JPS60500502A - Method for manufacturing optical components and optical components - Google Patents

Method for manufacturing optical components and optical components

Info

Publication number
JPS60500502A
JPS60500502A JP59500766A JP50076684A JPS60500502A JP S60500502 A JPS60500502 A JP S60500502A JP 59500766 A JP59500766 A JP 59500766A JP 50076684 A JP50076684 A JP 50076684A JP S60500502 A JPS60500502 A JP S60500502A
Authority
JP
Japan
Prior art keywords
layer
glass
plastic material
surface layer
undercoat layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59500766A
Other languages
Japanese (ja)
Inventor
ロビンソン、デニス・ウイリアム
Original Assignee
スパファックス・ホ−ルディングス・パブリック・リミテッド・カンパニ−
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スパファックス・ホ−ルディングス・パブリック・リミテッド・カンパニ− filed Critical スパファックス・ホ−ルディングス・パブリック・リミテッド・カンパニ−
Publication of JPS60500502A publication Critical patent/JPS60500502A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00605Production of reflex reflectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00596Mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00865Applying coatings; tinting; colouring

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、光学構成部品の製造方法及び光学構成部品に関する。光学構成部品と して合成プラスチック材料を用いることが知られており、これらのプラスチック 材料は、耐熱性、耐機械的衝撃性、低生産コスト、軽量、設計上の融通性等にお いて、従来のガラス及び結晶質材料に優っている。しかし、該プラスチック材料 は、摩耗、引掻き、及びその他の機能低下条件により、表面損傷を受けやすい。[Detailed description of the invention] The present invention relates to a method of manufacturing an optical component and an optical component. optical components and It is known that synthetic plastic materials are used, and these plastics The materials are characterized by their heat resistance, mechanical impact resistance, low production costs, light weight, and design flexibility. superior to traditional glasses and crystalline materials. However, the plastic material are susceptible to surface damage due to abrasion, scratching, and other degrading conditions.

このようなプラスチック材料表面に保護層として耐引掻性透明層を浸漬被覆、紫 外線重合及びワニス塗布等により、塗被することも知られている。しかし、この 保護層の形成は、工程を増やすばかりでなく、最終製品において厚さの不均一性 を生じるし、硬化時のプラスチック支持体ゲル質への付着むらを生じ、さらに商 業的生産可能な効率を得るには一般にコスト高であるなど、新たな問題が生じる 。また、該保護層は、特定のプラスチックに限定され、金属鏡面仕上塗層へ直接 付着されるので、多くの問題が生じる。Dip-coating a scratch-resistant transparent layer as a protective layer on the surface of such plastic materials, purple It is also known to coat by external polymerization, varnishing, etc. However, this The formation of a protective layer not only increases the number of steps, but also increases the thickness non-uniformity in the final product. This results in uneven adhesion to the gel material of the plastic support during curing, and furthermore, New problems arise, such as the generally high cost of achieving industrially producible efficiencies. . In addition, the protective layer is limited to specific plastics and is directly attached to the metal mirror finish coating layer. As it is attached, many problems arise.

光学材料として用いる場合、その多くは、プラスチック支持体へ耐摩耗性を有す る鏡面仕上塗層を塗被する必要がある。When used as optical materials, many of them have abrasion resistance on plastic supports. It is necessary to apply a mirror finish coating layer.

このような耐摩耗性鏡面仕上げ塗装を形成する方法としとては、クロムやニッケ ル等の硬質反射性金属を透明又は不透明プラスチック材Fl(通常はアクリロニ ド\、リル・ブタジェン・スチレン共重合体)の前面へ電気化学蒸着する方法の 他、幾つかの方法がある。上記の方法は、大変コストが高く、生産性に難点があ り、しかも従来の銀やアルミニウムの反射面に比べ反射能の低い鏡面に似た製品 しか生産り基材を用いた場合でも、電気メッキにより多重金属層を形成した場合 形成した鏡面が環境しだいで電蝕を生じることがある。さらに別の方法として、 ある程度の耐摩耗性を有する保護層をあらかじめコストの高い湿潤化学処理方法 によって透明プラスチック基材へ別途に塗被し、このプラスチック基材の裏面に アルミニウムを熱蒸着する方法もある。この方法で製造される製品は、通例平板 状の前記塗被法みプラスチック基材の寸法形成及び構成により制約され、多段製 造工程から成るため、大変コストが高い。The method of forming such a wear-resistant mirror finish coating is to use chrome or nickel. A hard reflective metal such as a transparent or opaque plastic material Fl (usually acryloni electrochemical vapor deposition method on the front surface of There are several other methods. The above methods are very costly and have drawbacks in productivity. A mirror-like product with lower reflective power than conventional silver or aluminum reflective surfaces. Even when using a manufactured base material, when multiple metal layers are formed by electroplating. The formed mirror surface may undergo electrolytic corrosion depending on the environment. As yet another method, A protective layer with a certain degree of abrasion resistance can be pre-prepared using costly wet chemical processing methods. Separately coat the transparent plastic substrate with Another method is to thermally evaporate aluminum. Products manufactured using this method are typically flat plates. The above-mentioned coating method is limited by the size and configuration of the plastic substrate, and multi-stage manufacturing Because it involves a manufacturing process, it is very costly.

