JPS6360180A - Manufacture of lightweight concrete - Google Patents

Manufacture of lightweight concrete

Info

Publication number
JPS6360180A
JPS6360180A JP20428186A JP20428186A JPS6360180A JP S6360180 A JPS6360180 A JP S6360180A JP 20428186 A JP20428186 A JP 20428186A JP 20428186 A JP20428186 A JP 20428186A JP S6360180 A JPS6360180 A JP S6360180A
Authority
JP
Japan
Prior art keywords
strength
weight
lightweight concrete
curing
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20428186A
Other languages
Japanese (ja)
Other versions
JPH0212915B2 (en
Inventor
江藤 清光
光生 須田
斉藤 亮吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clion Co Ltd
Original Assignee
Onoda ALC Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onoda ALC Co Ltd filed Critical Onoda ALC Co Ltd
Priority to JP20428186A priority Critical patent/JPS6360180A/en
Publication of JPS6360180A publication Critical patent/JPS6360180A/en
Publication of JPH0212915B2 publication Critical patent/JPH0212915B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 イ 発明の技術分野 この発明は、初期硬化を著しく促進して初期強度の発現
を早め、成形時間を短縮し、かつオートクレーブ養生後
の強度が優れた軽量コンクリートの製造方法に間するも
のである。
Detailed Description of the Invention (a) Technical Field of the Invention The present invention provides a method for producing lightweight concrete that significantly accelerates initial hardening, accelerates the development of initial strength, shortens forming time, and has excellent strength after autoclave curing. It is something that takes place in between.

口 従来の技術 従来から一般に、コンクリート製品の製造コストは、そ
の生産性が製品の製造コストに大きく影響している。そ
の生産性を向上する方法の一つとして、打設コンクリー
トの場合は以前から早期脱型が考えられていた。
BACKGROUND ART Conventionally, in general, the manufacturing cost of concrete products has been greatly affected by the productivity of the product. In the case of poured concrete, early demolding has long been considered as one way to improve productivity.

この目的のために提案されている代表的な技術として、
次の2つがある。
Typical techniques proposed for this purpose include:
There are two options:

例1、アルミナセメントと水酸化カルシウムよりなる硬
化促進剤を用いる方法。
Example 1: A method using a hardening accelerator consisting of alumina cement and calcium hydroxide.

例2、コンクリートの養生を工夫し、部材全体を強制的
に拘束した状態で加熱養生をする方法。
Example 2: A method of curing concrete by heating and curing it while forcibly restraining the entire member.

このように種々の早期強度を確保することに間する研究
がなされ提案されているが、未だにこれらを解決する良
い方法がないのが現状である。
Although various studies have been conducted and proposals have been made to ensure early strength, there is currently no good method to solve these problems.

ハ 発明が解決しようとする問題点 上記のように、打設コンクリートにおいて、早期脱型の
目的で行われている前述の従来例1の方法では、初期硬
化を促進し成型時間を短縮する目的で硬化促進剤を多量
に添加しようとすると、逆にオートクレーブ養生後の強
度を確保することができず、自ずと硬化促進剤の使用量
を制限せざるを得す、従って朝間強度が十分でない欠点
がある。
C. Problems to be Solved by the Invention As mentioned above, the method of Conventional Example 1, which is used for the purpose of early demolding of poured concrete, is not suitable for the purpose of promoting early hardening and shortening the molding time. If you try to add a large amount of curing accelerator, you will not be able to secure the strength after autoclave curing, and you will have to limit the amount of curing accelerator used, so there will be a drawback that the strength will not be sufficient in the morning. .

又従来例2の方法は、型枠で軽量コンクリートの膨張自
体を強制的に拘束するために型枠を極めて強固なものに
しなければならず、型枠の剛性上の点で経済的にその大
きさを制限されろ欠点がある。
In addition, in the method of Conventional Example 2, the formwork must be made extremely strong in order to forcibly restrain the expansion of the lightweight concrete itself, and it is economically difficult to increase the rigidity of the formwork. There are drawbacks that limit your ability.

