超えると十分なスランプの保持性が得られない場合があるので好ましくない。
【0013】
本発明の超早強セメント混和材の配合量は、特に限定されるものではないが、通常、セメントと超早強セメント混和材とからなるセメント組成物100重量部中、1〜5重量部が好ましく、2〜3重量部がより好ましい。1重量部未満では本発明の効果である早強性や高強度が十分に得られない場合があり、5重量部を超えて使用しても更なる効果の増進が期待できない。
【0014】
本発明では、高性能AE減水剤、ベントナイト及びギ酸類の他に、さらに必要に応じて凝結促進材を併用することが可能である。凝結促進材としては、例えば、アルミン酸ナトリウム、アルミン酸カリウム、アルミン酸リチウム等のアルカリ金属アルミン酸塩、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、重炭酸ナトリウム、重炭酸カリウム、重炭酸リチウム等のアルカリ金属炭酸塩や重炭酸塩、硝酸ナトリウム、硝酸カリウム、硝酸リチウム、硝酸カルシウム、亜硝酸ナトリウム、亜硝酸カリウム、亜硝酸リチウム、亜硝酸カルシウム等の硝酸塩類や亜硝酸塩類、硫酸ナトリウム、硫酸カリウム、硫酸リチウム、二水石膏、半水石膏、無水石膏、硫酸アルミニウム等の無機硫酸塩、並びに水酸化カルシウム、酸化カルシウム、ミョウバン類、チオシアン酸塩、チオ硫酸塩及びトリエタノールアミン等のアミノアルコール類等が挙げられ、これらのうちの一種又は二種以上を併用することが可能であり、超早強化や高強度化をさらに促進するものである。
【0015】
本発明に係るセメントとしては、普通、早強、超早強、低熱及び中庸熱等各種ポルトランドセメント、これらセメントに、高炉スラグ、フライアッシュ及びシリカを混合した各種混合セメント、石灰石粉末等を混合したフィラーセメント、及びアルミナセメント等が挙げられる。
【0016】
さらに本発明では、本発明の超早強セメント混和材及びセメント組成物に、砂、砂利等の骨材の他に、AE剤、増粘剤、防錆剤、防凍剤及び高分子エマルジョン、並びにセメント膨張材、無機リン酸塩及びほう酸等のうちの一種又は二種以上を本発明の目的を実質的に阻害しない範囲で併用することが可能である。
【0017】
本発明の超早強セメント混和材及びセメント組成物を製造する際に使用する混合装置としては、既存の如何なる撹拌装置も使用可能であり、例えば、傾胴ミキサー、オムニミキサー、V型ミキサー、ヘンシェルミキサー、ナウターミキサー等が利用可能である。又、混合は、それぞれの材料を施工時に混合してもよいし、予め一部を、あるいは全部を混合しておいても差し支えない。
【0018】
【実施例】
以下、実施例により本発明を詳細に説明する。
【0019】
実施例で使用したコンクリート配合、測定方法及び使用材料を示す。
<コンクリート配合>
表1に示すようなコンクリート配合を基本として、コンクリートの練り混ぜは、20℃の室内において強制練りミキサー(容量100リットル)で60リットル分のコンクリートを3分間練り混ぜ、スランプ、コンクリートの圧縮強度(φ10×20cmのテストピース)を測定した。
<測定方法>
圧縮強度:JIS A 1108に準じて測定。
スランプ試験:JIS A 1101に準じて測定。
<使用材料>
高性能AE減水剤a:市販ポリカルボン酸系
高性能AE減水剤b:市販ポリカルボン酸系
高性能AE減水剤c:市販ポリカルボン酸系
ベントナイト:市販品(A.C.C法による膨潤度25)
ギ酸類A:試薬1級ギ酸カルシウム
ギ酸類B:試薬1級ギ酸
ギ酸類C:試薬1級ギ酸ナトリウム
ギ酸類D:試薬1級ギ酸カリウム
ギ酸類E:試薬1級乳酸
ギ酸類F:試薬1級乳酸カルシウム
ギ酸類G:試薬1級乳酸ナトリウム
ギ酸類H:試薬1級乳酸カリウム
ギ酸類I:試薬1級酢酸カルシウム
ギ酸類J:ギ酸類Aとギ酸類Fの等重量混合物
ギ酸類K:ギ酸類A、ギ酸類F及びギ酸類Iの等重量混合物
セメント:市販早強ポルトランドセメント
砂:新潟県姫川産
砂利:新潟県姫川産
水:水道水
【0020】
【表1】