未処理プラスチック材料に金属真空く減圧)蒸着を行なってから湿潤化学塗被法 により耐摩耗性を付与する方法も知られているが、やはりコストが高く光学的欠 点が生じゃすい。Metal vacuum (vacuum) vapor deposition on untreated plastic material followed by wet chemical coating A method of imparting wear resistance is also known, but it is still expensive and requires optical defects. The points are raw.

本発明の目的は上記の問題点及び欠点を克服することにある。It is an object of the invention to overcome the above-mentioned problems and disadvantages.

本発明のひとつの目的である、プラスチック材料から鏡面性状を有する光学構成 部品を製造する方法は、硬質ガラスまたは硬質ガラスに似た性状の物質から成る 表面層をプラスチック材料に被着する工程と、その後反射材料から成゛鎖面層を 前記表面層へ被着する工程とから成る。One of the objects of the present invention is an optical structure made of plastic material with specular properties. The method of manufacturing parts consists of hard glass or a substance with properties similar to hard glass. The process of applying a surface layer to the plastic material and then forming a chain surface layer of reflective material. and adhering to the surface layer.

前記プラスチック材料に対しては、表面層の被着工程に先立って、脱脂を施すこ とが好ましい。この脱脂作業は該プラスチック材料をフルオロカーボン溶剤中で 蒸気脱脂し、その後同溶剤の超短波振動溶液中へ移送することにより行なう。The above plastic material may be degreased prior to the process of applying the surface layer. is preferable. This degreasing process involves cleaning the plastic material in a fluorocarbon solvent. This is done by vapor degreasing and subsequent transfer into an ultrahigh frequency vibration solution of the same solvent.

好ましくは、上記脱脂作業後、さらに真空容器中で分子清浄(molecula r cleaning)を行なう。その後、前記鏡面層の構成材料として用いら れる材料の酸化物から成る下塗層を被着することにより表面層の形成が行なわれ る。下塗層は、圧力2X10−”ミリバールの酸素及びアルゴン雰囲気の真空容 器中で磁電管スパッター法により被着される。Preferably, after the above degreasing operation, further molecular cleaning is performed in a vacuum container. Cleaning). After that, the material used as the constituent material of the mirror layer is The surface layer is formed by applying a subbing layer consisting of an oxide of the material to be used. Ru. The subbing layer was placed in a vacuum chamber with an oxygen and argon atmosphere at a pressure of 2 x 10-'' mbar. It is deposited by magnetron sputtering in a container.

分子清浄直後、真空容器は1X10−’ミリバールに減圧し、アルゴンガスを注 入して圧力を5X10−’ミリバールにし、その後、酸素を加えて圧力を2X1 0−”ミリバールまで高める。Immediately after molecular cleaning, the vacuum vessel was depressurized to 1 x 10-' mbar and argon gas was injected. to bring the pressure to 5X10-' mbar, then add oxygen to bring the pressure to 2X1 mbar. Increase to 0-” mbar.

下塗層は、被着材料となる金属をターゲットにして、磁電管スパッター法により 速やかに被着される。この下塗層の厚さは、好ましくは、0.5〜1.0ミクロ ンとする。The undercoat layer is created using magnetron sputtering, targeting the metal to be adhered to. Deposited quickly. The thickness of this subbing layer is preferably 0.5 to 1.0 microns. Let's turn it on.