このように早期強度の確保に対する種々の提案がなされ
ているが、何れも急硬性が不十分であったり、その急硬
性を確保するためにオートクレーブ養生後の強度が損な
われているのが現状である。
Although various proposals have been made to ensure early strength, the current situation is that the rapid hardening is insufficient, or that the strength after autoclave curing is compromised in order to ensure rapid hardening. be.

尚従来例2については、実ラインでの実施が、その経済
的見地から採用できないのが実情である。
Regarding Conventional Example 2, the actual situation is that implementation on an actual line cannot be adopted from an economic standpoint.

従って本発明は、軽量コンクリートの打設後、短時間で
十分な朝間強度の発現を可能にして早期脱型を行い、か
つオートクレーブ養生後の強度を損なうことのない硬化
促進を問題点として取り上げ、この問題を解決する硬化
促進剤の発明とその硬化促進剤を使用した軽量コンクリ
ートの製造方法を目的とした。
Therefore, the present invention takes up the problem of making it possible to develop sufficient concrete strength in a short time after pouring lightweight concrete, performing early demolding, and accelerating hardening without losing strength after autoclave curing. The purpose of this study was to invent a curing accelerator to solve this problem and to create a method for producing lightweight concrete using the curing accelerator.

二 問題点を解決するための手段 本発明者らは、軽量コンクリート成型時における早期脱
型は、生産性を向上させるために不可決の要因であり、
又型枠成型の場合には型枠に要する多額の費用の節約に
なるため、前述のような欠点をなくすべく鋭意研究を行
った結果、暇焼ミョウバン石と消石灰、力性アルカリ及
び亜f#酸塩よりなるポルトランドセメント等の水硬性
物質に対する新たな硬化促進剤を検出し、本発明に至っ
たものである。
2. Means for Solving the Problems The present inventors believe that early demolding during lightweight concrete molding is an essential factor for improving productivity;
In addition, in the case of formwork molding, the large amount of cost required for formworks can be saved, so as a result of intensive research to eliminate the above-mentioned drawbacks, we have found that using time-fired alum stone, slaked lime, alkali and submersible The present invention was achieved by detecting a new curing accelerator for hydraulic substances such as Portland cement made of acid salts.

即ち、暇焼ミョウバン石と消石灰、力性アルカリ及び亜
硝酸塩よりなる硬化促進剤を用いてポルトランドセメン
ト等の水硬性物質と混練成形することによって10分以
上の任意の時間に脱型することが可能であり、脱型後オ
ートクレーブ養生(180℃、5時間)によって起きる
水熱反応により、ケイ酸力ルシュウム水和物を主とする
物質を生成するので、長XI強度を損なうことのない高
強度な軽量コンクリート製品を製造することができるこ
とを見い出した。
That is, by kneading and molding a hydraulic material such as Portland cement using a hardening accelerator consisting of time-burned alum stone, slaked lime, alkali, and nitrite, it is possible to demold the mold at any time of 10 minutes or more. The hydrothermal reaction that occurs during autoclave curing (180°C, 5 hours) after demolding produces a substance mainly composed of rhusium silicic acid hydrate, so it has high strength without compromising long XI strength. It has been discovered that lightweight concrete products can be manufactured.

