KR20110033494A - Method for producing porous calcium silicate cured product using cement kiln bypass dust and porous calcium silicate cured product produced through it - Google Patents
Method for producing porous calcium silicate cured product using cement kiln bypass dust and porous calcium silicate cured product produced through it Download PDFInfo
- Publication number
- KR20110033494A KR20110033494A KR20090091019A KR20090091019A KR20110033494A KR 20110033494 A KR20110033494 A KR 20110033494A KR 20090091019 A KR20090091019 A KR 20090091019A KR 20090091019 A KR20090091019 A KR 20090091019A KR 20110033494 A KR20110033494 A KR 20110033494A
- Authority
- KR
- South Korea
- Prior art keywords
- calcium silicate
- bypass dust
- porous calcium
- cement kiln
- kiln bypass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004568 cement Substances 0.000 title claims abstract description 51
- 239000000378 calcium silicate Substances 0.000 title claims abstract description 41
- 229910052918 calcium silicate Inorganic materials 0.000 title claims abstract description 41
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 title claims abstract description 41
- 239000000428 dust Substances 0.000 title claims abstract description 40
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 19
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 44
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 21
- 239000000203 mixture Substances 0.000 claims abstract description 19
- 238000002156 mixing Methods 0.000 claims abstract description 15
- 239000002002 slurry Substances 0.000 claims abstract description 13
- 239000000843 powder Substances 0.000 claims abstract description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000004604 Blowing Agent Substances 0.000 claims abstract description 11
- 239000010440 gypsum Substances 0.000 claims abstract description 10
- 229910052602 gypsum Inorganic materials 0.000 claims abstract description 10
- 238000000465 moulding Methods 0.000 claims abstract description 8
- 238000005187 foaming Methods 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims description 9
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 5
- 239000002994 raw material Substances 0.000 abstract description 25
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 abstract description 18
- 239000000463 material Substances 0.000 abstract description 10
- 239000000292 calcium oxide Substances 0.000 abstract description 9
- 235000012255 calcium oxide Nutrition 0.000 abstract description 7
- 235000008733 Citrus aurantifolia Nutrition 0.000 abstract description 6
- 235000011941 Tilia x europaea Nutrition 0.000 abstract description 6
- 239000004571 lime Substances 0.000 abstract description 6
- -1 Porous Substances 0.000 abstract 1
- 239000000047 product Substances 0.000 description 20
- 239000004567 concrete Substances 0.000 description 6
- 239000003513 alkali Substances 0.000 description 5
- 230000000704 physical effect Effects 0.000 description 5
- 239000002699 waste material Substances 0.000 description 5
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- 239000004575 stone Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000006703 hydration reaction Methods 0.000 description 3
- 238000001027 hydrothermal synthesis Methods 0.000 description 3
- 238000004064 recycling Methods 0.000 description 3
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000000635 electron micrograph Methods 0.000 description 2
- 238000003912 environmental pollution Methods 0.000 description 2
- 239000011381 foam concrete Substances 0.000 description 2
- 230000036571 hydration Effects 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- MKTRXTLKNXLULX-UHFFFAOYSA-P pentacalcium;dioxido(oxo)silane;hydron;tetrahydrate Chemical group [H+].[H+].O.O.O.O.[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O MKTRXTLKNXLULX-UHFFFAOYSA-P 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 239000011435 rock Substances 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 229920006328 Styrofoam Polymers 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 238000011005 laboratory method Methods 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000009725 powder blending Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000008261 styrofoam Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B1/00—Producing shaped prefabricated articles from the material
- B28B1/50—Producing shaped prefabricated articles from the material specially adapted for producing articles of expanded material, e.g. cellular concrete
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B14/00—Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B14/02—Granular materials, e.g. microballoons