その後、鏡面層を下塗層へ直接被着し、この被着作業は、DCC磁電管スパッタ ーより行なう。Thereafter, the mirror layer is applied directly to the undercoat layer, and this application process is performed using DCC magnetron sputtering. -Do it from

鏡面層の構成材料の一実施例としてはクロムを用い、この場合の下塗層は厚さ0 .5〜1.0ミクロンのクロム酸化物層とするのが好ましい。As an example of the constituent material of the mirror layer, chromium is used, and in this case the undercoat layer has a thickness of 0. .. A chromium oxide layer of 5 to 1.0 microns is preferred.

別の実施例では、鏡面層はアルミニウムで構成し、この場合の下塗層は、厚さ0 .5〜1.0ミクロンのアルミニウム酸化物層とするのが好ましい。前記アルミ ニウムの鏡面層にはざらに誘電酸化物から成り厚さ0.5〜5.0ミクロンの硬 質耐摩耗性の仕上塗層を塗被してもよい。In another embodiment, the mirror layer is comprised of aluminum, in which case the subbing layer has a thickness of 0. .. A 5-1.0 micron aluminum oxide layer is preferred. The aluminum The specular layer of Ni is composed of a roughly dielectric oxide with a thickness of 0.5 to 5.0 microns. A high abrasion resistant top coat may be applied.

さらに別の実施例として、炭酸カルシウム、炭酸ナトリウム、シリコン酸化物等 の主要ガラス製造化学物質をプラズマ活性条件下で共反応させるインサイチュ( in 5itu)ガラス製造によって表面層を形成してもよい。なお、上記の化 学物質は、高エネルギー電子ビームの衝撃により反応状態となる。Further examples include calcium carbonate, sodium carbonate, silicon oxide, etc. In-situ ( The surface layer may also be formed by in-situ glass manufacturing. In addition, the above Chemical substances become reactive when bombarded with high-energy electron beams.

本発明は、また、上述した方法によって製造された光学構成部品を提供する。The invention also provides an optical component manufactured by the method described above.

本発明の他の目的のひとつである、鏡面性状を有する光学構成部品は、硬質ガラ スまたは硬質ガラスに似た性状をもつ物質から成る表面層を被着されたプラスチ ック材料と、前記表面層上に被着された反射材料から成る鏡面層とから構成され ている。Another object of the present invention is to provide an optical component having mirror surface properties made of hard glass. Plastics coated with a surface layer consisting of glass or a material with properties similar to hard glass. a reflective material and a mirror layer made of a reflective material deposited on the surface layer. ing.

本発明の実施方法は幾つかあるが、一実施例のみを以下におい゛て説明する。Although there are several ways to implement the invention, only one embodiment will be described below.

本実施例においては、プラスチック基材は主にビスフェノールへとホスゲン、ま たは米国ジェネラル・エレクトリック社が製造し” 1 exan”の商標名で 市販されているポリカーボネートである炭酸ジフェニルとの反応の例に見られる 、ポリヒドロギシ化合物と炭酸誘導体との反応により調製された重縮合ポリマー から成る。好適な形状及び寸法を得るには、従来の熱可塑性プラスチック射出成 形方法によるかまたは精密製造された押出シートを所望の形状に切断すればよい 。In this example, the plastic base material mainly consists of bisphenol and phosgene. or manufactured by General Electric Company in the United States under the trademark name “1exan” Seen in the example of the reaction with diphenyl carbonate, a commercially available polycarbonate. , a polycondensation polymer prepared by the reaction of a polyhydroxy compound and a carbonic acid derivative Consists of. Traditional thermoplastic injection molding is used to obtain suitable shapes and dimensions. Simply cut the extruded sheet into the desired shape using a shaping method or precision manufactured extrusion sheet. .

前記プラスチック基材は、′Δrklon ” P (ICI >等のフルオロ カーボン溶剤中で3分間の蒸気脱脂を行い、その後同じ溶剤から成る超音波振動 溶液中へ移して、さらに3分間清浄を行なう。その後、さらに3分間の蒸気脱脂 を行なってもよい。プラスチック基材は、この後真空容器中の固定ジグへ移し、 極めて清浄な状態の下で次の工程が実施される。The plastic base material is a fluorocarbon material such as 'Δrklon ''P (ICI>). Steam degreasing for 3 minutes in carbon solvent followed by ultrasonic vibration in the same solvent Transfer to the solution and clean for an additional 3 minutes. Then steam degreasing for another 3 minutes may be done. The plastic substrate is then transferred to a fixed jig in a vacuum container, The next step is carried out under extremely clean conditions.