即ち、本発明は、ポルトランドセメントを主体とする軽
量コンクリートの原料に硬化促進剤として、暇焼ミョウ
バン石50〜80M竜%、消石灰10〜40重量%、力
性アルカリ1〜5重量%及び亜硝酸塩3〜20!Ii%
よりなる硬化促進剤を水硬性物質に対して5〜70重竜
%、好ましくは、10〜60重量%用いることによって
、目的とする早期脱型を可能とし、かつオートクレーブ
養生後の強度も損なうことがない軽量コンクリートの製
造方法ζこ関するものである。つまり、ここに添加する
硬化促進剤の量が、5毛量%未満では、脱型に必要な強
度が発現されず、また70重量%以上では、経済的に好
ましくないのである。
That is, the present invention adds 50 to 80% by weight of time-burned alum stone, 10 to 40% by weight of slaked lime, 1 to 5% by weight of hard alkali, and nitrite as a hardening accelerator to the raw material of lightweight concrete mainly composed of Portland cement. 3-20! Ii%
By using a curing accelerator of 5 to 70% by weight, preferably 10 to 60% by weight, based on the hydraulic material, it is possible to achieve the desired early demolding, and also to reduce the strength after autoclave curing. This relates to a method for producing lightweight concrete. That is, if the amount of curing accelerator added here is less than 5% by weight, the strength necessary for demolding will not be achieved, and if it is more than 70% by weight, it is economically unfavorable.

暇填ミョウバン石は、例えばわが国において産出するカ
リミョウバン石とソーダミョウバン石が混合したカリ・
ソーダミョウバン石を600〜700℃程度に′I;焼
したものを、所定の粉末度(BL’l+14,000印
2/g程度)に粉砕したものである。本発明においては
、暇焼ミョウバン石と消石灰、力性アルカリ及び亜硝酸
塩との相乗的な効果によりセメントの凝結硬化時間を大
幅に短縮し、更にアルミナセメントと水酸化カルシ1−
ムよりなる硬化促進剤にみられる添加量の増加ζこ伴う
オートクレーブ養生後の強度の低下はみることがない。
Time-filling alum stone is, for example, a mixture of potassium alum stone and soda alum stone produced in Japan.
Soda alumite is calcined at about 600 to 700°C and then ground to a predetermined powder degree (about BL'l+14,000 mark 2/g). In the present invention, the setting and hardening time of cement is greatly shortened due to the synergistic effect of time-burned alumite, slaked lime, alkali and nitrite, and furthermore, alumina cement and calci hydroxide 1-
There is no decrease in strength after autoclave curing due to an increase in the amount added of the curing accelerator consisting of rubber.

即ち、図−1に示すように心情ミョウバン石の場合は、
オートクレーブ養生後の強度を損なうことがなく、添加
量の増加にともなって強度は増大する。
In other words, as shown in Figure 1, in the case of Shinjo Alumite,
The strength after autoclave curing is not impaired, and the strength increases as the amount added increases.

この発明の軽量コンクリートの製造において、コンクリ
ートの軽量化の手段として、軽量骨材、例えば膨張頁岩
の焼成による骨材、パーライト(黒曜岩系、真珠岩系)
、燃焼ひる石、抗火石、その他の天然軽石、ならびにA
LCの破砕物等が使用できる。また発泡または起泡によ
る軽量化手段も有効に適用される。尚、軽量コンクリー
トの機械的強度を更に増大させるために鉱物質粉末(例
えばケイ石粉末、フライアッシュ、スラグ、シリカフニ
ーム、天然ポゾラン)や、鉱物質繊維あるいは有機質繊
維などを添加して用いることもできる。もちろん種々の
界面活性剤を用いることもできる。又凝結調整剤として
、その必要に応じてクエン酸塩、酒石酸塩等のオキシカ
ルボン酸の塩0.05〜0.2重量%を使用することが
できる。
In the production of lightweight concrete of the present invention, lightweight aggregates such as aggregates produced by firing expanded shale, pearlite (obsidian type, pearlite type) are used as a means for reducing the weight of concrete.
, burning vermiculite, anti-firestone, other natural pumice, and A
Crushed LC etc. can be used. In addition, weight reduction means by foaming or foaming can also be effectively applied. In addition, in order to further increase the mechanical strength of lightweight concrete, mineral powders (for example, silica powder, fly ash, slag, silica hneem, natural pozzolan), mineral fibers, or organic fibers may be added. . Of course, various surfactants can also be used. Further, as a coagulation modifier, 0.05 to 0.2% by weight of a salt of oxycarboxylic acid such as citrate or tartrate can be used as required.