- C04B14/04—Silica-rich materials; Silicates
- C04B14/06—Quartz; Sand
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B18/00—Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B18/04—Waste materials; Refuse
- C04B18/16—Waste materials; Refuse from building or ceramic industry
- C04B18/162—Cement kiln dust; Lime kiln dust
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/14—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/02—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Civil Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Inorganic Chemistry (AREA)
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
본 발명은 시멘트 킬른 바이패스 더스트를 이용한 다공성 규산칼슘 경화체 제조방법 및 이를 통해 제조된 다공성 규산칼슘 경화체에 관한 것으로서, 이는 석회질 원료로서 사용하고 있는 생석회의 대체재로서 킬른 바이패스 더스트를 재활용하여 환경오염의 원인을 제거함과 동시에 보다 경제적으로 다공성 규산칼슘 경화체를 제조하기 위한 것이다. 이를 위해 본 발명은, 시멘트 킬른 바이패스 더스트, 규석, 시멘트 및 석고의 분말원료를 혼합하는 제1 단계와; 상기 제1 단계를 거쳐 혼합된 혼합물에 물을 1차 혼합한 다음으로 발포제를 첨가하여 2차 혼합하는 제2 단계와; 상기 제2 단계를 거쳐 생성된 슬러리를 성형 틀에서 성형하는 제3 단계와; 상기 제3 단계를 거쳐 성형된 슬러리를 발포시킨 다음 예비양생하여 그린 바디 형성 및 탈형하는 제4 단계와; 상기 제4 단계를 거쳐 생성된 그린 바디를 오토클레이브에서 양생하는 제5 단계;로 구성되는 것을 특징으로 하여, 시멘트 킬른 바이패스 더스트를 재활용한 다공성 규산칼슘 경화체 제조를 가능하게 한다.The present invention relates to a method for producing a porous calcium silicate cured product using a cement kiln bypass dust, and a porous calcium silicate cured product produced through the same, which recycles kiln bypass dust as a substitute for quicklime used as a lime material. It is for producing a porous calcium silicate cured body at the same time as removing the cause. To this end, the present invention comprises a first step of mixing a powder raw material of cement kiln bypass dust, silica, cement and gypsum; A second step of first mixing water with the mixture mixed through the first step and then adding a blowing agent to perform second mixing; A third step of molding the slurry produced through the second step in a molding die; A fourth step of foaming the molded slurry through the third step and preliminary curing to form and demould a green body; And a fifth step of curing the green body generated through the fourth step in an autoclave. The porous calcium silicate cured body in which the cement kiln bypass dust is recycled can be manufactured.
시멘트 킬른 바이패스 더스트, 다공성, 규산칼슘, 경화체 Cement Kiln Bypass Dust, Porous, Calcium Silicate, Hardened Material
Description
본 발명은 시멘트 킬른 바이패스 더스트(Cement Kiln By-pass Dust)를 이용한 다공성 규산칼슘 경화체 제조방법 및 이를 통해 제조된 다공성 규산칼슘 경화체에 관한 것으로서, 보다 구체적으로는 석회질 원료로서 사용하고 있는 생석회의 대체재로서 시멘트 킬른 바이패스 더스트를 재활용하여 환경오염의 원인을 제거함과 동시에 보다 경제적으로 다공성 규산칼슘 경화체를 제조하기 위한 시멘트 킬른 바이패스 더스트를 이용한 다공성 규산칼슘 경화체 제조방법 및 이를 통해 제조된 다공성 규산칼슘 경화체에 관한 것이다.The present invention relates to a method for producing a porous calcium silicate cured product using Cement Kiln By-pass Dust, and a porous calcium silicate cured product produced through the same, and more particularly, to substitute quicklime for limestone. Method for producing porous calcium silicate cured body using cement kiln bypass dust and recycling porous calcium silicate cured body manufactured by cement kiln bypass dust to remove the cause of environmental pollution by recycling cement kiln bypass dust It is about.
일반적으로 시멘트 클링커 제조 공정에서는 알칼리 및 염소 성분을 함유하고 있는 폐부산자원을 사용함에 따라 필연적으로 발생하는 알칼리 및 염소 성분의 휘 발에 의한 공정 불안정을 제어하기 위해 염소 바이패스 설비를 가동하고 있는데, 이러한 바이패스 설비를 통해서는 부산물로 시멘트 킬른 바이패스 더스트가 산출되고 있으나, 이의 적절한 용도가 없어 다시 킬른에 재투입하는 정도로 처리하고 있기 때문에 시멘트 킬른 바이패스 더스트가 시멘트 클링커 제조 공정상의 악순환 원인이 되는 문제점이 있음에 따라, 이의 효율적인 처리를 위한 방안이 모색될 필요가 있다.In general, the cement clinker manufacturing process operates a chlorine bypass facility to control process instability caused by volatilization of alkali and chlorine components, which are inevitably generated by using waste acid resources containing alkali and chlorine components. Although the cement kiln bypass dust is produced as a by-product through such a bypass facility, the cement kiln bypass dust is a vicious cause of the cement clinker manufacturing process because it is processed to the extent that it is re-inserted into the kiln because there is no proper use thereof. As there is a problem, a method for its efficient processing needs to be sought.
한편으로 다공성 규산칼슘 경화체의 대표적인 것으로는 경량기포 콘크리트(Autoclaved Lightweight Concrete)를 들 수 있으며, 이는 석회질 원료와 규산질 원료를 혼합한 후 발포제로서 금속 알루미늄원을 첨가하여 발포시킨 후, 예비양생 및 고온 고압의 수열반응에 의해 제조되는데, 주 생성물은 판상 형태의 토버모라이트(Tobermorite)이다.On the other hand, a typical example of the porous calcium silicate cured material is Autoclaved Lightweight Concrete, which is mixed with lime material and siliceous material, and then foamed by adding a metal aluminum source as a blowing agent, followed by preliminary curing and high temperature and high pressure. It is prepared by hydrothermal reaction of. The main product is Tobermorite in the form of plate.
