JPS6049853B2 - How to measure object surface temperature - Google Patents

How to measure object surface temperature

Info

Publication number
JPS6049853B2
JPS6049853B2 JP55179254A JP17925480A JPS6049853B2 JP S6049853 B2 JPS6049853 B2 JP S6049853B2 JP 55179254 A JP55179254 A JP 55179254A JP 17925480 A JP17925480 A JP 17925480A JP S6049853 B2 JPS6049853 B2 JP S6049853B2
Authority
JP
Japan
Prior art keywords
light
temperature
radiometer
furnace
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55179254A
Other languages
Japanese (ja)
Other versions
JPS57103024A (en
Inventor
徹 井内
富三男 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP55179254A priority Critical patent/JPS6049853B2/en
Publication of JPS57103024A publication Critical patent/JPS57103024A/en
Publication of JPS6049853B2 publication Critical patent/JPS6049853B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/52Radiation pyrometry, e.g. infrared or optical thermometry using comparison with reference sources, e.g. disappearing-filament pyrometer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)

Description

【発明の詳細な説明】 本発明は、物体特に炉内物体の表面温度を放射測温する
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for radiometrically measuring the surface temperature of an object, particularly an object in a furnace.

炉内物体例えは焼鈍処理される鋼板される表面温度を第
1図に示すようにして放射測温する方法を本出願人は既
に提案した(特願昭55−27108)。
The present applicant has already proposed a method of measuring the surface temperature of a steel plate being annealed by radiation as shown in FIG. 1 (Japanese Patent Application No. 55-27108).

この図で10は鋼板、12は展体炉、16は放射計であ
り、Nは測温点PTに立てた法線、θ1、θ。は展体炉
12、放射計16と測温点PTとを結ふ直線が法線Nに
対してなす角であり、θ、=θ2に選定される。この測
定系ては鋼板10の温度をTl、放射率をE_)展体炉
12の温度をT。とすると、放射計16が受光する放射
エネルギE_、はE_、■ E_−E_b(Tl)+(
1−E_)E_b(T0)・・・・・・(1)である。
In this figure, 10 is a steel plate, 12 is a development furnace, 16 is a radiometer, N is the normal line erected at the temperature measurement point PT, θ1, θ. is the angle formed by the straight line connecting the exfoliating furnace 12, the radiometer 16, and the temperature measurement point PT with the normal N, and is selected to be θ, = θ2. In this measurement system, the temperature of the steel plate 10 is Tl, the emissivity is E_), and the temperature of the extrusion furnace 12 is T. Then, the radiant energy E_, received by the radiometer 16 is E_, ■E_-E_b(Tl)+(
1-E_)E_b(T0) (1).

こゝでE_b(T)は温度Tの展伸が放出する放射エネ
ルギである。展体炉12の温度をT3にすれば、そのと
き放射計16が受ける放射エネルギE_2はE_2■ε
・ E_b(Ti)十(1−E_)E_b(T3)・・
・・・・(2)である。
Here, E_b(T) is the radiant energy emitted by expansion at temperature T. If the temperature of the exhibition furnace 12 is set to T3, the radiant energy E_2 received by the radiometer 16 at that time is E_2■ε
・E_b(Ti) 10(1-E_)E_b(T3)...
...(2).

これらの式で未知数はεとTlであるから(1)、(2
)式は解くことがてき、E_、−E_2 E_■1−・・・・・・(3) E_■T2)上b(T0) E_01−E_ E_b(T、)=−−−・ E_b(T3)・・・・・
・(4)となる。
In these equations, the unknowns are ε and Tl, so (1), (2
) can be solved, E_, -E_2 E_■1-... (3) E_■T2) Upper b(T0) E_01-E_ E_b(T, )=----・E_b(T3 )・・・・・・
・(4) becomes.