ホ 発明の効果 本発明による軽量コンクリートは従来知られている硬化
促進剤を添加して製造した軽量コンクリートに比べ、軽
量コンクリートの脱型を著しく短縮でき、しかもオート
クレーブ養生後の強度の低下もなく極めて優れた特徴を
持っている。即ち、硬化促進剤添加量とペースト強度の
グラフが示すように、従来のアルミナセメントと水酸化
カルシュームよりなる硬化促進剤を添加した軽量コンク
リートは、脱型を早くしようとして硬化促進剤の添加量
を増加すると、オートクレーブ養生後の強度に低下がみ
られるが、本発明の硬化促進剤を添加した軽量コンクリ
ートは、脱型強度を増加して脱型を短縮するために硬化
促進剤を増加した場合でもオートクレーブ養生後の強度
は増加し、低下することは全くないのであるこれらの大
きな特徴により、軽量コンクリートの工場生産において
、極めてその生産性を高めることが可能となり、しかも
高強度の軽量コンクリート部材を製造することを可能と
した。
E. Effects of the Invention The lightweight concrete according to the present invention can significantly shorten the demolding time of lightweight concrete compared to the conventionally known lightweight concrete produced by adding a hardening accelerator, and also has no decrease in strength after autoclave curing. It has excellent characteristics. In other words, as shown in the graph of the amount of hardening accelerator added and paste strength, in the conventional lightweight concrete with hardening accelerators made of alumina cement and calcium hydroxide, the amount of hardening accelerator added was reduced in order to speed up demolding. However, the lightweight concrete to which the curing accelerator of the present invention has been added shows that even when the curing accelerator is increased in order to increase the demolding strength and shorten the demolding process, After autoclave curing, the strength increases and does not decrease at all. These major characteristics make it possible to significantly increase productivity in factory production of lightweight concrete, and to produce high-strength lightweight concrete components. made it possible to do so.

このことは土木建築分野などに寄与することが極めて大
である。
This will greatly contribute to the field of civil engineering and construction.

また洞焼ミョウバン石、消石灰、力性アルカリ、及び亜
硝酸の混合割合を変えることで硬化時間を任意時間に変
更することができるので、生産工程のコントロールをす
ることができる。
Furthermore, by changing the mixing ratio of Dorayaki alumite, slaked lime, alkali, and nitrous acid, the curing time can be changed to any desired time, making it possible to control the production process.

更に、型枠を用いる生産方式の場合は、早期脱型ができ
ないために生ずる種々の問題を解決し原価低減に貢献す
るところ甚だ大である。
Furthermore, in the case of a production system that uses molds, various problems that arise due to the inability to quickly remove the molds can be solved, and this greatly contributes to cost reduction.

へ 実施例 実施例−1 先ずフォーミックスC−n (ハマノ工業製)原液を2
0倍希釈して、その液と空気を発泡機に送り予め泡沫(
泡密度80g/L)を作る。次に、早強ポルトランドセ
メント280kg/m3、ケイ石粉末100kg/m3
、硬化促進剤84 k g/m3、クエン酸ソーダ10
0g/m3の混合物に水210 k g/m3を加え1
分間攪拌してセメントスラリーをつくり、これに、先に
作った泡沫を気泡コンクリートの生嵩密度が0.72 
k g/m3になるように加え2分間攪拌して気泡コン
クリートを得た。
Examples Example-1 First, Formix C-n (manufactured by Hamano Industries) stock solution was mixed with 2
Dilute 0 times and send the liquid and air to a foaming machine to create foam (
Create a foam density of 80g/L). Next, early strength Portland cement 280kg/m3, silica powder 100kg/m3
, curing accelerator 84 kg/m3, sodium citrate 10
Add 210 kg/m3 of water to the 0 g/m3 mixture and
Stir for a minute to make a cement slurry, and add the foam made earlier to this, and the fresh bulk density of aerated concrete is 0.72.
kg/m3 and stirred for 2 minutes to obtain cellular concrete.

