JPS605070B2 - Manufacturing method of MOS structure field effect semiconductor device - Google Patents

Manufacturing method of MOS structure field effect semiconductor device

Info

Publication number
JPS605070B2
JPS605070B2 JP7745976A JP7745976A JPS605070B2 JP S605070 B2 JPS605070 B2 JP S605070B2 JP 7745976 A JP7745976 A JP 7745976A JP 7745976 A JP7745976 A JP 7745976A JP S605070 B2 JPS605070 B2 JP S605070B2
Authority
JP
Japan
Prior art keywords
single crystal
layer
manufacturing
semiconductor
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7745976A
Other languages
Japanese (ja)
Other versions
JPS533075A (en
Inventor
忍 福永
剛 山野
晶彦 安岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP7745976A priority Critical patent/JPS605070B2/en
Publication of JPS533075A publication Critical patent/JPS533075A/en
Publication of JPS605070B2 publication Critical patent/JPS605070B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は絶縁物単結晶基板上に作成されたMOS構造
電界効果トランジスタ(以下MOSFETと略する)の
製造方法の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for manufacturing a MOS structure field effect transistor (hereinafter abbreviated as MOSFET) formed on an insulating single crystal substrate.

従来、絶縁物単結晶基板上に形成されたシリコンェピタ
キシャル成長層をSOI(Silicononlnsの
ator)と称し、特にこの絶縁物単結晶基板がサフア
イヤである場合には、SOS(SilicononSa
pphire)と呼ばれ、このSOSシリコンェピタキ
シャル成長層を用いて作成されたMOSFET、および
このMOSFETを構成要素とする集積回路などの半導
体デイバスは、高速動作特性を有し、かつ低消費電力の
点から注目され、期待がもたれている。
Conventionally, a silicon epitaxial growth layer formed on an insulating single crystal substrate is called SOI (Silicon Insulator), and especially when this insulating single crystal substrate is sapphire, it is called SOS (Silicon Insulator).
MOSFETs made using this SOS silicon epitaxial growth layer, and semiconductor devices such as integrated circuits that use these MOSFETs as components, have high-speed operation characteristics and low power consumption. It is attracting attention and expectations are high.

しかしながら、このSOSシリコンエピタキシヤル成長
層を用いて作成された半導体デバイスには、そのサフア
ィヤ基板が高価である上、熱的ストレスに対しては弱く
、急熱急冷を避けるため例えば高温拡散炉への出し入れ
などの作業には数分間の長時間を必要とし、その作業性
が悪いこと、およびサフアィャ基板の電位が浮動的であ
るがために、MOSFETのドレィン電流が異常に増大
する異常電流増大現象(KinkEf企ct)がおこり
、このMOSFETを構成要素とする半導体デバイスの
消費電力も増大すること、ならびにSOSシリコ Jン
ェピタキシャル成長層の結晶の不完全性に伴う低易動度
に起因するチャンネルコンダクタンスの低下、およびそ
の結晶欠陥が多いことに起因するソースドレィンリーク
電流の増大などの多くの欠点があった。
However, semiconductor devices fabricated using this SOS silicon epitaxial growth layer require expensive sapphire substrates, are weak against thermal stress, and must be placed in a high-temperature diffusion furnace, for example, to avoid rapid heating and cooling. Insertion and removal operations require a long time of several minutes, and the workability is poor, and because the potential of the Safya substrate is floating, the drain current of the MOSFET increases abnormally (abnormal current increase phenomenon). In addition, the power consumption of the semiconductor device that uses this MOSFET as a component increases, and the channel conductance decreases due to the low mobility caused by the imperfection of the crystal of the SOS epitaxially grown layer. There were many drawbacks, such as a decrease in source-drain leakage current and an increase in source-drain leakage current due to its large number of crystal defects.

Zこの明細書では、S
OIまたはSOSのシリコンェピタキシャル成長層を用
いて作成されたMOSFETおよび半導体デバイスを、
それぞれSOIMOS FETおよびSOIデバイス、
またはSOSMOS FETおよびSOSデバイスとよ
ぶことにする。この発明は、上述のSOSデバイスの欠
点に鑑みてなされたもので、安価でしかも動作の安定な
SOIデバイスを得ることを目的とする。以下、この発
明によるSOIMOSFETの製造方法の一実施例を、
図a〜dにそれぞれ示す縦断面図で説明する。
Z In this specification, S
MOSFETs and semiconductor devices made using OI or SOS silicon epitaxial growth layers,
SOIMOS FET and SOI device, respectively
Alternatively, they will be referred to as SOSMOS FETs and SOS devices. The present invention was made in view of the above-mentioned drawbacks of the SOS device, and an object of the present invention is to obtain an SOI device that is inexpensive and has stable operation. Hereinafter, one embodiment of the SOIMOSFET manufacturing method according to the present invention will be described.
This will be explained with reference to longitudinal cross-sectional views shown in Figures a to d, respectively.