규산질 원료를 주재료로 하는 경량기포콘크리트는 산화칼슘(CaO)과 이산화규소(SiO2) 성분의 수열반응에 의해 토버모라이트를 형성시키는 발명에 대해서, 국내에서는 대한민국 특허공보 특 1994-0005069에 의거 처음으로 시도되어, 규산질 원료로서 고품위 규석이나 규사를 사용하는 것으로 기재되어 있다. 이러한 경량 기포 콘크리트는 가공성, 내화성 및 단열성 등이 우수한 건축재료이지만, 규산질 원료로서 규석 등의 천연원료 사용에 따른 제조원가가 비싸다는 단점이 있다.Light-weight foamed concrete, mainly composed of siliceous raw materials, is an invention for forming tobermorite by hydrothermal reaction of calcium oxide (CaO) and silicon dioxide (SiO 2 ) components. It has been attempted to use high quality silica and silica sand as siliceous raw materials. Such lightweight foamed concrete is a building material having excellent workability, fire resistance, and heat insulation, but has a disadvantage in that manufacturing cost is high due to the use of natural materials such as silica as a siliceous material.
한편, 규산질 원료로서 암석 미분이나 석분토를 활용하는 발명에 대해서 대한민국 특허공보 특 1999-0212032 및 특 2005-0525812에 기재되어 있으나, 슬러지 의 분산성이나 유동성의 저하로 작업성을 확보하기 위한 소요물량 증가로 인해 물성 저하를 초래하게 되며, 또한 다공체의 기공을 형성하기 위한 방안으로 별도의 기포발생기에서 기포를 발생시켜 슬러리에 투입하는 선발포 방법을 채택하고 있어 다공체의 밀도 및 기공율 변화에 따른 물리적 특성 조정이 어렵게 된다.On the other hand, the invention using rock fine powder or stone powder as siliceous raw materials is described in Korean Patent Publication Nos. 1999-0212032 and 2005-0525812, but the required amount for securing workability due to the deterioration of the sludge dispersibility and fluidity is increased. This results in deterioration of physical properties, and also adopts a pre-foaming method that generates bubbles in a separate bubble generator and injects them into the slurry as a method for forming pores of the porous body, and adjusts the physical characteristics according to the density and porosity of the porous body. This becomes difficult.
일본의 경우, 경량기포콘크리트(ALC)에 대해서 공개특허공보에서 특개평 5-4880, 특개평 3-223185 및 특개평 3-69572는 규산질 원료로서 주로 사용하고 있는 규석이나 규사 이외에 명반석을 이용한 특허가 공개되어 있다.In the case of Japan, Japanese Patent Application Laid-Open Nos. 5-4880, JP-A 3-223185, and JP-A 3-69572 disclose light-weight aerated concrete (ALC) in addition to silica and silica sand that are mainly used as siliceous raw materials. It is open.
이와 같은 선행기술조사에서 다공성 규산칼슘 경화체 제조시 주로 규산질 원료로서는 규석이나 규사 등의 천연원료가 주로 사용되고 있으며, 이의 대체재로서 석산에서 파분쇄에 의해 제조되는 석산골재 제조공정에서 부산되는 석분이나, 폐콘크리트에서 재생골재 제조과정에서 부산되는 폐콘크리트 미분 등이 사용되고 있지만, 석회질 원료로서는 주로 고가의 생석회가 사용되고 있다.In the prior art research, the porous calcium silicate cured product is mainly used as a raw material of siliceous material such as silica or silica and natural raw materials, and as a substitute thereof, stone powder or wastes produced by crushing aggregates produced by crushing in quarries. Waste concrete fine powder which is used in the production of recycled aggregates in concrete is used, but expensive quicklime is mainly used as a raw material of lime.
본 발명은 상기한 종래 기술의 문제점을 해결하기 위해 안출된 것으로서, 알칼리, 염소 성분 이외에 산화칼슘(CaO) 성분을 다량 함유한 시멘트 클링커 제조 공정시 발생되는 시멘트 킬른 바이패스 더스트를 다공성 규산칼슘 경화체의 생석회 대체재로 사용가능하게 하는 시멘트 킬른 바이패스 더스트를 이용한 다공성 규산칼슘 경화체 제조방법 및 이를 통해 제조된 다공성 규산칼슘 경화체를 제공하는데 그 목적이 있다.The present invention has been made to solve the above problems of the prior art, the cement kiln bypass dust generated during the cement clinker manufacturing process containing a large amount of calcium oxide (CaO) components in addition to the alkali and chlorine components of the porous calcium silicate cured body It is an object of the present invention to provide a porous calcium silicate cured product using the cement kiln bypass dust to be used as a quicklime substitute and a porous calcium silicate cured product produced therefrom.