真空容器は密閉して圧力を1X10’ミリバールに減圧する。その後アルゴンを 注入して圧力をlX10−’ミリバールまで高めてから、真空容器中でプラスチ ック基材の表面に近接配置されている電極へ1.5キロボルトの交流電圧をかけ グロー放電を開始する。このグロー放電は、上限20分間行ない、その間にプラ スチック基材の表面は゛分子清浄” < molecular cleanin g)が行なわれる。この清浄作用により前記基材は、以下に記す被着層を受け取 りやすくなる。分子清浄を行なった後、下塗層を被着すべく酸化反応を以下のご とく行なう。真空容器の圧力を再び1×10−’ミリバールに減じ、アルゴンガ スを注入して圧力を5X10−’ミリバールにし、その後酸素を加えて圧力を2 xio−”ミリバールまで高める。The vacuum vessel is sealed and the pressure reduced to 1 x 10' mbar. then argon The pressure was increased to 1×10-’ mbar and then the plastic was injected in a vacuum container. An AC voltage of 1.5 kilovolts is applied to the electrodes placed close to the surface of the base material. Start glow discharge. This glow discharge is performed for a maximum of 20 minutes, during which time the The surface of the stick base material is ``molecular clean''. g) is carried out. Due to this cleaning action, the substrate receives the adhesion layer described below. It becomes easier to After molecular cleaning, an oxidation reaction is carried out as follows to deposit the undercoat layer. I will do it especially. The pressure in the vacuum vessel was reduced again to 1 x 10-' mbar and replaced with argon gas. Oxygen is injected to bring the pressure to 5 x 10-' mbar, then oxygen is added to bring the pressure to 2 xio-” increase to mbar.

その後クロムをターゲットにして真空容器中で磁電管スパッターを開始し、帯電 クロム原子と酸素の相互反応によりクロム酸化物から成る下塗層をポリカーボネ ートの基材に蒸着させる。こうして形成された下塗層(蒸着層)は、1種以上の クロム酸化物から成り僅かにクロム自体をも含み、この層の厚さは好ましくは0 ,5〜1.0ミクロンである。Then, magnetron tube sputtering is started in a vacuum container with chromium as the target, and it is charged. An undercoating layer made of chromium oxide is applied to polycarbonate by the interaction of chromium atoms and oxygen. evaporated onto the base material. The undercoat layer (deposited layer) thus formed contains one or more types of It consists of chromium oxide and also contains a small amount of chromium itself, and the thickness of this layer is preferably 0. , 5 to 1.0 microns.

その後、酸素注入は中断し、クロムに対して従来のDC磁電管スパッターを対タ ーゲット電力密度4 W / cm2から12w/cm2まで序々に高めながら 行なう。このようにクロムをクロム酸化物下塗層へ序々に被着することにより、 残留応力のない被膜を被着することができる。クロムの薄膜は圧縮応力や引張応 力を受けやすいことが知られているので、この段階では注意を要する。鏡面層の 厚さは、主に0.5〜5.0ミクロンである。Afterwards, the oxygen injection is discontinued and the chromium is treated with conventional DC magnetron sputtering. While gradually increasing the target power density from 4W/cm2 to 12W/cm2 Let's do it. By gradually depositing chromium on the chromium oxide undercoat layer in this way, A coating without residual stress can be applied. Thin films of chromium are susceptible to compressive stress and tensile stress. It is known that it is susceptible to force, so care must be taken at this stage. mirror layer The thickness is typically 0.5-5.0 microns.

本発明の実施例として、クロム酸化物及び多層クロム構成について記したが、本 発明は前記実施例に限定されない。As an example of the present invention, a chromium oxide and a multilayer chromium structure have been described. The invention is not limited to the above embodiments.

他の実施例として、クロム層の場合と同様アルミニウム酸化物及び僅かなアルミ ニウムから成るアルミニウム下塗層をスパッター法により形成し、この下塗層に アルミニウムを被着することによりさらに反射能の高いアルミニウム鏡面を製造 することができる。この実施例のように軟質金属を用いる場合には、シリコン酸 化物等の誘電酸化物から成る硬質耐摩耗性仕上塗層を公知のRFフィールドにお けるスパッター法や電子ビーム蒸着法によって形成してもよい。前記仕上塗層の 厚さは、主に0.5〜5.0ミクロンである。Other examples include aluminum oxide and a small amount of aluminum as well as the chromium layer. An aluminum undercoat layer consisting of aluminum is formed by sputtering, and this undercoat layer is coated with By coating aluminum, we can manufacture an aluminum mirror surface with even higher reflectivity. can do. When using soft metal as in this example, silicon oxide A hard, wear-resistant finish coat made of a dielectric oxide such as a dielectric compound is applied to a known RF field. It may also be formed by a sputtering method or an electron beam evaporation method. of the finishing coat layer The thickness is typically 0.5-5.0 microns.