図aは、シリコンSi基板1上に炭化シリコンSIC層
2を気相成長させる第1の工程を示す。
Figure a shows a first step of growing a silicon carbide SIC layer 2 on a silicon Si substrate 1 in a vapor phase.

この工程において、SIC層2をSi基板1上の気相成
長法で例えばモノシラン(SiH4)とプロパン(C3
比)とを高温にて熱分解して約1〆の層厚に成長させる
。この気相成長法で成長させたSIC層2は、Siと格
子間隔がロングレンジで合っているので、単結晶で、か
つその比抵抗が数十KQ・弧の高抵抗で、実質的には絶
縁物とみなし得るものである。このSIC層2は、サフ
アイヤに比べて、非常に安価な絶縁物単結晶であるとと
もに、熱的ストレスに対しても強く、急熱急冷を要する
作業にも十分使用し得るものである。図bは、上言己S
IC層2に所要形状パターンのホトレジスト材からなる
マスク3を用いて選択エッチングを施しSi基板1を露
出させた関口部4を形成する第2の工程を示す。
In this step, the SIC layer 2 is grown using a vapor phase growth method on the Si substrate 1 using, for example, monosilane (SiH4) and propane (C3).
(ratio) is pyrolyzed at high temperature and grown to a layer thickness of about 1. The SIC layer 2 grown by this vapor phase growth method has a lattice spacing that matches that of Si over a long range, so it is a single crystal and has a high resistivity of several tens of KQ/arc. It can be considered an insulator. This SIC layer 2 is a single crystal insulator that is much cheaper than saphire, and is also resistant to thermal stress and can be used for work that requires rapid heating and cooling. Figure b is the above-mentioned S.
A second step is shown in which selective etching is performed on the IC layer 2 using a mask 3 made of a photoresist material having a desired shape pattern to form a gate part 4 exposing the Si substrate 1.

この工程において形成される開口部4は、後述するSO
IMOSFETのチャンネル領域が形成されるSiェピ
タキシャル成長層を、この関口部4内のSi基板1の表
面に直接接触させてェピタキシャル成長させることがで
きるようにするために、設けられるものである。
The opening 4 formed in this step is a SO
This is provided so that the Si epitaxial growth layer in which the channel region of the IMOSFET is formed can be epitaxially grown in direct contact with the surface of the Si substrate 1 within this gateway 4.

図cは、上記開ロ部4内のSj基板1の表面を被覆する
とともにSIC層2上にェピタキシャル成長法でシリコ
ンェピタキシャル成長層5を成長させる第3の工程を示
す。
FIG. c shows the third step of covering the surface of the Sj substrate 1 in the opening 4 and growing a silicon epitaxial growth layer 5 on the SIC layer 2 by an epitaxial growth method.

この工程において、Siェピタキシヤル成長層5にSi
基板1上に関口部4のパターンに相当する形状パターン
の凹部6が形成される。
In this step, Si is added to the Si epitaxial growth layer 5.
A recess 6 having a shape pattern corresponding to the pattern of the gate part 4 is formed on the substrate 1 .

この凹部6内のSi基板1上のSiェピタキシャル成長
層5は言うまでもなく、SIC層2上のSiェピタキシ
ャル成長層5も単結晶である。このように、Siェピタ
キシャル成長層5が単結晶であることは、この発明の重
要な基本である。図dは、上記凹部6内のSiェピタキ
シャル成長層5にチャンネル形成領域8が形成されるよ
うにSIC層2上のSiェピタキシャル成長層5にドレ
ィン領域9およびソース領域10を形成する第4の工程
を示す。
Needless to say, the Si epitaxial growth layer 5 on the Si substrate 1 in this recess 6 is also single crystal. Thus, it is an important basis of this invention that the Si epitaxial growth layer 5 is single crystal. FIG. d shows a fourth step in which a drain region 9 and a source region 10 are formed in the Si epitaxially grown layer 5 on the SIC layer 2 so that a channel forming region 8 is formed in the Si epitaxially grown layer 5 in the recess 6. The process is shown below.