E_b(Tl)が分ればウィーンの公式E_b(T)■
Clλ−゜exp(−Co/λ・ T)などから温度T
が求められる。しカル以上の議論は理想的な状態に対す
るもので実際には種々の補正を必要とする。
If E_b(Tl) is known, Vienna's formula E_b(T)■
Temperature T from Clλ-゜exp(-Co/λ・T) etc.
is required. The above discussion is based on an ideal situation, and in reality various corrections are required.

例えは(2)式の右辺第2項は展体炉からの放射エネル
ギが鋼板表面て鏡面反射して放射計16に入力する、と
すJるものであるが、実際には鋼板表面は完全鏡面では
なく若干の乱反射を生じる。これは(1−E_)が小さ
くなることを意味し、0<f<1となる係数fを導入し
てf(1−ε)に補正する必要がある。この係数fは鏡
面反射係数とても称すべきも丁のである。また鋼板表面
が非完全鏡面であると炉壁からの放射エネルギが鋼板表
面で拡散反射して放射計に入る分も考慮しなければなら
す、この分は(1−E_)p)E_b(T0)て表わさ
れる。こゝでpは鋼板表面の拡散反射係数であり、係数
fとはf+p=1の関係にある。T4は炉壁の温度であ
る。これを補正すると(1)〜(4)式はとなる。
For example, the second term on the right side of equation (2) assumes that the radiant energy from the development furnace is specularly reflected on the steel plate surface and input to the radiometer 16, but in reality, the steel plate surface is completely It is not a mirror surface, but produces some diffused reflection. This means that (1-E_) becomes smaller, and it is necessary to introduce a coefficient f such that 0<f<1 to correct it to f(1-ε). This coefficient f can be called the specular reflection coefficient. Also, if the steel plate surface is not a perfect mirror, it is necessary to take into account the amount of radiant energy from the furnace wall that is diffusely reflected on the steel plate surface and enters the radiometer.This amount is (1-E_)p)E_b(T0) It is expressed as Here, p is the diffuse reflection coefficient of the surface of the steel plate, and has a relationship with the coefficient f as f+p=1. T4 is the temperature of the furnace wall. When this is corrected, equations (1) to (4) become as follows.

これが前記出願の測定原理であり、か)る測定を実行す
る装置、例えば黒体炉側からEb(T2),Eb(T3
)を得る手段などは適宜構成若しくは変更できる。また
Eb(T3)±0とすることもでき、この方が式が簡単
になる。ところで上記(5),(6)を解いて(7),
(8)式を求める場合も前記出願ては未知数はεとT1
であり、それ以外は既知(測定値もしくは設定値)とす
る。
This is the measurement principle of the above-mentioned application.
) can be configured or changed as appropriate. It is also possible to set Eb(T3)±0, which simplifies the equation. By the way, solving (5) and (6) above gives (7),
When calculating equation (8), the unknowns in the above application are ε and T1.
, and other values are known (measured values or set values).

しかしながら拡散反射係数pは物体の表面性状(粗度な
ど)によつて0〜1の範囲で大きく変る。従つて推定値
を使用すると、場合によつては大きな測定誤差を招く恐
れがある。本発明はこの点を改善するものであつて、拡
散反射係数をオンライン測定し、変動する測温対象の正
確な誤係数を知つて高精度の測温をしようとするものて
ある。
However, the diffuse reflection coefficient p varies greatly in the range of 0 to 1 depending on the surface properties (roughness, etc.) of the object. Therefore, the use of estimated values may lead to large measurement errors in some cases. The present invention aims to improve this point by measuring the diffuse reflection coefficient on-line, and by knowing the accurate error coefficient of the fluctuating temperature measurement object, it is possible to measure the temperature with high accuracy.

