JPH08301638A - Solidification and materialization of kaolin powder with geopolymer - Google Patents

Solidification and materialization of kaolin powder with geopolymer

Info

Publication number
JPH08301638A
JPH08301638A JP18317595A JP18317595A JPH08301638A JP H08301638 A JPH08301638 A JP H08301638A JP 18317595 A JP18317595 A JP 18317595A JP 18317595 A JP18317595 A JP 18317595A JP H08301638 A JPH08301638 A JP H08301638A
Authority
JP
Japan
Prior art keywords
kaolin powder
specimen
days
room temperature
pts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18317595A
Other languages
Japanese (ja)
Inventor
Osamu Ikeda
攻 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP18317595A priority Critical patent/JPH08301638A/en
Publication of JPH08301638A publication Critical patent/JPH08301638A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B12/00Cements not provided for in groups C04B7/00 - C04B11/00
    • C04B12/005Geopolymer cements, e.g. reaction products of aluminosilicates with alkali metal hydroxides or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • C04B28/26Silicates of the alkali metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PURPOSE: To simplify the production method by solidifying a sodium silicate aqueous solution and kaolin powder as raw materials at the ordinary temperature or in a steam-ageing state without calcining the kaolin powder. CONSTITUTION: For example, a sodium silicate aqueous solution in an amount of 42.9 pts.wt. kaolin powder in an amount of 51.4 pts.wt., potassium silicofluoride or blast-furnace water-granulated slag as a reaction accelerator in an amount of 5.7 pts.wt. based on the whole weight of the mixture are mixed, aged and solidified in air at room temperature for 28 days, and subsequently immersed in water for three days to obtain a specimen (A) from which unstable components are removed. Further, the specimen A is dried at room temperature for seven days to obtain a specimen (B). The specimen A has a flexural strength of 2.1-4.1MPa and a compression strength of 3.4-7.2MPa, and the specimen B has a flexural strength of 2.6-22.4MPa and a compression strength of 5.2-34.3MPa.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】 本発明は珪酸ナトリウム水溶液
およびカオリン質粉体を必須原料とし,珪弗化カリウム
(KSiF)または高炉水砕スラグを反応促進剤と
して用い,不焼成により固化して製造した材料に関する
ものである.
TECHNICAL FIELD The present invention uses an aqueous sodium silicate solution and kaolin powder as essential raw materials, uses potassium silicofluoride (K 2 SiF 6 ) or granulated blast furnace slag as a reaction accelerator, and solidifies by non-firing. Related to the materials manufactured by

【0002】[0002]

【従来の技術】 カオリン質粉体を不焼成で固化し材料
化するためにはカオリン質粉体を一旦仮焼し,せっこう
および石灰などのセメント質固化剤を用いて固化してい
る.珪酸カリウムや珪酸ナトリウム等のいわゆるジオポ
リマー液を用いる場合も仮焼処理が必要で,更に反応促
進剤として珪弗化ナトリウムや非晶質無水珪酸を添加し
ている.文献,第9回国際セメント化学会議議事録,第
4巻,671−677頁,1992年では無水せっこう
と消石灰を用いている.同第5巻,505−511頁で
は珪酸ナトリウムと苛性ソーダ水溶液を用い,カオリン
は仮焼し蒸気養生をしている.セラミックトランザクシ
ョン,40巻,247−256,1994年では珪酸カ
リウム,非晶質無水珪酸,および珪弗化ナトリウムを用
いている.
2. Description of the Related Art In order to solidify a kaolin powder without burning it into a material, the kaolin powder is once calcined and then solidified by using a cementitious solidifying agent such as gypsum and lime. When using a so-called geopolymer solution such as potassium silicate or sodium silicate, calcination is necessary, and sodium silicofluoride or amorphous silicic acid is added as a reaction accelerator. In the literature, Minutes of the 9th International Conference on Cement Chemistry, Volume 4, 671-677, 1992, anhydrous gypsum and slaked lime were used. In Volume 5, p. 505-511, sodium silicate and caustic soda solution are used, and kaolin is calcined and steam-cured. Ceramic Transaction, Volume 40, 247-256, 1994 uses potassium silicate, amorphous silicic acid anhydride, and sodium silicofluoride.

【0003】[0003]

【発明が解決しようとする課題】従来,カオリン質粉体
をジオポリマー液を用いて不焼成で固化するためには,
反応を促進させる目的で800℃前後の温度でカオリン
質粉体を一旦仮焼しなければならなかった。更に反応を
加速させるために一般に蒸気養生を施し,また反応促進
剤として珪弗化ナトリウムや無水珪酸を添加している.
Conventionally, in order to solidify kaolin powder using a geopolymer liquid without firing,
For the purpose of promoting the reaction, the kaolin-based powder had to be temporarily calcined at a temperature of around 800 ° C. In order to further accelerate the reaction, steam curing is generally performed, and sodium silicofluoride and silicic acid anhydride are added as reaction accelerators.