この工程において、Siェピタキシヤル成長層5を、選
択エッチングによってその凹部6とその周辺部とからな
る所要形状パターンのSiェピタキシャル成長層5に作
成し、このSiェピタキシャル成長層5上にその凹部6
内と周辺部の一部とにまたがって所要形状パターンのゲ
ート絶縁膜7を設け、このゲート絶縁膜7直下でSi基
板1に直接接触して形成されたSiェピタキシヤル成長
層5にチャンネル形成領域8の全部または大部が形成さ
れるように、不純物の選択拡散によりドレィン領域9、
およびソース領域10が形成される。
In this step, the Si epitaxial growth layer 5 is formed by selective etching into the Si epitaxial growth layer 5 having a desired shape pattern consisting of the recess 6 and its surrounding area, and the recess 6 is formed on the Si epitaxial growth layer 5.
A gate insulating film 7 having a desired shape is provided across the inside and a part of the periphery, and a channel forming region 8 is formed in the Si epitaxial growth layer 5 formed directly under the gate insulating film 7 in direct contact with the Si substrate 1. By selectively diffusing impurities so that all or most of the drain regions 9,
and source region 10 are formed.

この不純物の選択拡散時に形成される、チャンネル形成
領域8とドレィン領域9との拡散接合11が凹部6内の
SIC層2の端緑とSで示す間隔をおいてSi基板1上
に、およびチャンネル形成領域8とソース領域10との
拡散接合12がSIC層2上に形成されるようにする。
以上述べた工程の後工程は、全く従釆のSOSMOSF
ETの作成工程と同様で、ゲート絶縁膜7上に所要形状
パターンのゲート電極13を設け、つづいてゲート電極
13、ドレィン領域9、およぴソース領域10の面上に
、それぞれ所要形状パターンの閉口部を有するフィール
ド絶縁膜14を施し、これらの閉口部内のゲート電極1
3、ドレィン領域9、およびソース領域10と、それぞ
れ抵抗接触するアルミニウム膜の配線15a,15bお
よび15cを形成して、所要のSOIMOSFETが作
成される。
A diffusion bond 11 between the channel forming region 8 and the drain region 9 formed during selective diffusion of impurities is formed on the edge of the SIC layer 2 in the recess 6 and on the Si substrate 1 at a distance indicated by S and the channel. A diffusion junction 12 between the formation region 8 and the source region 10 is formed on the SIC layer 2 .
The post-processes of the steps described above are completely dependent on the SOSMOSF.
Similar to the ET manufacturing process, a gate electrode 13 with a desired shape pattern is provided on the gate insulating film 7, and then a desired shape pattern is formed on the surfaces of the gate electrode 13, drain region 9, and source region 10, respectively. A field insulating film 14 having closed portions is applied, and the gate electrode 1 within these closed portions is formed.
3. Aluminum film wirings 15a, 15b and 15c are formed in resistance contact with the drain region 9 and the source region 10, respectively, to create a required SOIMOSFET.

このように作成されたこの発明によるSOIMOSFE
Tは、従来のSOSMOSFETとを対比して、ドレィ
ン領域9とチャンネル形成領域8とで形成される拡散接
合11、およびチャンネル形成領域8がいずれもSi基
板1に直接接触している点で異っている。
SOIMOSFE according to this invention created in this way
T differs from a conventional SOSMOSFET in that the diffusion junction 11 formed between the drain region 9 and the channel forming region 8 and the channel forming region 8 are both in direct contact with the Si substrate 1. ing.