また、別の実施例では、炭酸カルシウム、炭酸ナトリウム及びシリコン酸化物等 の主要ガラス製造化学物質をプラズマ反応条件下で共反応させるインサイチュ( in 5itu)ガラス製法等の種々の方法によりガラスまたはガラスに似た物 質から成る仕上塗層を形成する。この方法により、従来のカルシウム/ナトリウ ム/シリコン組成のガラスをプラスチック材料表面へ被着してもよい。また、ア ルミ/シリコン組成のガラス膜及び鉛ガラス膜を同様に形成してもよい。ガラス 質層の被着方法としては、他に蒸発を誘発する電子ビームや従来の電熱器を用い て硼珪酸ガラス等の既に形成されているガラス材を真空蒸着させる方法もある。In another embodiment, calcium carbonate, sodium carbonate, silicon oxide, etc. In situ ( Glass or glass-like products made by various methods such as in 5 itu) glass manufacturing methods Forms a finishing coat consisting of texture. This method eliminates the traditional calcium/sodium A glass of silica/silicone composition may be applied to the surface of the plastic material. Also, a A glass film and a lead glass film having a lumi/silicon composition may be similarly formed. glass Other methods of depositing the quality layer include using an electron beam to induce evaporation or using a conventional electric heater. There is also a method of vacuum-depositing an already formed glass material such as borosilicate glass.

また、ガラス、タルク及び白亜、またはポリプロピレン材料等を充填したいわゆ る充填剤入りプラスチック材料を用いてもよい。これらの充填物は、主にコスト の低下及び性状改善の目的で用いられ、真空至内で他の物と共反応を起こし、ガ ラス下塗層の結合力を向上しうる。In addition, so-called glass filled with glass, talc and chalk, or polypropylene materials, etc. Filled plastic materials may also be used. These fillings mainly cost It is used for the purpose of reducing carbon dioxide and improving properties, and co-reacts with other substances in a vacuum, resulting in gas formation. It can improve the bonding strength of the lath undercoat layer.

国際調査報告international search report

Claims (1)