상기 목적을 달성하기 위하여, 본 발명은, 시멘트 킬른 바이패스 더스트, 규석, 시멘트 및 석고를 혼합하는 제1 단계와; 상기 제1 단계를 거쳐 혼합된 혼합물에 물을 1차 혼합한 다음으로 발포제를 첨가하여 2차 혼합하는 제2 단계와; 상기 제2 단계를 거쳐 생성된 슬러리를 성형 틀에서 성형하는 제3 단계와; 상기 제3 단계를 거쳐 성형된 슬러리를 발포시킨 다음 예비양생하여 그린 바디 형성 및 탈형하는 제4 단계와; 상기 제4 단계를 거쳐 생성된 그린 바디를 오토클레이브에서 양생하는 제5 단계;로 구성되는 것을 특징으로 한다.In order to achieve the above object, the present invention, the first step of mixing the cement kiln bypass dust, silica, cement and gypsum; A second step of first mixing water with the mixture mixed through the first step and then adding a blowing agent to perform second mixing; A third step of molding the slurry produced through the second step in a molding die; A fourth step of foaming the molded slurry through the third step and preliminary curing to form and demould a green body; And a fifth step of curing the green body generated through the fourth step in the autoclave.
여기서 상기 제1 단계의 시멘트 킬른 바이패스 더스트, 규석, 시멘트 및 석고의 혼합물은 CaO/SiO2 몰비가 0.5 내지 1.5이고, 상기 제2 단계에서는 상기 혼합물 100중량부에 대하여 물 50 내지 70 중량부 및 발포제 0.05 내지 0.20 중량부가 첨가되는 것을 특징으로 한다.Wherein the mixture of cement kiln bypass dust, silica, cement and gypsum of the first step has a CaO / SiO 2 molar ratio of 0.5 to 1.5, and in the
상술된 바와 같이, 본 발명에 따른 시멘트 킬른 바이패스 더스트를 이용한 다공성 규산칼슘 경화체 제조방법 및 이를 통해 제조된 다공성 규산칼슘 경화체는 산화칼슘의 공급물질로 시멘트 킬른 바이패스 더스트를 석회질 대체원료로 사용하여 재활용하도록 하여 환경오염의 원인을 제거함과 동시에 보다 경제적으로 다공성 규산칼슘 경화체 제조를 가능하게 할 수 있다.As described above, the method for producing a porous calcium silicate cured product using the cement kiln bypass dust according to the present invention and the porous calcium silicate cured product prepared by using the cement kiln bypass dust as a feed material of calcium oxide are used as a lime substitute raw material. Recycling can eliminate the cause of environmental pollution and at the same time make it possible to manufacture porous cured calcium silicate more economically.
이하, 본 발명에 따른 시멘트 킬른 바이패스 더스트를 이용한 다공성 규산칼슘 경화체 제조방법 및 이를 통해 제조된 다공성 규산칼슘 경화체를 설명하기로 한다.Hereinafter, a method for preparing a porous calcium silicate cured product using the cement kiln bypass dust according to the present invention and a porous calcium silicate cured product produced through the same will be described.
본 발명에 따른 시멘트 킬른 바이패스 더스트를 이용한 다공성 규산칼슘 경화체 제조방법은 킬른 바이패스 더스트, 규석, 시멘트 및 석고의 분말원료를 혼합하는 제1 단계와, 상기 제1 단계를 거쳐 혼합된 혼합물에 물을 1차 혼합한 다음으로 발포제를 첨가하여 2차 혼합하는 제2 단계와, 상기 제2 단계를 거쳐 생성된 슬러리를 성형 틀에서 성형하는 제3 단계와; 상기 제3 단계를 통해 성형된 슬러리를 발포시킨 다음 15 내지 80℃에서 2 내지 6시간 동안 예비양생하여 그린 바디 형성 및 탈형하는 제4 단계와; 상기 제4 단계를 거쳐 생성된 그린 바디를 오토클레이브의 10 내지 20기압의 포화수증기압하에서 3 내지 10시간 동안 양생하는 제5 단계로 이루어진다.Method for producing a porous calcium silicate cured product using the cement kiln bypass dust according to the present invention comprises the first step of mixing the powder raw material of the kiln bypass dust, silica, cement and gypsum, and water in the mixture mixed through the first step A first step of mixing the first step, followed by a second step of adding a blowing agent and mixing the second step; and a third step of molding the slurry produced through the second step in a molding die; A fourth step of foaming the molded slurry through the third step and preliminary curing at 15 to 80 ° C. for 2 to 6 hours to form and demould a green body; The fifth step of curing the green body generated through the fourth step for 3 to 10 hours under saturated steam of 10 to 20 atm of the autoclave.