即ち、この発明によるSOIMOSFETでは、拡散接
合1 1、およびチャンネル形成領域8がいずれもSi
基板1上にェピタキシャル成長されたホモェピタキシヤ
ル成長層で形成されているのに対し、従来のSOSMO
SFETでは、サフアィャ基板上にェピタキシャル成長
されたへテロヱピタキシャル成長層で形成されている点
である。この相異点が、半導体デバイスの性能に与える
影響は極めて大きく、ホモェピタキシャル成長層である
場合には、格子欠陥例えば転位密度が、ヘテロェピタキ
シャル成長層の1ぴ〜1ぴ伽‐2であるのに比べ、3桁
以上少なくできるので、キャリャ易動度が改善され、チ
ャンネルコンダクタンスを向上させることができる。ま
た、この場合には、ドレィン空乏層における階電流をも
減少させることができるので、従来のSOSデバイスと
異なり、その用途をC−MOSスタチック動作に限定す
る必要もなく、ダイナミック動作も可能であり、またノ
ベィポーラ素子への適用をも可能とするうえに、チャン
ネル形成領域がSi基板と同一導電形であるので、基板
の電位が浮動的になることがなく、ドレィン電流の異常
電流増大現象をも防止することができる。更に、この発
明によるSOIデバイスには、従来のSOSデバイスの
利点である素子間の分離も、Siェピタキシャル成長層
5の選択エッチング除去で完全に行うことができるばか
りか、ドレィン接合容量もSIC層2により減少させる
ことができる。上記実施例では、拡散接合11が関口部
4内に形成されているため、間隔Sに相当する容量が増
大するので、間隔Sをできるだけ小さく、SIC層2の
端縁に接するようにすることがのぞましい。
That is, in the SOIMOSFET according to the present invention, both the diffusion junction 11 and the channel forming region 8 are made of Si.
The conventional SOSMO is formed of a homoepitaxial growth layer epitaxially grown on the substrate 1.
The SFET is formed of a heteroepitaxially grown layer epitaxially grown on a sapphire substrate. This difference has a very large effect on the performance of semiconductor devices, and in the case of a homoepitaxially grown layer, lattice defects, such as dislocation density, are Since it can be reduced by more than three orders of magnitude compared to the conventional case, carrier mobility can be improved and channel conductance can be improved. In addition, in this case, the floor current in the drain depletion layer can also be reduced, so unlike conventional SOS devices, there is no need to limit the application to C-MOS static operation, and dynamic operation is also possible. Furthermore, since the channel formation region is of the same conductivity type as the Si substrate, the potential of the substrate does not float, and the phenomenon of abnormal increase in drain current is prevented. It can be prevented. Furthermore, in the SOI device according to the present invention, not only can the isolation between elements, which is an advantage of the conventional SOS device, be completely achieved by selectively removing the Si epitaxial growth layer 5, but also the drain junction capacitance can be removed from the SIC layer. It can be reduced by 2. In the above embodiment, since the diffusion bonding 11 is formed inside the gate part 4, the capacitance corresponding to the distance S increases. Therefore, it is necessary to make the distance S as small as possible so that it is in contact with the edge of the SIC layer 2. Delicious.

また、拡散接合11が関口部4内に形成されることは必
ずしも必要ではない8なお、上記実施例では、シリコン
半導体基板上にSIC層を形成し、このSIC層上に形
成されたシリコンェピタキシャル成長層を用いるSOI
MOSFETの製造方法について述べてきたが、この発
明はこれに限定されることなく、Si以外の半導体単結
晶基板上に絶縁物単結晶層を形成し、この絶縁物単結晶
層上に上記半導体単結晶基板と同一半導体のェピタキシ
ャル成長層を形成し、この半導体ェピタキシャル成長層
を用いるMOS構造電界効果半導体デバイスの製造方法
に適用することができる。
Furthermore, it is not always necessary that the diffusion bonding 11 be formed within the gate part 48. In the above embodiment, a SIC layer is formed on a silicon semiconductor substrate, and a silicon epitaxial layer formed on this SIC layer is formed on a silicon semiconductor substrate. SOI using grown layers
Although the method for manufacturing a MOSFET has been described, the present invention is not limited thereto, and includes forming an insulating single crystal layer on a semiconductor single crystal substrate other than Si, and depositing the above semiconductor single crystal layer on this insulating single crystal layer. It is possible to form an epitaxially grown layer of the same semiconductor as the crystal substrate and apply it to a method of manufacturing a MOS structure field effect semiconductor device using this semiconductor epitaxially grown layer.