Figure 0004428590
【0021】
実施例1
表2に示すベントナイトとギ酸類Aの配合比を1:1とし、高性能AE減水剤の種類と配合量を変えて超早強セメント混和材を調製し、セメント100重量部に対して超早強セメント混和材2重量部を配合したものをコンクリートに混合し、スランプと材齢24時間、28日の圧縮強度の測定を行った。その結果を表2に示す。尚、表1のコンクリート配合に減水剤を配合する場合は、同一スランプを得るのに少ない単位水量で済むため、単位水量を減らしてスランプを合わせた。
【0022】
【表2】
Figure 0004428590
【0023】
本発明の超早強セメント混和材を使用することにより、水セメント比が低いコンクリートでも作業性は良好(スランプが大きい)で、コンクリートの超早強化や高強度化が可能であることが示されている。
【0024】
実施例2
実施例1と同様に、表3に示す高性能AE減水剤aとギ酸類Aの配合比を約1:3とし、ベントナイトの配合量を変えて超早強セメント混和材を調製し、セメント100重量部に対して超早強セメント混和材2重量部を配合してコンクリートに混合し、スランプと材齢24時間、28日の圧縮強度の測定を行った。その結果を表3に示す。尚、実施例1と同様に同一スランプを得るため、単位水量を調整した。
【0025】
【表3】
Figure 0004428590
【0026】
本発明の超早強セメント混和材は、ベントナイトの配合量を変えても、コンクリートの作業性が良好で、超早強化や高強度化が可能であることが示されている。
【0027】
実施例3
実施例1と同様に、表4に示す高性能減水剤aとベントナイトの配合比を約1:3とし、ギ酸類の種類と配合量を変えて超早強セメント混和材を調製した。セメント100重量部に対して超早強セメント混和材2重量部を配合してコンクリートに混合し、スランプと材齢24時間、28日の圧縮強度の測定を行った。その結果を表4に示す。
【0028】
【表4】
Figure 0004428590
【0029】
本発明の超早強セメント混和材を使用することにより、コンクリートの作業性が良好で、超早強化や高強度化が可能であることが示されている。
【0030】
実施例4
実験No.1-5の超早強セメント混和材について、セメント100重量部に対して表5に示すように配合量を変えたこと以外は、実施例1と同様に行った。その結果を表5に示す。
【0031】
【表5】
Figure 0004428590
【0032】
本発明の超早強セメント混和材を使用したコンクリートは、比較例のコンクリートと比べ、24時間強度や28日強度が著しく高いことが示されている。
【0033】
【発明の効果】
本発明の超早強セメント混和材を使用することにより、水セメント比が低いコンクリートでも作業性が良好(スランプが大きい)で、コンクリートの超早強化や高強度化が可能となる。[0001]
BACKGROUND OF THE INVENTION
The present invention mainly relates to an ultra-high strength cement admixture and a cement composition used in the civil engineering and construction industries.
[0002]
[Prior art]
In recent years, the performance required for cement and concrete has been increasing more and more, and research on ultra-high-strength and high strength of cement and concrete has been actively conducted. Originally, the strength of cement and concrete largely depends on the water / cement ratio. For the purpose of minimizing the water / cement ratio as much as possible, as specified in JIS A 6204 “Chemical admixture for concrete”, a water reducing agent. And the use of high performance water reducing agents is generally prevalent. However, there is a limit in reducing the water / cement ratio, and there is a problem that workability must be sacrificed.
[0003]
On the other hand, many methods have been proposed for realizing ultra-fast strengthening and high strength by promoting cement hydration without reducing the water / cement ratio. For example, various methods for enhancing the strength of cement and concrete using accelerators such as calcium nitrate, calcium nitrite, calcium chloride, formic acid, sodium nitrate and calcium formate, and lactic acid and its salts have been proposed ( U.S. Pat.No. 3,427,175, JP 50-80315, JP 50-10998, JP 55-71653, U.S. Pat. 3801338, British Patent 1522501, and British Patent No. 1522502 etc.).
[0004]
[Problems to be solved by the invention]
In addition, high-performance AE water reducing agent is used in combination with concrete mixed with these accelerators to achieve ultra-fast strengthening and high strength. However, when a large amount of a high-performance AE water reducing agent is mixed, there is a limit because delay is increased, material separation of concrete is likely to occur, and the strength is adversely affected. Therefore, the present inventors have made various efforts to solve the above problems, and as a result, obtained the knowledge that the above problems can be solved by using a specific ultra-high strength cement admixture, and completed the present invention. It came to do.
[0005]
[Means for Solving the Problems]
That is, the present invention provides a high-performance AE water reducing agent, bentonite, and one or two or more types selected from the group consisting of formic acid, lactic acid and acetic acid in a total of 100 parts by weight. 2.5 to 35 parts by weight, 15 to 80 parts by weight of bentonite, 5 to 80 parts by weight of one or more selected from the group consisting of formic acid, lactic acid, acetic acid and salts thereof An early-strength cement admixture, which is a cement composition containing cement and the ultra-early-strength cement admixture.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
[0007]
Although it does not specifically limit with the high performance AE water reducing agent of this invention, For example, the thing of a liquid type and a powder type of polycarboxylic acid type | system | group can be used, As the specific example, Grace Chemicals company make Examples include the product name “Darlex Super 200”, the product name “Leo Build SP-8HS” manufactured by NMB, and the product name “Tupol HP-11” manufactured by Takemoto Yushi Co., Ltd. In addition, various high-performance AE water reducing agents are commercially available, and any of them is used.
[0008]
The blending ratio of the high-performance AE water reducing agent is preferably 35 parts by weight or less, more preferably 2.5 to 20 parts by weight in terms of solid content in 100 parts by weight of the ultra-early strong cement admixture. If it exceeds 35 parts by weight, material separation may occur or sufficient early strength may not be obtained.