이때 규산질 원료로 사용하는 규석은 폐콘크리트로부터 재생골재 제조공정에서 부산물로 산출되는 폐콘크리트 미분이나, 석산의 암석 파쇄에 의한 석산골재의 제조공정으로부터 발생되는 석분으로 대체하여 사용할 수도 있다.At this time, the silica used as the siliceous raw material may be used by replacing the waste concrete fine powder which is produced as a by-product from the recycled aggregate manufacturing process from the waste concrete, or the stone powder generated from the manufacturing process of the masonry aggregate by the rock crushing of the quarries.
여기서 상기 제1 단계에서의 혼합물은 시멘트 킬른 바이패스 더스트 10 내지 50 중량부에 대하여 규석 10 내지 60 중량부, 시멘트 10 내지 40 중량부 및 석고 2 내지 10 중량부가 혼합된 것으로, 이는 상기 혼합물의 C/S 몰비가 0.5 내지 1.5 범위 내 있도록 하기 위한 것이며, 상기 제2 단계에서는 그 혼합물에 대하여 물 50 내지 70 중량부 및 발포제 0.05 내지 0.20 중량부가 첨가된다.Wherein the mixture in the first step is a mixture of 10 to 60 parts by weight of silica, 10 to 40 parts by weight of cement and 2 to 10 parts by weight of gypsum, based on 10 to 50 parts by weight of the cement kiln bypass dust. The / S molar ratio is in the range of 0.5 to 1.5, and in the second step, 50 to 70 parts by weight of water and 0.05 to 0.20 parts by weight of blowing agent are added to the mixture.
시멘트 클링커 제조공정상에서 발생됨에 따라 본 발명에서 사용되는 시멘트 킬른 바이패스 더스트는 석회 성분인 산화칼슘(CaO)이 주성분으로, 그 외 이산화규소(SiO2), 산화알루미늄(Al2O3), 산화철(Fe2O3), 산화마그네슘(MgO), 알칼리(Alkali) 성분 등으로 구성되어 있으며, 시멘트 킬른 바이패스 더스트의 화학조성은 표 1과 같다.The cement kiln bypass dust used in the present invention is mainly produced by the production of cement clinker, and is mainly composed of calcium oxide (CaO), which is a lime component, and silicon dioxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), and iron oxide. (Fe 2 O 3 ), magnesium oxide (MgO), alkali (Alkali) components and the like, the chemical composition of the cement kiln bypass dust is shown in Table 1.
표 1. 시멘트 킬른 바이패스 더스트의 화학조성Table 1. Chemical Composition of Cement Kiln Bypass Dust
시멘트 킬른 바이패스 더스트를 규산질 다공체의 석회원으로 사용 가능한지의 여부를 확인하기 위해서는 먼저 수화발열을 측정하여야 한다. 석회원은 발열반응으로 발포와 경화를 촉진하는 것으로 알려져 있음에 따라, 수화발열을 측정하기 위해 slaking test를 실시하였으며, 최초 30분간 측정한 결과, 수화발열온도가 최대 45℃로 일반 생석회의 60∼70℃에 비해 낮은 것으로 나타났다. 본 발명에서는 이런 시멘트 킬른 바이패스 더스트의 발열특성 때문에 슬러리 용수의 온도를 50℃로 조절하여 발포 및 경화속도를 촉진하였다.Hydration exotherm should be measured first to determine whether cement kiln bypass dust can be used as a stone member of siliceous porous body. Since the slag members are known to promote foaming and hardening by exothermic reaction, the slaking test was carried out to measure the hydration fever. It was found to be low compared to 70 ° C. In the present invention, because of the exothermic properties of the cement kiln bypass dust, by controlling the temperature of the slurry water to 50 ℃ to promote the foaming and curing rate.
본 발명에 따른 다공성 규산칼슘 경화체를 제조하기 위한 사용 원료의 화학조성은 표 2와 같다.The chemical composition of the raw material used for producing the porous calcium silicate cured product according to the present invention is shown in Table 2.
표 2. 사용 원료의 화학조성Table 2. Chemical Composition of Raw Materials
본 발명에 따른 다공성 규산칼슘 경화체의 실험실적 제조방법의 예는 다음과 같다.An example of a laboratory method for producing a porous calcium silicate cured product according to the present invention is as follows.