【特許請求の範囲】 (1〕プラスチツク材料から鏡面反射性状を有する光学構成部品を製造する方法 であって、前記プラスチック材料に硬質ガラスまたはガラスに似た性状の物質か ら成る表面層を被着する工程と、前記表面層に鏡面反射材料から成る層を被着す る工程とから成る方法。 〔2〕前記表面層の被着工程に先立って前記プラスチック材料に脱脂作業を施す ことを特徴とする請求の範囲第1項記載の方法。 〔3〕前記プラスチツク材料の前記脱脂作業はフルオロカーボン溶剤中において 蒸気脱脂することにより行ない、その後前記プラスチック材料を同じフルオロカ ーボン溶剤の超短波振動溶液中へ移送することを特徴とする請求の範囲第2項記 載の方法。 〔4〕前記脱脂作業後の前記プラスチック材料に対して分子清浄作業を行なうこ とを特徴とする請求の範囲第2項または第3項記載の方法。 〔5〕前記分子清浄作業後に前記鏡面反射材料の成形に用いる材料の酸化物から 成る下塗層を前記プラスチック材料に被着することにより前記表面層を形成する 請求の範囲第4項記載の方法。 〔6〕前記下塗層は、真空容器中の圧力的2X10−’ミリバールの酸素及びア ルゴン雰囲気中における磁電管スパッター法によって被着されることを特徴とす る請求の範囲第5項記載の方法。 ’ (7)前記分子清浄作業直後に真空容器の圧力を1×101ミリバールに減 じ、アルゴンガスを注入して圧力を5×10−4ミリバールまで上げ、その後酸 素を加えて圧力を2xio−’ミリバールまで上げることを特徴とする請求の範 囲第6項記載の方法。 〔8〕前記下塗層は、前記下塗層形成材料となる金属をターゲットとして用いる 磁電管スパッター法によって被着されることを特徴とする請求の範囲第6項また は第7項記載の方法。 〔9〕前記下塗層の厚さは0.5−i、0ミクロンであることを特徴とする請求 の範囲第8項記載の方法。〔10〕前記鏡面反射材料から成る層が前記下塗層へ 直接塗被されることを特徴とする請求の範囲第8項または第9項記載の方法。 〔11〕前記鏡面反射材料は、DCC型雷管スパッター法より被着されることを 特徴とする請求の範囲第10項記載の方法。 〔12〕前記鏡面反射材料から成る層がクロムであることを特徴とする請求の範 囲第10項または第11項記載の方法。 〔13〕前記下塗層が厚さ0.5〜1.0ミクロンの酸化物から成る薄い層であ ることを特徴とする請求の範囲第10項または第11項記載の方法。 〔14〕前記鏡面反射材料から成る層がアルミニウムであることを特徴とする請 求の範囲第10項または第11項記載の方法。 〔15〕前記下塗層が厚さ0.5〜1.0ミクロンのアルミニウム酸化物から成 る薄い層であることを特徴とする請求の範囲第14項記載の方法。 〔16〕アルミニウムから成る前記鏡面反射材料の層に硬質耐摩耗性仕上塗層を 被着することを特徴とする請求の範囲第15項記載の方法。 (17)前記耐摩耗性性゛上塗層は厚さ0.5〜5.0ミクロンの誘電酸化物か ら成ることを特徴とする請求の範囲第16項記載の方法。 〔18〕前記表面層は炭酸カルシウム、炭酸ナトリウム及びシリコン酸化物等の 主要ガラス製造化学物質をプラズマ活性条件下で共反応させるインサイチュガラ ス製法により形成されることを特徴とする請求の範囲第1項から第17項のうち いずれか1項記載の方法。 〔19〕前記゛下塗層は、蒸発を誘発する電子ビームまたは電熱器を用いて既に 組成されたガラス材料の真空蒸着により直接形成されることを特徴とする請求の 範囲第1項がら第17項のいずれか1項記載の方法。 〔20〕請求の範囲第1項から第19項のうちのいずれが1項記載の方法により 形成された光学構成部品。 〔21〕鏡面反射性状を有する光学材料であって、ガラスまたはガラスに似た性 状を有する物質から成る表面層を有するプラスチック材料と、前記表面層に被着 された反射材料から成る鏡面層とから成る光学構成部品。[Claims] (1) Method for manufacturing optical components with specular reflection properties from plastic materials and the plastic material is hard glass or a substance with properties similar to glass. applying a surface layer consisting of a mirror-reflecting material to the surface layer; and applying a layer consisting of a specular reflective material to the surface layer. A method consisting of the steps of: [2] Prior to the step of applying the surface layer, the plastic material is degreased. A method according to claim 1, characterized in that: [3] The degreasing of the plastic material is carried out in a fluorocarbon solvent. This is done by vapor degreasing and then the plastic material is treated with the same fluorocarbon. Claim 2, characterized in that the method is transferred into an ultrahigh frequency vibration solution of a carbon solvent. How to put it on. [4] Performing a molecular cleaning operation on the plastic material after the degreasing operation. The method according to claim 2 or 3, characterized in that: [5] From the oxide of the material used for forming the specular reflective material after the molecular cleaning operation forming the surface layer by applying a subbing layer consisting of the plastic material to the plastic material; The method according to claim 4. [6] The undercoat layer is coated with oxygen and aluminum at a pressure of 2 x 10-' mbar in a vacuum vessel. It is characterized by being deposited by magnetron sputtering method in a Rougon atmosphere. The method according to claim 5. ’ (7) Immediately after the molecular cleaning process, reduce the pressure in the vacuum container to 1 x 101 mbar. At the same time, argon gas was injected to increase the pressure to 5 x 10-4 mbar, and then acid Claims characterized in that the pressure is increased to 2xio-' millibar by adding The method described in section 6. [8] The undercoat layer uses a metal serving as the undercoat layer forming material as a target. Claim 6 or 6, characterized in that the material is deposited by a magnetron sputtering method. is the method described in Section 7. [9] A claim characterized in that the thickness of the undercoat layer is 0.5-i, 0 micron. The method according to item 8. [10] The layer made of the specular reflective material is applied to the undercoat layer. 10. A method according to claim 8 or 9, characterized in that the coating is applied directly. [11] The specular reflective material is deposited by DCC type detonator sputtering method. 11. The method of claim 10, characterized in that: [12] Claim characterized in that the layer made of the specular reflective material is chromium. The method according to item 10 or 11. [13] The undercoat layer is a thin layer made of oxide with a thickness of 0.5 to 1.0 microns. 12. The method according to claim 10 or 11, characterized in that: [14] A claim characterized in that the layer made of the specular reflective material is aluminum. The method according to claim 10 or 11. [15] The undercoat layer is made of aluminum oxide with a thickness of 0.5 to 1.0 microns. 15. A method according to claim 14, characterized in that the layer is thin. [16] A hard wear-resistant finish coating layer is applied to the specularly reflective material layer made of aluminum. 16. A method according to claim 15, characterized in that the method comprises depositing. (17) Abrasion resistance: Is the overcoat layer a dielectric oxide with a thickness of 0.5 to 5.0 microns? 17. The method according to claim 16, characterized in that the method comprises: [18] The surface layer is made of calcium carbonate, sodium carbonate, silicon oxide, etc. In-situ glass co-reacting of key glass manufacturing chemicals under plasma-activated conditions Among claims 1 to 17, the product is formed by a manufacturing method. The method described in any one of the above. [19] The above-mentioned “undercoat layer” has already been prepared using an electron beam or an electric heater to induce evaporation. of the claim characterized in that it is formed directly by vacuum evaporation of the composition glass material. The method according to any one of the ranges 1 to 17. [20] Any of claims 1 to 19 can be obtained by the method described in claim 1. Formed optical components. [21] Optical material with specular reflection properties, including glass or glass-like properties a plastic material having a surface layer made of a substance having a shape; and a plastic material adhered to the surface layer. an optical component consisting of a mirror layer of reflective material;
JP59500766A 1983-01-26 1984-01-25 Method for manufacturing optical components and optical components Pending JPS60500502A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB8302165 1983-01-26
GB838302165A GB8302165D0 (en) 1983-01-26 1983-01-26 Producing optical component