以上、詳述したように、この発明によるMOS構造電界
効果半導体デバイスの製造方法は、半導体単結晶基板上
に絶縁物単結晶層を形成し、この絶縁物単結晶層を選択
エッチング除去して上記半導体単結晶基板を露出させる
関口部を設け、この閉口部を被覆するとともに上言己絶
縁物単結晶層上に上記半導体結晶のェピタキシャル成長
層を形成することによって、上記半導体結晶基板の露出
関口部内に上記半導体結晶のホモェピタキシヤル成長層
が形成され、このホモェピタキシヤル成長層に上記半導
体デバイスのチャンネル形成領域の少なくとも一部が形
成されるように作成するので、この発明による上記半導
体デバイスには、そのチャンネル形成領域半導体結晶層
に格子欠陥が少なく、よってキャリャ易動度が改善され
、チャンネルコンダクタンスの向上のほか、ドレィン空
乏層における階電流の減少を図ることなどの効果がある
As described above in detail, the method for manufacturing a MOS structure field effect semiconductor device according to the present invention involves forming an insulating single crystal layer on a semiconductor single crystal substrate, selectively removing the insulating single crystal layer, and then removing the insulating single crystal layer by selective etching. By providing a gate portion that exposes the semiconductor single crystal substrate, covering this closing portion, and forming an epitaxial growth layer of the semiconductor crystal on the insulating single crystal layer, the exposed gate portion of the semiconductor crystal substrate is formed. According to the present invention, a homoepitaxially grown layer of the semiconductor crystal is formed in the semiconductor crystal, and at least a part of the channel forming region of the semiconductor device is formed in this homoepitaxially grown layer. The semiconductor device described above has few lattice defects in the semiconductor crystal layer in the channel formation region, which improves carrier mobility and has effects such as improving channel conductance and reducing layer current in the drain depletion layer. be.

【図面の簡単な説明】[Brief explanation of the drawing]

函a〜dはそれぞれこの発明によるSOIMOSFET
の製造方法の一実施例を示す縦断面図である。 図において、1はシリコン基板、2は炭化シリコン層、
3はマスク、4は開□部、5はシリコンェピタキシヤル
成長層、6は凹部、7はゲート絶縁膜、8はチャンネル
形成領域、9はドレイン領域、10はソース領域、11
、および12は拡散接合、13はゲート電極、14はフ
ィールド絶縁膜、15a,15b,および15cはそれ
ぞれアルミニウム膜配線を示す。 なお、図中同一符号はそれぞれ同一または相当部分を示
す。 (Q) (b) (C) (〆)
Boxes a to d are SOIMOSFETs according to the present invention, respectively.
FIG. In the figure, 1 is a silicon substrate, 2 is a silicon carbide layer,
3 is a mask, 4 is an opening, 5 is a silicon epitaxial growth layer, 6 is a recess, 7 is a gate insulating film, 8 is a channel forming region, 9 is a drain region, 10 is a source region, 11
, and 12 are diffusion junctions, 13 is a gate electrode, 14 is a field insulating film, and 15a, 15b, and 15c are aluminum film wirings, respectively. Note that the same reference numerals in the figures indicate the same or corresponding parts. (Q) (b) (C) (〆)

Claims (1)

【特許請求の範囲】 1 半導体単結晶基板上に絶縁物単結晶層を形成する第
1の工程、この絶縁物単結晶層を選択エツチングし、所
要形状パターンの上記半導体単結晶基板を露出させた開
口部を形成する第2の工程、この開口部内の半導体単結
晶基板上および上記絶縁物単結晶層上にわたり連って上
記半導体単結晶基板と同一半導体のエピタキシヤル成長
層を成長させる第3の工程、ならびにチヤンネル形成領
域の全部または大部分が上記エピタキシヤル成長層の上
記半導体単結晶基板と接する部分に構成されるようにソ
ース領域およびドレイン領域を形成する第4の工程を備
えたMOS構造電界効果半導体デバイスの製造方法。 2 チヤンネル形成領域とドレイン領域との接合面が開
口部内にあるようにする特許請求の範囲第1項記載のM
OS構造電界効果半導体デバイスの製造方法。 3 チヤンネル形成領域とドレイン領域との接合面が開
口部端にあるようにする特許請求の範囲第1項記載のM
OS構造電界効果半導体デバイスの製造方法。 4 半導体単結晶基板にシリコン単結晶基板を用いたこ
とを特徴とする特許請求の範囲第1項ないし第3項のい
ずれかに記載のMOS構造電界効果半導体デバイスの製
造方法。 5 絶縁物単結晶層に炭化シリコン単結晶層を用いたこ
とを特徴とする特許請求の範囲第4項記載のMOS構造
電界効果半導体デバイスの製造方法。
[Claims] 1. A first step of forming an insulating single crystal layer on a semiconductor single crystal substrate, in which the insulating single crystal layer is selectively etched to expose the semiconductor single crystal substrate in a desired shape pattern. a second step of forming an opening; a third step of growing an epitaxial growth layer of the same semiconductor as the semiconductor single crystal substrate over the semiconductor single crystal substrate and the insulating single crystal layer within the opening; and a fourth step of forming a source region and a drain region such that all or most of the channel forming region is formed in a portion of the epitaxial growth layer in contact with the semiconductor single crystal substrate. Effect semiconductor device manufacturing method. 2. M according to claim 1, in which the bonding surface between the channel forming region and the drain region is within the opening.
A method for manufacturing an OS structure field effect semiconductor device. 3. M according to claim 1, in which the bonding surface between the channel forming region and the drain region is located at the end of the opening.
A method for manufacturing an OS structure field effect semiconductor device. 4. A method for manufacturing a MOS structure field effect semiconductor device according to any one of claims 1 to 3, characterized in that a silicon single crystal substrate is used as the semiconductor single crystal substrate. 5. The method of manufacturing a MOS structure field effect semiconductor device according to claim 4, characterized in that a silicon carbide single crystal layer is used as the insulator single crystal layer.
JP7745976A 1976-06-29 1976-06-29 Manufacturing method of MOS structure field effect semiconductor device Expired JPS605070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7745976A JPS605070B2 (en) 1976-06-29 1976-06-29 Manufacturing method of MOS structure field effect semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7745976A JPS605070B2 (en) 1976-06-29 1976-06-29 Manufacturing method of MOS structure field effect semiconductor device