도 1은 본 발명에 따른 다공성 규산칼슘 경화체의 제조방법을 도시한 블록도이다.1 is a block diagram showing a method for producing a porous calcium silicate cured product according to the present invention.
원료배합설계를 위해 시멘트 킬른 바이패스 더스트, 규석, 시멘트, 및 석고의 분말 원료를 일정한 C/S(CaO/SiO2) 몰비가 되도록 원료 배합비를 결정한다.The raw material blending ratio is determined so that powder raw materials of cement kiln bypass dust, silica, cement, and gypsum have a constant C / S (CaO / SiO 2 ) molar ratio.
시멘트 킬른 바이패스 더스트, 규석, 시멘트 및 석고의 분체와 물을 혼합기에 투입 혼합하여 유동상태의 1차 슬러리를 제조하면서, 여기에 발포제로서 알루미 늄 분말이나 페이스트를 수용액상으로 첨가 혼합하여 2차 슬러리를 제조하고, 즉시 내경이 22× 22× 20cm인 스티로폼 박스에 성형한다.Cement kiln bypass dust, silica, cement and gypsum powder and water are mixed and mixed into a mixer to prepare a fluidized primary slurry, and aluminium powder or paste is added and mixed as an blowing agent in an aqueous solution to a secondary slurry. Are prepared and immediately molded into a styrofoam box having an inner diameter of 22 × 22 × 20 cm.
이때 시멘트 킬른 바이패스 더스트의 수화반응속도 증진을 위해 50℃의 물을 사용한다.In this case, water of 50 ° C. is used to increase the hydration reaction rate of the cement kiln bypass dust.
상기 공정을 통해 제조된 그린 바디는 50℃에서 2~6시간 동안 예비양생하게 되면 탈형이 가능한 상태로 경화되어 그린 바디를 탈형한 후, 오토클레이브에서 승온시간 4시간(40℃/시간) 후 180℃(11kg/cm2)에서 4~8시간 유지한 후 냉각하여 다공성 규산칼슘 경화체를 제조한다.When the green body manufactured through the above process is cured for 2 to 6 hours at 50 ° C., the green body is cured in a state capable of demolding and demolding the green body. After cooling for 4 to 8 hours at ℃ (11kg / cm 2 ) to produce a porous calcium silicate cured body.
이러한 다공성 규산칼슘 경화체 제조를 위한 바람직한 일례로는 제1 단계(분말원료 배합 및 혼합)에서 전체 원료의 고형분 기준으로 시멘트 킬른 바이패스 더스트 10 내지 50 중량부에 대해 규석 10 내지 60 중량부, 시멘트 10 내지 40 중량부 및 석고 2 내지 10 중량부를 혼합하여 C/S 몰비가 0.5 내지 1.5 범위에 있도록 하고, 제2 단계(슬러리화)에서 슬러리의 유동성을 확보하기 위해서 전체 원료의 고형물, 즉 상기 혼합물 100 중량부에 50 내지 70 중량부의 물이 필요하며 동시에 발포제로 0.05 내지 0.20 중량부의 알루미늄 분말 또는 페이스트를 첨가하게 된다.Preferred examples for the preparation of such a porous calcium silicate cured product include 10 to 60 parts by weight of silica and 10 to 50 parts by weight of cement kiln bypass dust based on the solids content of the entire raw material in the first step (powder blending and mixing). To 40 parts by weight and 2 to 10 parts by weight of gypsum so that the C / S molar ratio is in the range of 0.5 to 1.5, and in order to ensure the fluidity of the slurry in the second step (slurrying), the solids of the entire raw material, that is, the mixture 100 50 to 70 parts by weight of water is required in parts by weight and at the same time 0.05 to 0.20 parts by weight of aluminum powder or paste is added as blowing agent.
이하 본 발명을 실시예를 들어 보다 상세하게 설명한다. Hereinafter, the present invention will be described in more detail with reference to Examples.
(실시예)(Example)
도 1 및 표 3의 실시예와 같이 석회질 원료로서 시멘트 킬른 바이패스 더스트 사용의 경우는 실시예 1 내지 4이고, 생석회 사용의 경우는 실시예 5로서 C/S 몰비가 0.7~1.3이 되도록 원료를 배합하여, 50℃에서 4시간 예비양생한 다음, 오토클레이브에서 8시간 양생하여 제조된 다공성 규산칼슘 경화체의 X선회절도를 도 2에, 대표적인 전자현미경 사진을 도 3에, 가로 10 × 세로 10 × 높이 10cm 시편으로 절단하여 물리적 특성을 실시하고, 그 결과를 표 4에 나타내었다.1 and 4 in the case of using the cement kiln bypass dust as the calcined raw material as in the Examples of Table 1 and Table 3, and in the case of the use of quicklime as Example 5 as the C / S molar ratio of 0.7 ~ 1.3 The X-ray diffractogram of the porous calcium silicate cured product prepared by mixing, precuring at 50 ° C. for 4 hours, and curing at autoclave for 8 hours is shown in FIG. 2, and representative electron micrographs are shown in FIG. 3. Physical properties were obtained by cutting into 10 cm high specimens, and the results are shown in Table 4.