Publications (1)

Publication Number Publication Date
JPS60500502A true JPS60500502A (en) 1985-04-11

Family

ID=10536991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59500766A Pending JPS60500502A (en) 1983-01-26 1984-01-25 Method for manufacturing optical components and optical components

Country Status (20)

Country Link
JP (1) JPS60500502A (en)
AU (1) AU576487B2 (en)
BE (1) BE898767A (en)
CA (1) CA1246370A (en)
CH (1) CH665488A5 (en)
DE (1) DE3490033T1 (en)
DK (1) DK161754C (en)
ES (1) ES8501536A1 (en)
FR (1) FR2539881B1 (en)
GB (2) GB8302165D0 (en)
GR (1) GR81664B (en)
IE (1) IE55013B1 (en)
IT (1) IT1173135B (en)
NL (1) NL8420019A (en)
NO (1) NO843782L (en)
PH (1) PH23007A (en)
PT (1) PT78009B (en)
SE (1) SE453737B (en)
WO (1) WO1984002875A1 (en)
ZA (1) ZA84518B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5394317A (en) * 1992-11-03 1995-02-28 Grenga; John J. Lamp reflector
FI121061B (en) * 2007-07-04 2010-06-30 Reate Oy Method and apparatus for manufacturing an optical object
DE102011007557B4 (en) 2011-04-16 2023-09-28 EvoChem Advanced Materials GmbH Process for increasing the smudge resistance or scratch resistance of plastic surfaces

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4958171A (en) * 1972-10-06 1974-06-05
JPS5216586A (en) * 1975-07-30 1977-02-07 Daicel Chem Ind Ltd Surface-treated product of plastics and its preparation
JPS5713405A (en) * 1980-06-26 1982-01-23 Nhk Spring Co Ltd Reflecting mirror and its manufacture