これを所定の型枠に注入し、約30分間、30°Cの室
内にて養生した(この時の強度は、9Kg/cm2を示
した)。その後、60″Cで1時間の湿度養生を経て脱
型した(脱型強度は、15kg/cm2を示した)。そ
の後直ちに183”C,10気圧で6時間のオートクレ
ーブ養生を行った。このものの標乾嵩比重(水分lO%
w t )は0.535、圧縮強度は75.51cg/
cm2であった。但し、この時に使用した硬化促進剤の
配合は、淵焼ミョウバン石70重量%、消石灰20重量
%、力性ソーダ5重量%、及び亜硝酸ソーダ5重量%で
ある。
This was poured into a predetermined mold and cured in a room at 30° C. for about 30 minutes (the strength at this time was 9 kg/cm 2 ). Thereafter, the mold was removed after humidity curing at 60"C for 1 hour (the demolding strength showed 15 kg/cm2). Immediately thereafter, autoclave curing was performed at 183"C and 10 atm for 6 hours. Standard dry bulk specific gravity of this material (moisture lO%
w t ) is 0.535, and the compressive strength is 75.51 cg/
It was cm2. However, the composition of the hardening accelerator used at this time was 70% by weight of Fuchiyaki alumite, 20% by weight of slaked lime, 5% by weight of sodium hydroxide, and 5% by weight of sodium nitrite.

実施例−2 表−1に示す実施例配合と比較配合で軽量コンクリート
を作り、30分後の脱型強度と183”C110気圧の
オートクレーブ養生後の強度を求めた。表−2より明ら
かなように、実施例配合は何れも著しい脱型強度とオー
トクレーブ養生後の強度を示した。尚この時に使用した
硬化促進剤は、爪焼ミョウバン石70重量%、消石灰2
0重量%、力性ソーダ3重量%、及び亜硝酸カルシウム
7重量%よりなるものを使用した。
Example 2 Lightweight concrete was made using the example mix and comparative mix shown in Table 1, and the demolding strength after 30 minutes and the strength after autoclave curing at 183" C and 110 atm were determined. As is clear from Table 2. All of the example formulations showed remarkable demoulding strength and strength after autoclave curing.The hardening accelerators used at this time were 70% by weight of nail burnt alum stone and 2% slaked lime.
0% by weight, 3% by weight of sodium hydroxide, and 7% by weight of calcium nitrite.

11−1 fi ト2践鷺 実施例−3 本発明の硬化促進剤は、軽量発泡コンクリート、軽量気
泡コンクリート、及びアルミナ粉末を発泡起剤に使用し
た軽量発泡コンクリートなどにも硬化促進剤として使用
することができる。
11-1 Example 3 The curing accelerator of the present invention can also be used as a curing accelerator for lightweight foamed concrete, lightweight aerated concrete, and lightweight foamed concrete using alumina powder as a foaming agent. be able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は硬化促進剤添加量とペースト強度(オートクレ
ーブ)との関係図である。
FIG. 1 is a diagram showing the relationship between the amount of curing accelerator added and paste strength (autoclave).