【0004】[0004]

【課題を解決するための手段】本発明は珪酸ナトリウム
水溶液を固化剤として用い,珪弗化カリウムまたは高炉
水砕スラグを反応促進剤として用いることにより,カオ
リン質粉体を仮焼すること無しに常温で固化し材料を製
造する.
According to the present invention, an aqueous solution of sodium silicate is used as a solidifying agent, and potassium silicofluoride or granulated blast furnace slag is used as a reaction accelerator, so that kaolin powder is not calcined. Solidify at room temperature to manufacture materials.

【0005】[0005]

【作用】カオリン質粉体を利用して建材等に利用できる
材料の製造を図る.
[Function] The kaolin powder is used to manufacture materials that can be used as building materials.

【0006】[0006]

【実施例】表1に用いた珪酸ナトリウム水溶液の化学組
成を示す.
[Examples] Table 1 shows the chemical composition of the aqueous sodium silicate solution used.

【0007】[0007]

【表1】 [Table 1]

【0008】表2に用いたカオリン質粉体の化学組成を
示す.
Table 2 shows the chemical composition of the kaolin powder used.

【0009】[0009]

【表2】 [Table 2]

【0010】粉末エックス線回折分析によれば本カオリ
ン質粉体の構成鉱物はカオリンのほか石英がかなり多く
存在する.
According to the powder X-ray diffraction analysis, the constituent minerals of the present kaolin powder include kaolin and quite a lot of quartz.

【0011】促進剤として用いた珪弗化カリウムは純薬
のKSiFである。
The potassium silicofluoride used as the accelerator is pure chemical K 2 SiF 6 .

【0012】表3は促進剤として用いた高炉水砕スラグ
の化学組成である.
Table 3 shows the chemical composition of granulated blast furnace slag used as an accelerator.

【0013】[0013]

【表3】 [Table 3]

【0014】カオリン質粉体は生のまま用いるが,比較
のため800℃で1時間熱処理を施した仮焼物も準備し
た.
The kaolin powder was used as it was, but for comparison, a calcined product which was heat-treated at 800 ° C. for 1 hour was also prepared.

【0015】表4は原料の物理性質である.Table 4 shows the physical properties of the raw materials.

【0016】[0016]

【表4】 [Table 4]

【0017】表5に原料の配合割合を示す.Table 5 shows the mixing ratio of the raw materials.

【0018】[0018]

【表5】 [Table 5]

【0019】混合物A,B,C,Dを室温で28日間空
中養生し固化させ,その後不安定成分を除去するために
3日間水に浸漬した供試体について強度試験を行なった
(試験W).またこのように水中処理した供試体を更に
7日間室温乾燥したものについても同様の試験を行なっ
た(試験D).
Strength tests were carried out on the specimens A, B, C and D which were aged at room temperature for 28 days in air to solidify them, and then immersed in water for 3 days to remove unstable components (test W). Further, the same test was performed on the test piece thus treated in water, which was further dried at room temperature for 7 days (Test D).

【0020】表6に強度試験の結果を示す.Table 6 shows the results of the strength test.

【表6】 [Table 6]

【0021】反応過程を調べるために強度試験後の材料
の破片を粉末エックス線回折により分析したところ,何
等の結晶質反応生成物を認めなかった.従って反応生成
物は非晶質物質として生成しており,本材料の曲げ/圧
縮強度比が高いことから無機質ポリマー,別名ジオポリ
マーまたはミネラルボリマーが生成していると示唆され
る.
In order to investigate the reaction process, the fragments of the material after the strength test were analyzed by powder X-ray diffraction, and no crystalline reaction product was observed. Therefore, the reaction product is produced as an amorphous substance, and the high bending / compression strength ratio of this material suggests that an inorganic polymer, also known as a geopolymer, or a mineral polymer is produced.

【0022】[0022]

【発明の効果】本発明はカオリン質粉体を仮焼処理する
ことなく固化し材料化するものであり,製法が簡単なた
め建材等に大量使用できる.
INDUSTRIAL APPLICABILITY According to the present invention, the kaolin powder is solidified into a material without being subjected to a calcination process, and since the manufacturing method is simple, it can be used in a large amount in building materials and the like.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 14:10) 103:10 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display area C04B 14:10) 103: 10

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 珪酸ナトリウム水溶液およびカオリン質
粉体を原料とし,常温養生または蒸気養生により固化し
た材料.
1. A material obtained by solidifying an aqueous solution of sodium silicate and a kaolin powder as raw materials and curing at room temperature or steam.
【請求項2】 請求項第1項記載の2原料のほか,反応
促進剤として珪弗化カリウムまたは高炉水砕スラグもし
くはその両方を添加し,常温養生または蒸気養生により
固化した材料.
2. A material obtained by adding potassium silicofluoride and / or granulated blast furnace slag as a reaction accelerator in addition to the two raw materials according to claim 1 and solidifying by room temperature curing or steam curing.
JP18317595A 1995-04-28 1995-04-28 Solidification and materialization of kaolin powder with geopolymer Pending JPH08301638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18317595A JPH08301638A (en) 1995-04-28 1995-04-28 Solidification and materialization of kaolin powder with geopolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18317595A JPH08301638A (en) 1995-04-28 1995-04-28 Solidification and materialization of kaolin powder with geopolymer