Publications (2)

Publication Number Publication Date
JPS533075A JPS533075A (en) 1978-01-12
JPS605070B2 true JPS605070B2 (en) 1985-02-08

Family

ID=13634584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7745976A Expired JPS605070B2 (en) 1976-06-29 1976-06-29 Manufacturing method of MOS structure field effect semiconductor device

Country Status (1)

Country Link
JP (1) JPS605070B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61243666A (en) * 1985-04-19 1986-10-29 アンリツ株式会社 Electric connection element
JPS6350454U (en) * 1986-09-22 1988-04-05

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0746685B2 (en) * 1986-03-18 1995-05-17 富士通株式会社 Method for manufacturing semiconductor device
JPH067594B2 (en) * 1987-11-20 1994-01-26 富士通株式会社 Method for manufacturing semiconductor substrate
US6709907B1 (en) 1992-02-25 2004-03-23 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a thin film transistor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61243666A (en) * 1985-04-19 1986-10-29 アンリツ株式会社 Electric connection element
JPS6350454U (en) * 1986-09-22 1988-04-05

Also Published As

Publication number Publication date
JPS533075A (en) 1978-01-12

Similar Documents

Publication Publication Date Title
KR970004457B1 (en) Semiconductor device and fabrication method
US20050260825A1 (en) Shallow trench isolation structure for strained Si on SiGe
JPS6276645A (en) Structure of composite semiconductor crystal
US4819037A (en) Semiconductor device
US4131909A (en) Semiconductor integrated circuit isolated through dielectric material and a method for manufacturing the same
JPH0429368A (en) Field effect transistor using silicon carbide and its manufacturing method
JPS6159853A (en) Structure of silicon crystalline body
US3764413A (en) Method of producing insulated gate field effect transistors
FR2433833A1 (en) SEMICONDUCTOR HAVING SILICON REGIONS IN THE FORM OF SPECIFICALLY PROFILE PROJECTIONS AND ITS MANUFACTURING METHOD
JPS6252963A (en) Manufacture of bipolar transistor
KR960026747A (en) Manufacturing method of semiconductor integrated circuit device
JPS605070B2 (en) Manufacturing method of MOS structure field effect semiconductor device
US3398335A (en) Transistor structure with an emitter region epitaxially grown over the base region
JP2543416B2 (en) Semiconductor device
US8003459B2 (en) Method for forming semiconductor devices with active silicon height variation
JPS59130465A (en) Manufacture of metal insulator semiconductor device
JPS63192266A (en) Cmos integrated circuit and manufacture thereof
US3579814A (en) Method for fabricating a semiconductor device having an epitaxially grown region
JPS6358817A (en) Composite semiconductor crystal structure
JPH04233758A (en) Semiconductor device and manufacture thereof
JPS605068B2 (en) MOS type semiconductor device
JPS5818968A (en) Manufacture of junction type field-effect transistor
JPS60235445A (en) Manufacture of semiconductor device
JPS61236166A (en) Manufacture of semiconductor device
JPH0547982B2 (en)