即ち本発明の測定方法は放射計と黒体炉を物体に対して
、該放射計へ該物体からの放射エネルギが直接、及び該
黒体炉からの放射エネルギが物体表面で鏡面反射したの
ち入射するように配置し、かつ該黒体炉からの放射エネ
ルギ.−を低、高温時のそれの2種に変えて、該低温時
の放射計受光エネルギE1と高温時の放射計受光エネル
ギE2を計測し、また該物体表面に光を投射して鏡面反
射する光11とその周囲の拡散反射光12との比を求め
、該比U2/11より該物体表面の拡散く反射係数pを
求め、これらの受光エネルギEl,E2および拡散反射
係数pより該物体の表面温度を求めることを特徴とする
ものである。次に拡散反射係数の測定法を説明する。第
2図は本測定法の原理を示す。
That is, in the measurement method of the present invention, a radiometer and a blackbody furnace are connected to an object, and radiant energy from the object is directly incident on the radiometer, and radiant energy from the blackbody furnace is incident on the object surface after specular reflection. and radiant energy from the blackbody furnace. - is changed to two types: low and high temperature, the radiometer reception energy E1 at the low temperature and the radiometer reception energy E2 at the high temperature are measured, and the light is projected onto the object surface and reflected specularly. Find the ratio of the light 11 and the surrounding diffuse reflection light 12, find the diffuse reflection coefficient p of the surface of the object from this ratio U2/11, and calculate the ratio of the object from the received light energies El, E2 and the diffuse reflection coefficient p. This method is characterized by determining the surface temperature. Next, a method for measuring the diffuse reflection coefficient will be explained. Figure 2 shows the principle of this measurement method.

即ち本測定ではa図に示すように投光部Aより物体表面
に対して光Bを投射し、その反射光B″を受光部Cで測
定する。受光部では鏡面反射11とその周囲の拡散反射
光12との比12/11を求める。この比は次に述べる
ように拡散反射係数pに対応しており、同図bに示す予
め求めておいたP−12/11特性曲線Dよりpを知る
ことができる。前記(5),(6)式の演算に必要な係
数(1−p)は)入射光Lと鏡面反射光11との比■1
/10に対応付けることができる。
That is, in this measurement, as shown in figure a, light B is projected onto the surface of the object from the light projector A, and the reflected light B'' is measured by the light receiver C. At the light receiver, the specular reflection 11 and the surrounding diffusion are detected. Find the ratio 12/11 with the reflected light 12. This ratio corresponds to the diffuse reflection coefficient p as described below, and p The coefficient (1-p) necessary for calculating the above equations (5) and (6) is the ratio of the incident light L and the specularly reflected light 11.
/10.

即ち、物体表面て拡散反射する(鏡面反射は除く)光を
ΔIとすればI。=11+Δ11従つてとなる。
That is, if the light that is diffusely reflected from the surface of an object (excluding specular reflection) is ΔI, then I. =11+Δ11 Therefore.

受光部Cでは測定する光12はΔIの一部であるからΔ
I=I2+αとおけば上記(1a式の右辺ノが得られ、
この(10)式の右辺から明らかなようにp=12/1
1とする測定法はα,12に伴なう若干の誤差が出るが
、鏡面反射に近い状態ではα″.0,12十α′−11
であるので上記誤差は小さい。そしてI。に比べて12
の測定は後述のように極めて簡単にできる。(1−p)
を直接測定する場合は(9)式を変形してとすればよい
Since the light 12 to be measured at the light receiving part C is a part of ΔI, Δ
If we set I=I2+α, we can obtain the right-hand side of the above equation (1a),
As is clear from the right side of equation (10), p=12/1
The measurement method that assumes 1 has a slight error due to α, 12, but in a state close to specular reflection, α″.0,120 α′−11
Therefore, the above error is small. And I. 12 compared to
can be measured very easily as described below. (1-p)
When measuring directly, equation (9) can be modified as follows.

