JPS593698B2 - Kiyoumenhanshiyaritsusokuteisouchi - Google Patents

Kiyoumenhanshiyaritsusokuteisouchi

Info

Publication number
JPS593698B2
JPS593698B2 JP50155367A JP15536775A JPS593698B2 JP S593698 B2 JPS593698 B2 JP S593698B2 JP 50155367 A JP50155367 A JP 50155367A JP 15536775 A JP15536775 A JP 15536775A JP S593698 B2 JPS593698 B2 JP S593698B2
Authority
JP
Japan
Prior art keywords
sample
light
reflected
incident
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50155367A
Other languages
Japanese (ja)
Other versions
JPS5278484A (en
Inventor
順之 宇野
誠二郎 徳富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Asahi Kogaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kogaku Kogyo Co Ltd filed Critical Asahi Kogaku Kogyo Co Ltd
Priority to JP50155367A priority Critical patent/JPS593698B2/en
Publication of JPS5278484A publication Critical patent/JPS5278484A/en
Publication of JPS593698B2 publication Critical patent/JPS593698B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 x 本発明は、なめらかな平面を有する物体の反射率を
簡単に、精度高<測定できる鏡面反射率測定装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION x The present invention relates to a specular reflectance measuring device that can easily and accurately measure the reflectance of an object having a smooth plane.

従来提案されている物体の平面反射率測定装置としては
色々の方式があるが、その例を第1図、第2図、第3図
に示す。30第1図では反射プリズムPにより光源Qか
らの光束を既知の反射率を有する標準試料R、又ぱ被測
定試料sに導き、その反射光を光検出素子PMに入射さ
せて行う極めて一般的な方法である。
There are various methods of measuring the plane reflectance of an object that have been proposed in the past, examples of which are shown in FIGS. 1, 2, and 3. 30 In Fig. 1, a very common method is shown in which a light beam from a light source Q is guided by a reflecting prism P to a standard sample R having a known reflectance, or to a sample to be measured s, and the reflected light is made incident on a photodetector PM. This is a great method.

具体的な測定法について説明すると、まず標準試料、■
5Rを図の位置にセットするが、一般的にはプリズムヘ
の入射光束がLiと出射光束Loが一致するようにセッ
トされる。このときの光検出素子PMの出力ERは??
Tn9rh昌 として表わされる。
To explain the specific measurement method, first, the standard sample, ■
5R is set at the position shown in the figure, but generally it is set so that the incident light flux Li to the prism matches the output light flux Lo. What is the output ER of the photodetector PM at this time? ?
It is expressed as Tn9rhChang.

ここでKは定数、Iiは入射光束Liの強度、P1はプ
リズムPの反射率、?は標準試料Rの反射率である。次
に被測定試料Sを標準試料Rと同位置に置き替える。こ
のときの光検出素子PMの出力Esは(2)式のように
示される。L) 話 轟 1I1r階1,.
ここでS,は被測定試料Sの反射率である。
Here, K is a constant, Ii is the intensity of the incident light beam Li, P1 is the reflectance of the prism P, ? is the reflectance of standard sample R. Next, the sample S to be measured is replaced at the same position as the standard sample R. The output Es of the photodetecting element PM at this time is expressed as in equation (2). L) Story Todoroki 1I1r floor 1,.
Here, S is the reflectance of the sample S to be measured.

(1),(2)より〜 故に S,=〔!/ER)・・R,となシ〜Es゜ER
は測定値、Rrは既知であるから、被測定試料Sの反射
率Srlが求められる。
From (1) and (2) ~ Therefore, S, = [! /ER)...R,tonashi~Es゜ER
Since is a measured value and Rr is known, the reflectance Srl of the sample S to be measured is determined.