표 3. 다공성 규산칼슘 경화체의 원료배합비Table 3. Raw Material Composition Ratio of Porous Calcium Silicate Cured Body
표 4. 다공성 규산칼슘 경화체의 물리적 특성Table 4. Physical Properties of Cured Porous Calcium Silicate
(실시예)(Example)
도 1 및 표 5의 실시예와 같이 석회질 원료로서 시멘트 킬른 바이패스 더스 트를 사용한 경우에서, C/S 몰비가 0.7이 되도록 원료를 배합하여 50℃에서 4시간 예비양생한 다음, 오토클레이브 반응시간을 각각 6 및 4시간 양생한 것이 실시예 6 내지 7이고, 실시예 8 내지 9는 원료배합에서 발포제로 사용한 알루미늄 분말의 함량을 각각 0.05 및 0.15 중량%로 변화시킨 것이고, 실시예 10 내지 11은 물/원료의 비를 각각 55 및 65 중량%로 변화시킨 것이다. 이와 같이 제조된 다공성 규산칼슘 경화체는 각각 가로 10 × 세로 10 × 높이 10cm 시편으로 절단하여 물리적 특성을 실시하고, 그 결과를 표 6에 나타내었다.In the case of using the cement kiln bypass dust as a calcined raw material as shown in the examples of Fig. 1 and Table 5, the raw materials were mixed so as to have a C / S molar ratio of 0.7 and pre-cured at 50 ° C. for 4 hours, followed by an autoclave reaction time. Were cured for 6 and 4 hours, respectively, Examples 6 to 7, Examples 8 to 9 were changed to the content of the aluminum powder used as a blowing agent in the raw material mixture to 0.05 and 0.15% by weight, respectively, Examples 10 to 11 The ratio of water / raw material was changed to 55 and 65% by weight, respectively. The porous calcium silicate cured product prepared as described above was cut into 10 × 10 × 10 cm specimens to perform physical properties, and the results are shown in Table 6 below.
표 5. 다공성 규산칼슘 경화체의 원료배합비Table 5. Raw Material Blend Ratio of Porous Calcium Silicate
표 6. 다공성 규산칼슘 경화체의 물리적 특성Table 6. Physical Properties of Porous Calcium Silicate Cured Body
상기된 바와 같은 실험 데이터를 통해, 본 발명은 석회질 원료인 생석회 대체재로서 시멘트 킬른 바이패스 더스트를 시용하여 천연원료인 규석의 배합량을 줄일 수 있으며, 또한 오토클레이브의 수열반응시간을 저감하여 경제적 환경적으로도 유용한 다공성 규산칼슘 경화체의 제조를 가능하게 함을 알 수 있다.Through the experimental data as described above, the present invention can be applied to the cement kiln bypass dust as a quicklime substitute as a lime material, to reduce the amount of silica, a natural raw material, and also to reduce the hydrothermal reaction time of the autoclave to reduce the economic and environmental impact. It can be seen that it is possible to prepare a porous calcium silicate cured body useful as.
도 1은 본 발명에 따른 다공성 규산칼슘 경화체의 제조방법을 도시한 블록도.1 is a block diagram showing a method for producing a porous calcium silicate cured product according to the present invention.
도 2는 본 발명에 따른 다공성 규산칼슘 경화체의 X선회절도.2 is an X-ray diffraction diagram of the porous calcium silicate cured product according to the present invention.