投光部Aでは光Bを第3図aに示すように細いビーム囚
として、また同図bに示すように太いビーム式として、
あるいは同図cに示すように測温点PTて1点に集束す
る円錐もしくは角錐状ビーム式として物体10へ投射す
る。
In the light projecting section A, the light B is transmitted as a narrow beam type as shown in Figure 3a, and as a thick beam type as shown in Figure 3b.
Alternatively, as shown in FIG. 3C, the light is projected onto the object 10 as a conical or pyramidal beam converging at one point at the temperature measurement point PT.

aの場合はレーザ光を使用するのが適当であるが、通常
の可視光をレンズなどで紋つてもよい。bの場合はレー
ザ光とビームエキスパンダおよびレンズ、又は白熱灯と
レンズまたはミラー系などで大径平行ビーム八を作る。
cの場合も同様な手段でビームを円錐状等にする。受光
部Cは第4図のように構成する。同図aは中央に孔hが
あいた円板を主体とする回転セクタと、円板状受光器2
2を使用する例を示し、回転セクタ20を図示位置に置
くと鏡面反射光のみが孔hを通つて(そのように孔径、
セクタ位置を定める)背後の受光器22に達し、それ以
外の反射光は回転セクタ20により遮ぎられて受光器2
2に達せず、従つて受光器22の出力は鏡面反射光成分
11に対応したものとなる。次に回転セクタ20を回転
させて受光器22の前方から退去させると、受光器22
へは該鏡面反射成分11とその周囲の反射光、詳しくは
受光器22が測温点PTに対して張る立体角内の反射光
(これを13とする)が入射し、受光器出力は13に対
応したものとなる。従つて比1。/11は(L3−11
)/11として求める回転セクタも受光素子としておけ
ばその出力は12となるから、部材20,22の出力の
比として直ちに12/11が求まる。孔hの径は鏡面反
射光のみが通るように選定するから、入射光が小径ビー
ムのときは小さく、大径ビームのときは大になる。
In case a, it is appropriate to use laser light, but normal visible light may also be illuminated with a lens or the like. In case b, eight large-diameter parallel beams are created using a laser beam, a beam expander, and a lens, or an incandescent lamp, a lens, or a mirror system.
In the case of c, the beam is shaped into a cone or the like using similar means. The light receiving section C is constructed as shown in FIG. Figure a shows a rotating sector mainly consisting of a disk with a hole h in the center, and a disk-shaped light receiver 2.
2 is used, and when the rotating sector 20 is placed in the position shown, only the specularly reflected light passes through the hole h (so that the hole diameter,
The other reflected light is blocked by the rotating sector 20 and reaches the light receiver 22 at the rear (determining the sector position).
2, and therefore the output of the light receiver 22 corresponds to the specularly reflected light component 11. Next, when the rotating sector 20 is rotated and removed from the front of the light receiver 22, the light receiver 22
The specular reflection component 11 and the reflected light around it, more specifically, the reflected light within the solid angle that the photoreceiver 22 extends to the temperature measurement point PT (this is referred to as 13), enter the photoreceiver 22, and the output of the photoreceiver is 13. It corresponds to Therefore, the ratio is 1. /11 is (L3-11
)/11, if the rotating sector is also used as a light receiving element, its output will be 12, so 12/11 can be immediately determined as the ratio of the outputs of the members 20 and 22. Since the diameter of the hole h is selected so that only specularly reflected light passes through it, it is small when the incident light is a small diameter beam, and becomes large when the incident light is a large diameter beam.

受光器22の位置にはレンズを置き、それで集光して小
型受光器に投射して計測するようにしてもよい。第4図
bは十字状に並ふ点状受光素子24により比12/11
を測定する。
A lens may be placed at the position of the light receiver 22 to condense light and project it onto a small light receiver for measurement. Figure 4b shows a ratio of 12/11 due to the dotted light receiving elements 24 arranged in a cross shape.
Measure.

即ち反射光の強度分布はX,y方向にc図d図の如く分
布しているからこの受光素子アレーの受光出力を積分演
算することにより鏡面反射成分11とその周囲の反射成
分12とを求めることができる。受光素子24は多数設
ける代りに1素子を使用し、それをアレイ方向即ちX,
y方向に走査してもよい。第4図eは同図aの変形例で
、可動セクタ20の前後にレンズ26,28を配置し、
該レンズ28の後方に小型受光素子30を置く。
That is, since the intensity distribution of the reflected light is distributed in the X and Y directions as shown in Figures C and D, the specular reflection component 11 and the surrounding reflection component 12 are determined by integrating the light reception output of this light receiving element array. be able to. Instead of providing a large number of light-receiving elements 24, one element is used, and it is aligned in the array direction, that is, in the
Scanning may also be performed in the y direction. Fig. 4e shows a modification of Fig. 4a, in which lenses 26 and 28 are arranged before and after the movable sector 20,
A small light receiving element 30 is placed behind the lens 28.