[0009]
The bentonite of the present invention is not particularly limited, but the Si / Al molar ratio is preferably 1.0 to 3.0, and more preferably 1.0 to 2.0. Outside this range, material separation of the concrete may occur easily. As the particle size of bentonite, a commercially available product can be used as it is, and even a coarse product having a particle size of about 200 to 350 mesh or less can be expected to have a sufficient effect.
[0010]
The blending ratio of bentonite is preferably 15 to 80 parts by weight and more preferably 25 to 60 parts by weight in 100 parts by weight of the ultra-fast early cement admixture. The appropriate blending amount varies depending on the concrete temperature, the blending amount of the water reducing agent, the unit cement amount in the concrete, etc., so it is difficult to uniformly define, but even if considering these fluctuation factors, The blending effect cannot be expected so much, and if it exceeds 80 parts by weight, the water reduction rate of the water reducing agent may be extremely reduced, which is not preferable. The higher the concrete temperature, the smaller the unit cement amount, and the smaller the amount of water reducing agent, the smaller the amount of bentonite.
[0011]
Formic acid, lactic acid, acetic acid and salts thereof (hereinafter referred to as formic acid) of the present invention are formic acid, lactic acid and acetic acid, and sodium, potassium, lithium, calcium, magnesium, barium and aluminum salts thereof. And salts such as salts, zinc salts and ammonium salts.
[0012]
The blending ratio of formic acids is preferably 5 to 80 parts by weight, more preferably 10 to 60 parts by weight, in 100 parts by weight of the ultra-early strong cement admixture. If it is less than 5 parts by weight, sufficient early strength may not be obtained, and if it exceeds 80 parts by weight, sufficient slump retention may not be obtained.
[0013]
The blending amount of the ultra-high-strength cement admixture of the present invention is not particularly limited, but usually 1 to 5 parts by weight in 100 parts by weight of the cement composition composed of cement and the ultra-high-strength cement admixture. Preferably, 2 to 3 parts by weight are more preferable. If it is less than 1 part by weight, the early strength and high strength, which are the effects of the present invention, may not be sufficiently obtained, and even if it exceeds 5 parts by weight, further enhancement of the effect cannot be expected.
[0014]
In the present invention, in addition to the high-performance AE water reducing agent, bentonite, and formic acids, a setting accelerator can be used in combination as necessary. Examples of the setting accelerator include alkali metal aluminates such as sodium aluminate, potassium aluminate, and lithium aluminate, alkalis such as sodium carbonate, potassium carbonate, lithium carbonate, sodium bicarbonate, potassium bicarbonate, and lithium bicarbonate. Metal carbonates and bicarbonates, sodium nitrate, potassium nitrate, lithium nitrate, calcium nitrate, sodium nitrite, potassium nitrite, lithium nitrite, calcium nitrite, and other nitrates and nitrites, sodium sulfate, potassium sulfate, lithium sulfate , Inorganic sulfates such as dihydrate gypsum, hemihydrate gypsum, anhydrous gypsum, aluminum sulfate, and amino alcohols such as calcium hydroxide, calcium oxide, alum, thiocyanate, thiosulfate and triethanolamine One or two of these It is possible to use a higher, it is to further promote super early strengthening and high strength.
[0015]
As the cement according to the present invention, ordinary, early strength, very early strength, low heat and moderate heat such as various portland cements, these cements were mixed with various cements mixed with blast furnace slag, fly ash and silica, limestone powder, etc. Examples thereof include filler cement and alumina cement.
[0016]
Further, in the present invention, in addition to the aggregate such as sand and gravel, the AE agent, the thickener, the rust preventive agent, the antifreeze agent and the polymer emulsion are added to the ultra-high strength cement admixture and the cement composition of the present invention, and One or more of cement expanding material, inorganic phosphate, boric acid and the like can be used in combination as long as the object of the present invention is not substantially impaired.
[0017]
Any existing stirring device can be used as the mixing device used when producing the ultra-high-strength cement admixture and cement composition of the present invention, such as a tilting barrel mixer, an omni mixer, a V-type mixer, and a Henschel. Mixers, nauter mixers, etc. can be used. Moreover, mixing may mix each material at the time of construction, and may mix part or all beforehand.
[0018]
【Example】
Hereinafter, the present invention will be described in detail by way of examples.