Publications (1)

Publication Number Publication Date
JPH08301638A true JPH08301638A (en) 1996-11-19

Family

ID=16131096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18317595A Pending JPH08301638A (en) 1995-04-28 1995-04-28 Solidification and materialization of kaolin powder with geopolymer

Country Status (1)

Country Link
JP (1) JPH08301638A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008239446A (en) * 2007-03-28 2008-10-09 Railway Technical Res Inst Geopolymer composition and its production method
JP2009203102A (en) * 2008-02-27 2009-09-10 Nagoya Institute Of Technology Method for solidifying ceramic powder, and ceramic solidified body
US8574358B2 (en) 2005-12-06 2013-11-05 James Hardie Technology Limited Geopolymeric particles, fibers, shaped articles and methods of manufacture
JP2014028727A (en) * 2012-07-31 2014-02-13 Maeda Corp Method for preparing a geopolymer composition and method for building a structure using the geopolymer composition
CN106542752A (en) * 2016-10-19 2017-03-29 长安大学 A kind of native polywater mud material and preparation method thereof
JP2021031370A (en) * 2019-08-29 2021-03-01 国立大学法人山口大学 Setting-delayed active filler for geopolymers and method for producing the same, and geopolymer hardened body

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8574358B2 (en) 2005-12-06 2013-11-05 James Hardie Technology Limited Geopolymeric particles, fibers, shaped articles and methods of manufacture
JP2008239446A (en) * 2007-03-28 2008-10-09 Railway Technical Res Inst Geopolymer composition and its production method
JP2009203102A (en) * 2008-02-27 2009-09-10 Nagoya Institute Of Technology Method for solidifying ceramic powder, and ceramic solidified body
JP2014028727A (en) * 2012-07-31 2014-02-13 Maeda Corp Method for preparing a geopolymer composition and method for building a structure using the geopolymer composition
CN106542752A (en) * 2016-10-19 2017-03-29 长安大学 A kind of native polywater mud material and preparation method thereof
JP2021031370A (en) * 2019-08-29 2021-03-01 国立大学法人山口大学 Setting-delayed active filler for geopolymers and method for producing the same, and geopolymer hardened body

Similar Documents

Publication Publication Date Title
Ferone et al. Thermally treated clay sediments as geopolymer source material
Morsy et al. Effect of sodium silicate to sodium hydroxide ratios on strength and microstructure of fly ash geopolymer binder
Mehta et al. Properties of alite cements
JP5687716B2 (en) Hydraulic lime composition
JPH02501568A (en) Hydraulic bonds and construction parts formed from unconventional materials
EA023750B1 (en) Single-phase hydraulic binder, method for the production thereof and structural material produced therewith
US3953222A (en) Addition of acidulated pozzolan to concrete and concrete products
EP0140156B1 (en) A process for producing a hardened product of coal ash
Castaldelli et al. Preliminary studies on the use of sugar cane bagasse ash (SCBA) in the manufacture of alkali activated binders
JPH08301638A (en) Solidification and materialization of kaolin powder with geopolymer
RU2452703C2 (en) Ash-cement binder (zolcit) based on acid ashes of thermal power plants
CN111689702B (en) Early-strength sulfate-resistant cement
Faisal et al. Geopolymerization with bagasse bottom ash and china clay, effect of calcination temperature and silica to alumina ratio
Singh et al. Autoclaved gypsum plaster from selenite and by‐product phosphogypsum
Salim et al. Microstructure, strength, and physical properties of metakaolin-based geopolymer mortar
ABDULLAH et al. Synthesis of geopolymer binder from the partially de-aluminated metakaolinite by-product resulted from alum industry.
RU2140888C1 (en) Ceramic material for manufacture of wall articles, mainly, clay brick
JPH08301639A (en) Solidification and materialization of fly ash powder with geopolymer
CN102557508A (en) Composite activating agent for calcium raw material-high-silicon-aluminum industrial residue system
Heikal et al. Effect of sulphate, chloride and elevated temperature on the properties of Egyptian slag binder
JPS6050738B2 (en) High sulfate slag cement and its manufacturing method
Jena et al. Parametric study on sustainable geopolymer concrete
Bouguermouh et al. Synthesis, spectroscopic and mechanical properties of K and (K, Na)-geopolymers based on Algerian clays
Malolepszy et al. Microcalorimetric studies of slag alkaline binders
WO2024089406A1 (en) Alkali-activated material