レンズ20て反射光を平行光束とし、レンズ28て集光
して受光素子30へ投射する。セクタ20を回転または
直進させて図示のように平行光束中へ挿入すれは受光素
子30の出力は11、それより外せは11+12となり
、これより比12/11を求めることができる。第4図
fは、開口を持つ凹面反射鏡32を用いて全反射光と鏡
面反射光との比を求める例を示す。
A lens 20 converts the reflected light into a parallel light beam, a lens 28 collects the light, and projects it onto a light receiving element 30 . When the sector 20 is rotated or moved straight and inserted into the parallel beam as shown, the output of the light receiving element 30 is 11, and when it is removed, the output is 11+12, and from this, the ratio 12/11 can be determined. FIG. 4f shows an example of determining the ratio between total reflected light and specular reflected light using a concave reflecting mirror 32 having an aperture.

即ち、この反射鏡32を取除くと受光素子30には鏡面
反射光11のみ入射し(受光素子30の受光面の大きさ
はそのように選んでおく)、反射鏡32を図示位置に置
くと開口h1から入つて物体表面で鏡面反射した反射光
は開口H2を通つて受光器30へ入射し、また物体表面
て各方向へ拡散反射した入射光は反射鏡32で反射して
物体表面10へ戻され、そこで再び反射し、こうして多
重反射後開口H2を通つて受光器30へ入る。この場合
の受光器出力ほ〜11+I2であるが、物体表面での拡
散反射の程度が著しいとすると第4図A,bなどの場合
より12は大である。第4図gは可視光の代りに赤外線
を使用し、受光素子としてはシリコンセルを使用してこ
れを可動にして例を示す。
That is, when this reflecting mirror 32 is removed, only the specularly reflected light 11 enters the light receiving element 30 (the size of the light receiving surface of the light receiving element 30 is selected in advance), and when the reflecting mirror 32 is placed at the position shown in the figure, The reflected light that enters through the aperture h1 and is specularly reflected on the object surface enters the light receiver 30 through the aperture H2, and the incident light that is diffusely reflected in various directions on the object surface is reflected by the reflecting mirror 32 and reaches the object surface 10. The light is returned, where it is reflected again, and thus enters the light receiver 30 through the aperture H2 after multiple reflections. The output of the photoreceiver in this case is ~11+I2, but if the degree of diffuse reflection on the object surface is significant, 12 is larger than in cases such as those shown in FIGS. 4A and 4B. FIG. 4g shows an example in which infrared rays are used instead of visible light, and a silicon cell is used as the light receiving element and is made movable.

4は黒体炉、36はシリコンセルからなる受光器である
4 is a black body furnace, and 36 is a light receiver consisting of a silicon cell.

黒体炉34から赤外線(放射エネルギ)を円錐状にして
物体10の測温点PTに照射し、この鏡面反射光を受光
器36で受ける。これには、図示受光器位置で該受光器
が測温点PTに張る立体角Ω1内に鏡面反射光のみが入
るようにすればよい(そのように受光器位置等を定めれ
ばよい)。次いで受光器36を点線位置へ前進させ、測
温点に対して張る立体角Ω2がΩ1より大になるように
する。こうすれば前述の11+I2を測定することがで
きる。第5図は入、反射角θが300、使用した赤外線
の波長λが0.9μm1Ω1=0.001π〔Sr〕,
Ω2=0.01π〔Sr〕のときの拡散反射係数p対強
度比12/11との関係を示す。
A conical infrared ray (radiant energy) is irradiated from the black body furnace 34 to the temperature measuring point PT of the object 10, and this specularly reflected light is received by the light receiver 36. For this purpose, only the specularly reflected light may be set within the solid angle Ω1 that the photoreceiver extends to the temperature measurement point PT at the illustrated photoreceiver position (the photoreceiver position etc. may be determined in this way). Next, the light receiver 36 is advanced to the dotted line position so that the solid angle Ω2 extending to the temperature measurement point becomes larger than Ω1. In this way, the aforementioned 11+I2 can be measured. In Figure 5, the reflection angle θ is 300, the wavelength λ of the infrared ray used is 0.9 μm1Ω1=0.001π [Sr],
The relationship between the diffuse reflection coefficient p and the intensity ratio 12/11 when Ω2=0.01π [Sr] is shown.