[0019]
The concrete mix used in the examples, the measurement method, and the materials used are shown.
<Concrete mix>
Based on the concrete composition shown in Table 1, concrete mixing is carried out by mixing 60 liters of concrete for 3 minutes with a forced mixing mixer (capacity 100 liters) in a room at 20 ° C. φ10 × 20 cm test piece) was measured.
<Measurement method>
Compressive strength: Measured according to JIS A 1108.
Slump test: Measured according to JIS A 1101.
<Materials used>
High-performance AE water reducing agent a: Commercially available polycarboxylic acid-based high-performance AE water-reducing agent b: Commercially available polycarboxylic acid-based high-performance AE water-reducing agent c: Commercially available polycarboxylic acid-based bentonite: Commercial product (swelling degree by the AC method 25)
Formic acid A: Reagent primary calcium formate B: Reagent primary formic acid C: Reagent primary sodium formate D: Reagent primary potassium formate E: Reagent primary lactate formic acid F: Reagent primary Calcium lactate formic acid G: Reagent primary sodium lactate formic acid H: Reagent primary potassium lactate formic acid I: Reagent primary calcium acetate formic acid J: Equal weight mixture of formic acid A and formic acid F Formic acid K: Formic acid A, Equal weight mixture of formic acid F and formic acid I Cement: Commercial early strength Portland cement Sand: Gravel from Himekawa, Niigata Pref. Water from Himekawa, Niigata Pref .: Tap water [0020]
[Table 1]
Figure 0004428590
[0021]
Example 1
The mixing ratio of bentonite and formic acid A shown in Table 2 is 1: 1, and the type and amount of the high-performance AE water reducing agent is changed to prepare an ultra-high strength cement admixture. A mixture containing 2 parts by weight of a strong cement admixture was mixed with concrete, and the compressive strength of slump and material age of 24 hours and 28 days was measured. The results are shown in Table 2. In addition, when mix | blending a water reducing agent with the concrete mixing | blending of Table 1, since a small unit water amount is enough to obtain the same slump, the unit water amount was reduced and the slump was match | combined.
[0022]
[Table 2]
Figure 0004428590
[0023]
By using the ultra-high strength cement admixture of the present invention, it is shown that workability is good (slump is large) even in concrete with a low water-cement ratio, and it is possible to strengthen concrete and increase its strength. ing.
[0024]
Example 2
In the same manner as in Example 1, the mixing ratio of the high-performance AE water reducing agent a and formic acid A shown in Table 3 was set to about 1: 3, and the amount of bentonite was changed to prepare an ultra-high strength cement admixture. 2 parts by weight of ultra-fast early cement admixture was blended with parts by weight and mixed with concrete, and the compression strength of slump and material age of 24 hours and 28 days was measured. The results are shown in Table 3. In addition, in order to obtain the same slump as in Example 1, the unit water amount was adjusted.
[0025]
[Table 3]
Figure 0004428590
[0026]
It has been shown that the ultra-early strong cement admixture of the present invention has good workability of concrete even if the blending amount of bentonite is changed, and can be strengthened and strengthened very quickly.
[0027]
Example 3
In the same manner as in Example 1, the blend ratio of the high-performance water reducing agent a and bentonite shown in Table 4 was about 1: 3, and the kind and blending amount of formic acids were changed to prepare ultra-early strong cement admixtures. 2 parts by weight of an ultra-early strong cement admixture was blended with 100 parts by weight of cement and mixed with concrete, and the compressive strength of slump and material age of 24 hours and 28 days was measured. The results are shown in Table 4.
[0028]
[Table 4]
Figure 0004428590
[0029]
It has been shown that by using the ultra-high strength cement admixture of the present invention, the workability of concrete is good and ultra-high strength and high strength can be achieved.
[0030]
Example 4
About the ultra-early strong cement admixture of Experiment No.1-5, it carried out like Example 1 except having changed the compounding quantity as shown in Table 5 with respect to 100 weight part of cement. The results are shown in Table 5.
[0031]
[Table 5]
Figure 0004428590
[0032]
It has been shown that the concrete using the ultra-early strong cement admixture of the present invention has significantly higher 24 hour strength and 28 day strength than the comparative concrete.
[0033]
【The invention's effect】
By using the ultra-high-strength cement admixture of the present invention, even if the concrete has a low water-cement ratio, the workability is good (the slump is large), and the concrete can be strengthened very quickly and the strength can be increased.