Claims (1)

【特許請求の範囲】 オートクレーブ養生することによって、ケ イ酸カルシウム水和物を生成する水硬性物質に硬化促進
剤を添加させて軽量コンクリートを製造する方法におい
て、硬化促進剤として、■焼ミョウバン石を50〜85
重量%、消石灰を10〜40重量%、カ性アルカリを1
〜5重量%及び亜硝酸塩を3〜20重量%よりなる硬化
促進剤を用い、当該硬化促進剤を水硬性物質に対して1
0〜60重量%添加することを特徴とする軽量コンクリ
ートの製造方法。
[Claims] In a method for producing lightweight concrete by adding a hardening accelerator to a hydraulic substance that produces calcium silicate hydrate by curing in an autoclave, as the hardening accelerator, 50-85
10-40% by weight of slaked lime, 1% by weight of caustic alkali
Using a curing accelerator consisting of ~5% by weight and 3 to 20% by weight of nitrite, the curing accelerator is
A method for producing lightweight concrete, characterized by adding 0 to 60% by weight.
JP20428186A 1986-08-29 1986-08-29 Manufacture of lightweight concrete Granted JPS6360180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20428186A JPS6360180A (en) 1986-08-29 1986-08-29 Manufacture of lightweight concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20428186A JPS6360180A (en) 1986-08-29 1986-08-29 Manufacture of lightweight concrete

Publications (2)

Publication Number Publication Date
JPS6360180A true JPS6360180A (en) 1988-03-16
JPH0212915B2 JPH0212915B2 (en) 1990-03-29

Family

ID=16487882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20428186A Granted JPS6360180A (en) 1986-08-29 1986-08-29 Manufacture of lightweight concrete

Country Status (1)

Country Link
JP (1) JPS6360180A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018528920A (en) * 2015-08-26 2018-10-04 シラソ エービー Lightweight concrete and manufacturing method
US10964231B2 (en) 2006-10-03 2021-03-30 Gaumard Scientific Company, Inc. Interactive education system for teaching patient care

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10964231B2 (en) 2006-10-03 2021-03-30 Gaumard Scientific Company, Inc. Interactive education system for teaching patient care
US11817007B2 (en) 2006-10-03 2023-11-14 Gaumard Scientific Company, Inc. Interactive education system for teaching patient care
JP2018528920A (en) * 2015-08-26 2018-10-04 シラソ エービー Lightweight concrete and manufacturing method

Also Published As

Publication number Publication date
JPH0212915B2 (en) 1990-03-29

Similar Documents

Publication Publication Date Title
CN110981259B (en) Additive for improving crystallinity of hydro-thermal synthesis hydrated calcium silicate
JPS6081051A (en) Manufacture of coal ash solidified body
US2880100A (en) Methods for the manufacture of light-weight concrete
CN115448680A (en) Low-carbon rapid demoulding prefabricated part prepared from solid waste base cementing material containing cement, fly ash and desulfurized gypsum and preparation method thereof
JPS6360180A (en) Manufacture of lightweight concrete
JPS6042263A (en) Manufacture of cement moldings
JP2001294460A (en) Ultra high-early-strength expansive admixture for concrete and production process of concrete product using the same
JPS5812223B2 (en) Manufacturing method of lightweight concrete
JP2563468B2 (en) Carbonated cured product
JPH0667791B2 (en) ALC manufacturing method
JPS6050738B2 (en) High sulfate slag cement and its manufacturing method
KR20110033494A (en) Method for manufacturing porous material of calcium silicate using cement kiln by-pass dust and porous material of calcium silicate manufactured with this
JP2797197B2 (en) Manufacturing method of cellular concrete
JPH03279279A (en) New molded product of light weight foamed concrete and production thereof
JPH026378A (en) Production of lightweight cellular concrete
JPS61178478A (en) Manufacture of lightweight foamed concrete body
JPS6360183A (en) Manufacture of foamed concrete
CN116730673A (en) Pressure pre-curing high-strength autoclaved aerated concrete and preparation method thereof
JPH08198655A (en) Production of coal ash material light weight solidified matter
JPS632846A (en) Method of recycling concrete limewash
JP2530637B2 (en) Method for producing cement molded body
CN115140998A (en) Compression-resistant shockproof aerated concrete block forming production process
JPH0214888A (en) Production of porous material with fly ash as raw material
JPH0212913B2 (en)
JPH03223146A (en) Production of steam-cured lightweight aerated concrete