これは第2図bの一具体例である。第6図は本発明の実
施例を示す。
This is a specific example of FIG. 2b. FIG. 6 shows an embodiment of the invention.

40は連続焼鈍炉であつて、本例ではストリップてある
鋼板10を連談焼鈍する。
40 is a continuous annealing furnace, and in this example, the steel plate 10, which is a strip, is continuously annealed.

42は前述の拡散反射係数pの測定装置てあつて炉40
の入側に設けられる。
42 is a furnace 40 equipped with the above-mentioned measuring device for the diffuse reflection coefficient p.
installed on the entrance side.

44は第1図に示した放射測温装置のセンサ部、′46
は前記(7),(8)式の演算を行なつてストリップ1
0の放射率Eおよび温度Tを演出する演算装置てある。
44 is the sensor section of the radiation thermometry device shown in Fig. 1, '46
calculates strip 1 by performing the calculations in equations (7) and (8) above.
There is a calculation device that produces the emissivity E and temperature T of 0.

p値測定装置42は焼鈍炉40の出側に放射測温装置の
センサ部44と並設してもよく、p値の変化が激しいと
きはこの方が正確な測温を7可能にする。以上説明した
ように本発明によれば第1図に示す放射測温法で正確に
物体温度を測定することが可能となり、しかもそれに必
要な拡散反射係数pの計測は容易であるなどの利点を有
する。
The p-value measuring device 42 may be installed on the outlet side of the annealing furnace 40 in parallel with the sensor section 44 of the radiation temperature measuring device, and this allows for more accurate temperature measurement when the p-value changes rapidly. As explained above, according to the present invention, it is possible to accurately measure the temperature of an object using the radiation thermometry method shown in FIG. have

9図面の簡単な説明 第1図は既提案の放射測温の原理を説明する図、第2図
は本発明の測定要領を説明する図、第3図は投射される
光の各種の例を示す説明図、第4図は受光部の各種の例
を示す説明図、第5図はP−12/11特性の1例を示
すグラフ、第6図は本発明の実施例を示す説明図てある
9 Brief description of the drawings Fig. 1 is a diagram explaining the principle of radiation temperature measurement that has already been proposed, Fig. 2 is a diagram explaining the measurement procedure of the present invention, and Fig. 3 is a diagram showing various examples of projected light. FIG. 4 is an explanatory diagram showing various examples of the light receiving section, FIG. 5 is a graph showing an example of P-12/11 characteristics, and FIG. 6 is an explanatory diagram showing an example of the present invention. be.

図面で16は放射計、12は黒体炉、10は物体、Bは
投射光、B″は反射光である。
In the drawing, 16 is a radiometer, 12 is a blackbody furnace, 10 is an object, B is a projected light, and B'' is a reflected light.