Claims (2)

高性能AE減水剤と、ベントナイトと、ギ酸、乳酸、酢酸及びそれらの塩類からなる群より選ばれた一種又は二種以上の合計100重量部中、高性能AE減水剤を固形分換算で2.5〜35重量部、ベントナイトを15〜80重量部、ギ酸、乳酸、酢酸及びそれらの塩類からなる群より選ばれた一種又は二種以上を5〜80重量部を含有してなる超早強セメント混和材。1. High-performance AE water reducing agent in solid content conversion in a total of 100 parts by weight of one or two or more kinds selected from the group consisting of high-performance AE water reducing agent, bentonite, formic acid, lactic acid, acetic acid and salts thereof . 5 to 35 parts by weight, 15 to 80 parts by weight of bentonite, one or two or more kinds selected from the group consisting of formic acid, lactic acid, acetic acid and their salts, 5 to 80 parts by weight Admixture. セメントと、請求項1記載の超早強セメント混和材とを含有してなるセメント組成物。  A cement composition comprising cement and the ultra-early strong cement admixture according to claim 1.
JP24246899A 1999-08-30 1999-08-30 Ultra-high strength cement admixture and cement composition Expired - Lifetime JP4428590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24246899A JP4428590B2 (en) 1999-08-30 1999-08-30 Ultra-high strength cement admixture and cement composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24246899A JP4428590B2 (en) 1999-08-30 1999-08-30 Ultra-high strength cement admixture and cement composition