도 3은 본 발명에 따른 다공성 규산칼슘 경화체의 전자현미경 사진.3 is an electron micrograph of a porous calcium silicate cured product according to the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20090091019A KR101117780B1 (en) | 2009-09-25 | 2009-09-25 | Method for manufacturing porous material of calcium silicate using cement kiln by-pass dust |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20090091019A KR101117780B1 (en) | 2009-09-25 | 2009-09-25 | Method for manufacturing porous material of calcium silicate using cement kiln by-pass dust |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20110033494A true KR20110033494A (en) | 2011-03-31 |
KR101117780B1 KR101117780B1 (en) | 2012-03-19 |
Family
ID=43937897
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR20090091019A Active KR101117780B1 (en) | 2009-09-25 | 2009-09-25 | Method for manufacturing porous material of calcium silicate using cement kiln by-pass dust |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101117780B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101437064B1 (en) * | 2014-04-22 | 2014-09-02 | 주식회사 삼익세라콘 | Autoclave curing exposure concrete panel and method manufacturing thereof |
KR102528745B1 (en) * | 2022-10-18 | 2023-05-08 | 아세아시멘트(주) | Curing Energy Reducting High Chlorine Binder Composition And Concrete Composition |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003055009A (en) | 2001-07-25 | 2003-02-26 | Dow Corning Corp | Flowable slurry, process for preparing the same, and process for manufacture of portland cement |
KR20040078466A (en) * | 2003-03-04 | 2004-09-10 | 아세아시멘트주식회사 | concrete producing to use cement kiln dust |
US7387675B2 (en) | 2005-09-09 | 2008-06-17 | Halliburton Energy Services, Inc. | Foamed settable compositions comprising cement kiln dust |
KR100713686B1 (en) * | 2006-04-06 | 2007-05-02 | 주식회사 하이셈텍 | Porous Calcium Silicate Curing Body Using Waste Concrete Powder |
-
2009
- 2009-09-25 KR KR20090091019A patent/KR101117780B1/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101437064B1 (en) * | 2014-04-22 | 2014-09-02 | 주식회사 삼익세라콘 | Autoclave curing exposure concrete panel and method manufacturing thereof |
KR102528745B1 (en) * | 2022-10-18 | 2023-05-08 | 아세아시멘트(주) | Curing Energy Reducting High Chlorine Binder Composition And Concrete Composition |
Also Published As
Publication number | Publication date |
---|---|
KR101117780B1 (en) | 2012-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2970003B1 (en) | High-strength geopolymer composite cellular concrete | |
US9039830B2 (en) | Cement composition containing dune sand and limestone powder, concrete products and method for making concrete products | |
JP7288856B2 (en) | Fabrication of lightweight composites from inorganic additives and carbonated calcium silicates | |
CN113716927A (en) | Phosphogypsum-based soil curing agent, preparation method thereof, cured sample and preparation method thereof | |
JP2014210709A (en) | Cementitious formulations | |
KR101018009B1 (en) | Manufacturing Method of Cemented Concrete Using Waste Glass Fine Powder and Fly Ash as Binder | |
KR100947926B1 (en) | Hydrothermal Synthesis Reaction Lightweight Foamed Concrete Using Waste Concrete Sludge | |
KR100922375B1 (en) | Method for producing porous calcium silicate hardened body using stone powder or stone powder sludge | |
KR100752425B1 (en) | Lightweight foamed concrete using cake phase stone sludge and its manufacturing method | |
JP2023182466A (en) | Admixtures for hydraulic compositions and hydraulic compositions | |
KR101647365B1 (en) | a manufacture method of tilelike lightweight using the fly ash of power station | |
KR101117780B1 (en) | Method for manufacturing porous material of calcium silicate using cement kiln by-pass dust | |
KR100795936B1 (en) | Clay permeable block using waste clay and manufacturing method thereof | |
JP6563270B2 (en) | Cementitious hardened body and method for producing the same | |
JP4821003B2 (en) | Method for producing calcium silicate | |
KR20120066771A (en) | Manufacturing method of magnesium fluorosilicate using ferro-nickel slag by mechanochemistry | |
KR20040020494A (en) | Manufacturing method of cement for solidifying industrial waste using waste concrete and the cement thereby | |
JP4409281B2 (en) | Method for producing lightweight cellular concrete | |
Si-Ahmed et al. | Performance of cement mortar with waste ground clay brick | |
CA3180667A1 (en) | Process for producing autoclaved aerated concrete using silica raw materials having higher solubility than quartz | |
Ioana et al. | High-Strength and Heat-Insulating Cellular Building Concrete Based on Calcined Gypsum. Materials 2023, 16, 118 | |
JP7312385B1 (en) | Method for producing concrete composition and method for producing concrete | |
JP2004018353A (en) | Low density calcium silicate cured product and method for producing the same | |
JP6933422B2 (en) | How to manufacture lightweight cellular concrete panels | |
JP2011020883A (en) | Autoclaved lightweight cellular concrete and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20090925 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20110704 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20120104 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20120210 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20120210 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20150209 Start annual number: 4 End annual number: 4 |
|
FPAY | Annual fee payment |
Payment date: 20160205 Year of fee payment: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20160205 Start annual number: 5 End annual number: 5 |
|
FPAY | Annual fee payment |
Payment date: 20170809 Year of fee payment: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20170809 Start annual number: 6 End annual number: 6 |
|
LAPS | Lapse due to unpaid annual fee |