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1002584B (en) * 1940-12-14 1957-02-14 Dr Georg Hass Process for improving the adhesive strength of metallic coatings
US3372008A (en) * 1961-05-29 1968-03-05 Philips Corp Metal reflector and method of manufacturing such reflectors
DE1521157C3 (en) * 1965-09-21 1978-12-21 Balzers Hochvakuum Gmbh, 6201 Nordenstadt Process for increasing the strength of the bond between thin layers
US3530055A (en) * 1968-08-26 1970-09-22 Ibm Formation of layers of solids on substrates
CH494409A (en) * 1969-07-16 1970-07-31 Balzers Patent Beteilig Ag Front surface mirror and process for its manufacture
US4022947A (en) * 1975-11-06 1977-05-10 Airco, Inc. Transparent panel having high reflectivity for solar radiation and a method for preparing same
DE2833133C3 (en) * 1978-07-28 1982-02-18 Glasplakatefabrik Offenburg Fritz Borsi KG, 7600 Offenburg Acrylic mirror and process for its manufacture
DE2852341A1 (en) * 1978-12-04 1980-06-26 Ver Flugtechnische Werke METHOD FOR METALLIZING PLASTIC SURFACES
DE3017713A1 (en) * 1980-05-08 1981-11-12 Siemens AG, 1000 Berlin und 8000 München Metallising polymer films - by sputtering adhesion promoting layer onto film and then vacuum depositing metal, used for resistance layers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4958171A (en) * 1972-10-06 1974-06-05
JPS5216586A (en) * 1975-07-30 1977-02-07 Daicel Chem Ind Ltd Surface-treated product of plastics and its preparation
JPS5713405A (en) * 1980-06-26 1982-01-23 Nhk Spring Co Ltd Reflecting mirror and its manufacture

Also Published As

Publication number Publication date
CH665488A5 (en) 1988-05-13
DK161754C (en) 1992-02-17
NL8420019A (en) 1985-10-01
GB2152703A (en) 1985-08-07
ES529203A0 (en) 1984-11-16
CA1246370A (en) 1988-12-13
GB2152703B (en) 1987-11-25
AU576487B2 (en) 1988-09-01
DE3490033T1 (en) 1986-03-13
SE8500918D0 (en) 1985-02-25
IT8419314A0 (en) 1984-01-25
IE840138L (en) 1984-07-26
WO1984002875A1 (en) 1984-08-02
NO843782L (en) 1984-09-21
DK458684D0 (en) 1984-09-25
GR81664B (en) 1984-12-12
GB8503825D0 (en) 1985-03-20
DK161754B (en) 1991-08-12
ZA84518B (en) 1984-12-24
SE8500918L (en) 1985-02-25
GB8302165D0 (en) 1983-03-02
PT78009A (en) 1984-02-01
FR2539881A1 (en) 1984-07-27
PH23007A (en) 1989-02-24
ES8501536A1 (en) 1984-11-16
DK458684A (en) 1984-09-25
IE55013B1 (en) 1990-04-25
PT78009B (en) 1986-03-27
IT8419314A1 (en) 1985-07-25
IT1173135B (en) 1987-06-18
AU2495584A (en) 1984-08-15
FR2539881B1 (en) 1988-05-27
BE898767A (en) 1984-05-16
SE453737B (en) 1988-02-29

Similar Documents

Publication Publication Date Title
US4333983A (en) Optical article and method
US5656335A (en) Process for coating a substrate with a material giving a polished effect
US6018902A (en) Iridescent coating for fishing lure
JPH06501894A (en) Abrasion resistant polymer based products
JPS5833100B2 (en) a reflector
JPS60500502A (en) Method for manufacturing optical components and optical components
JPH1177885A (en) Surface modified plastic material
US5009761A (en) Method of producing an optical component, and components formed thereby
US3652328A (en) Transparent plastic having transparent mar-resistant coating of barium titanate
JP2724260B2 (en) Optical member having antireflection film
RU2709069C1 (en) Method for electron-beam application of hardening coating on articles made from polymer materials
JPH0649244A (en) Surface-modified fluororesin molding and its production
JP3433845B2 (en) Anti-reflection film with excellent scratch resistance and durability
JPH09211204A (en) Film forming method of antireflection film on plastic film
JPH0285353A (en) Method for coating plastic
JP3266625B2 (en) Manufacturing method of ultraviolet shielding film
JP3412302B2 (en) Method for manufacturing plastic optical component having antireflection film
JP2007119885A (en) Substrate with metallic film and manufacturing method therefor
JPS63205609A (en) Heat ray reflection film
JPH0266157A (en) Metallic coating of plastic parts and production of reflection increased metallic mirror coating
Martin et al. Gesputterte Tin-Schichten Auf Kunststoffen(Sputtered Tin Coatings in Plastic)
JPH02298252A (en) Formation of mgf2 film on plastic substrate
JPS6136584B2 (en)
JPS61190065A (en) Wear-resistant parts and its production
JPH0696277B2 (en) Laminated polyester film for vapor deposition and method for producing the same