Publications (2)

Publication Number Publication Date
JP2001064058A JP2001064058A (en) 2001-03-13
JP4428590B2 true JP4428590B2 (en) 2010-03-10

Family

ID=17089540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24246899A Expired - Lifetime JP4428590B2 (en) 1999-08-30 1999-08-30 Ultra-high strength cement admixture and cement composition

Country Status (1)

Country Link
JP (1) JP4428590B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108192038A (en) * 2017-12-28 2018-06-22 科之杰新材料集团有限公司 A kind of ultra high early strength poly-carboxylic water-reducing agent solidifying soon and preparation method thereof
CN108192043A (en) * 2017-12-28 2018-06-22 科之杰新材料集团有限公司 A kind of esters ultra high early strength poly-carboxylic water-reducing agent and preparation method thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4884679B2 (en) * 2005-02-09 2012-02-29 電気化学工業株式会社 Cement admixture and cement composition using the same
WO2008015767A1 (en) * 2006-08-01 2008-02-07 Denki Kagaku Kogyo Kabushiki Kaisha Cement admixture and cement composition making use of the same
JP5588613B2 (en) * 2008-12-25 2014-09-10 電気化学工業株式会社 Cement mortar
JP5588612B2 (en) * 2008-12-25 2014-09-10 電気化学工業株式会社 Reinforcing bar joint filler composition, reinforcing bar joint filler using the same, and reinforcing bar joint filling method
JP6626376B2 (en) * 2016-03-09 2019-12-25 株式会社日本触媒 Strength improver for hydraulic composition, additive for hydraulic composition, and concrete composition
EP3853186A1 (en) * 2018-09-18 2021-07-28 Sika Technology AG Accelerator for mineral binder compositions
CN112125559B (en) * 2020-09-09 2022-05-20 安徽海螺新材料科技有限公司 Super early strength type concrete additive and preparation method thereof
CN116514433B (en) * 2023-04-25 2024-03-08 北京瑞吉达科技有限公司 Composite additive and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108192038A (en) * 2017-12-28 2018-06-22 科之杰新材料集团有限公司 A kind of ultra high early strength poly-carboxylic water-reducing agent solidifying soon and preparation method thereof
CN108192043A (en) * 2017-12-28 2018-06-22 科之杰新材料集团有限公司 A kind of esters ultra high early strength poly-carboxylic water-reducing agent and preparation method thereof

Also Published As

Publication number Publication date
JP2001064058A (en) 2001-03-13

Similar Documents

Publication Publication Date Title
JP2788834B2 (en) Hydraulic cement hardening accelerating admixture incorporating glycol
WO2009136518A1 (en) Hydraulic composition and concrete using the hydraulic composition
JP4428590B2 (en) Ultra-high strength cement admixture and cement composition
WO2014004943A1 (en) Dry mix for composite cement
JP3549644B2 (en) Cement composition
JP4128300B2 (en) Cement admixture and cement composition
JP2003277111A (en) Hardening accelerator and cement composition
JP3365699B2 (en) Cement admixture and cement composition
JP3573552B2 (en) Cement admixture and cement composition
JP3385920B2 (en) Wet spraying method
JP4538108B2 (en) High performance water reducing agent composition and cement composition
JPH09110489A (en) Cement admixture and cement composition
JP3219156B2 (en) Cement admixture and cement composition
JPH0859319A (en) Cement admixture and cement composition
JP4128299B2 (en) Cement admixture and cement composition
JPH09110490A (en) Cement admixture and cement composition
JP7357097B1 (en) Soil improvement materials and solidification treatment methods
JPS62292662A (en) Cement admixing material
JPS63129052A (en) Cementitious self-leveling material composition
JP2001048617A (en) Cement admixture and cement composition
JP2003146725A (en) Water-hardenable composition
JP3547150B2 (en) Cement admixture and cement composition
GB2188923A (en) High alumina cement composition
JPH09286651A (en) Hardening regulating method of cement
JP7381642B2 (en) Solidification treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4428590

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

EXPY Cancellation because of completion of term