Claims (1)

【特許請求の範囲】[Claims] 1 放射計と黒体炉を物体に対して、該放射計へ該物体
からの放射エネルギが直接、及び該黒体炉からの放射エ
ネルギが物体表面で鏡面反射したのち入射するように配
置し、かつ該黒体炉からの放射エネルギを低、高温時の
それの2種に変えて、該低温時の放射計受光エネルギE
_1と高温時の放射計受光エネルギE_2を計測し、ま
た該物体表面に光を投射して鏡面反射する光I_1とそ
の周囲の拡散反射光I_2との比を求め、該比I_2/
I_1より該物体表面の拡散反射係数pを求め、これら
の受光エネルギE_1、E_2および拡散反射係数pよ
り該物体の表面温度を求めることを特徴とする物体表面
温度測定方法。
1. A radiometer and a blackbody furnace are arranged with respect to an object so that radiant energy from the object directly enters the radiometer, and radiant energy from the blackbody furnace enters the object after specular reflection on the surface of the object, And by changing the radiant energy from the blackbody furnace into two types: low and high temperature, the radiation energy received by the radiometer at the low temperature E
_1 and the radiometer received light energy E_2 at high temperature, and also calculate the ratio of the specularly reflected light I_1 by projecting light onto the surface of the object and the surrounding diffusely reflected light I_2, and calculate the ratio I_2/
A method for measuring the surface temperature of an object, characterized in that the diffuse reflection coefficient p of the surface of the object is determined from I_1, and the surface temperature of the object is determined from the received light energies E_1 and E_2 and the diffuse reflection coefficient p.
JP55179254A 1980-12-18 1980-12-18 How to measure object surface temperature Expired JPS6049853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55179254A JPS6049853B2 (en) 1980-12-18 1980-12-18 How to measure object surface temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55179254A JPS6049853B2 (en) 1980-12-18 1980-12-18 How to measure object surface temperature

Publications (2)

Publication Number Publication Date
JPS57103024A JPS57103024A (en) 1982-06-26
JPS6049853B2 true JPS6049853B2 (en) 1985-11-05

Family

ID=16062628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55179254A Expired JPS6049853B2 (en) 1980-12-18 1980-12-18 How to measure object surface temperature

Country Status (1)

Country Link
JP (1) JPS6049853B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5293022B2 (en) * 2008-09-11 2013-09-18 新日鐵住金株式会社 Temperature control method in continuous annealing furnace and continuous annealing furnace

Also Published As

Publication number Publication date
JPS57103024A (en) 1982-06-26

Similar Documents

Publication Publication Date Title
Malbet et al. FU Orionis resolved by infrared long-baseline interferometry at a 2 AU scale
EP1102970B1 (en) A sensor for measuring a substrate temperature
CN105606222A (en) Flame three-dimensional temperature field measurement imaging device, measuring device and measuring method
CN110530525B (en) Directional emissivity measuring device and method based on reflection method
Ikonen et al. A new optical method for high-accuracy determination of aperture area
Lassila et al. An optical method for direct determination of the radiometric aperture area at high accuracy
Dunn et al. Ellipsoidal mirror reflectometer
JPS6049853B2 (en) How to measure object surface temperature
JPS6049852B2 (en) How to measure object surface temperature
US7742171B2 (en) Reflectivity/emissivity measurement probe insensitive to variations in probe-to-target distance
JP3259815B2 (en) Method and apparatus for measuring emissivity and temperature of an object, and rod-shaped radiation source
CN105698698B (en) Single-lens device for detecting two-dimensional morphology and temperature of wafer substrate
JP7341849B2 (en) Optical measurement device and optical measurement method
JPS60142204A (en) Dimension measuring method of object
Zhang et al. Design and characteristic measurement of 8000 mm large aperture integrating sphere
JP3291781B2 (en) Method and apparatus for measuring temperature of steel sheet
JPS5987329A (en) Method for measuring temperature of steel
JPS62289749A (en) Reflection factor measuring instrument
JPS6111617Y2 (en)
JPH0232207A (en) Roughness measuring method for metal surface
JPH05209792A (en) Method and device for simultaneous measurement of emissivity and surface temperature
JPH0361822A (en) Photometric standard light receiver
JPH07294335A (en) Device for measuring surface temperature
JPH01245125A (en) Method and device for measuring simultaneously emissivity and temperature
JPS593698B2 (en) Kiyoumenhanshiyaritsusokuteisouchi