この方法は構造が簡単である反面、標準試料の反射率と
の相対値を求めるため、安定で高精度の標準試料を必要
とし、又標準試料と被測j定試料との反射率に大きな差
がある場合、誤差が拡大されて正確な測定が困難で更に
入射角も固定されてしまう欠点がある。第2図に卦いて
は、平面反射鏡Mは実線で示した位置ど破線で示した位
置に、互に被測定試料面に対し対称になるように移動可
能となつている。測定に際して、まず平面反射鏡Mを実
線で示した位置に置いて100%合わせを行い、次に破
線の位置に平面反射鏡Mを移動すると共に、被測定試料
S″をセツトし、両者の光検出素子の出力の比をとれば
、被沖定試料の反射率の自乗が求められる。この方式で
は第1図のような標準試料Rとの比較ではなく、絶対反
射率の測定が可能であるが、装置の構造が複雑とな)、
又入射角が固定され〜被測定試料の面積が小さく出来な
い等の欠点がある。第3図に卦いては、Q′は光源、P
M5は光検出素子であジ、xは光源Q″と光検出素子P
M5を結ぶ光軸上の任意の点である。測定に際しては、
まず光源Q′と光検出素子PM′を二直線に置き100
96合わせを行う。次に被測定試料Sllを反射面が点
Xの位置にくるようにセツトし、且つ光検出素子PM″
を点xを中心に回転させ、点線の位置に移動して光電出
力を得る。両者の光検出素子出力の比をとれば、被測定
試料の反射率が求めることができる。この方式は上記例
第1図,第2図の入射角が固定される、被測定試料を小
さくできない等の欠点を改善しているが、光検出素子を
回転させなければならない為、構造が複雑となり、又そ
のため後に説明する現在最も一般的で精度高く、更に信
頼性のあるダブルビーム型分光光度計のような他の機器
への応用が困難である。本発明は上記の如き従来の反射
率測定装置の欠点を解決すると共に、操作及び構造が簡
単で又他の機器への応用が容易な高精度の鏡面反射率測
定装置の提供を目的とするもので、以下図面によう詳細
に説明する。
Although this method has a simple structure, it requires a stable and highly accurate standard sample because it calculates the relative value to the reflectance of the standard sample, and there is also a large difference in reflectance between the standard sample and the measured sample. If there is a problem, the error will be magnified, making accurate measurement difficult, and the angle of incidence will also be fixed. In FIG. 2, the plane reflecting mirror M is movable from the position shown by a solid line to the position shown by a broken line so as to be symmetrical with respect to the surface of the sample to be measured. During measurement, first place the flat reflecting mirror M at the position shown by the solid line and perform 100% alignment, then move the flat reflecting mirror M to the position shown by the broken line, set the sample to be measured S'', and adjust the light from both. By taking the ratio of the outputs of the detection elements, the square of the reflectance of the offshore sample can be determined.With this method, it is possible to measure the absolute reflectance rather than comparing it with the standard sample R as shown in Figure 1. However, the structure of the device is complicated)
Further, there are drawbacks such as the angle of incidence is fixed and the area of the sample to be measured cannot be made small. In Figure 3, Q' is the light source and P
M5 is a photodetection element, x is a light source Q″ and a photodetection element P
This is an arbitrary point on the optical axis connecting M5. When measuring,
First, place the light source Q' and the photodetector PM' in two straight lines,
Perform 96 matches. Next, the sample to be measured Sll is set so that the reflective surface is at the position of point X, and the photodetector element PM''
is rotated around point x and moved to the position indicated by the dotted line to obtain photoelectric output. By taking the ratio of the outputs of both photodetecting elements, the reflectance of the sample to be measured can be determined. This method improves the disadvantages of the above examples (Figures 1 and 2), such as the angle of incidence being fixed and the sample to be measured not being able to be made small, but the structure is complicated as the photodetecting element must be rotated. Therefore, it is difficult to apply it to other equipment such as the currently most popular, highly accurate, and reliable double beam spectrophotometer, which will be described later. The present invention aims to solve the above-mentioned drawbacks of conventional reflectance measuring devices, and to provide a highly accurate specular reflectance measuring device that is simple in operation and structure, and easy to apply to other devices. This will be explained in detail below with reference to the drawings.

第4図において1は光源、2は半透鏡、3は平面反射鏡
4は光検出素子、5は被測定試料〜3゛は3と同特性の
平面反射鏡である。
In FIG. 4, 1 is a light source, 2 is a semi-transparent mirror, 3 is a flat reflecting mirror 4 is a photodetecting element, 5 is a sample to be measured, and 3 is a flat reflecting mirror having the same characteristics as 3.

第3図イは被測定試料5を挿入せず、100%合わせの
場合を示す。光源1からの光束は半透鏡2で反射され、
平面反射鏡3に垂直に入射し、その反射光は半透鏡2を
透過して光検出素子4に入射する。このときの光電出力
をIOとすると、IO峨3)式で表わされ、又説明を容
易にするために光検出素子4の光電出力と光量は比例す
るものとする。10ゞ且ν五V1↓VZ▲1
ド′ここにhは定数、Lは
光源からの放射光束、R1は半透鏡2の反射率、T1は
半透鏡2の透過率、R2は平面反射鏡3の反射率である
FIG. 3A shows the case of 100% alignment without inserting the sample to be measured 5. The light beam from the light source 1 is reflected by the semi-transparent mirror 2,
The light enters the plane reflecting mirror 3 perpendicularly, and the reflected light passes through the semi-transparent mirror 2 and enters the photodetecting element 4. Letting the photoelectric output at this time be IO, it is expressed by the equation IO (3), and for ease of explanation, it is assumed that the photoelectric output of the photodetecting element 4 and the amount of light are proportional. 10ゞ且ν5V1↓VZ▲1
where h is a constant, L is the luminous flux emitted from the light source, R1 is the reflectance of the semi-transparent mirror 2, T1 is the transmittance of the semi-transparent mirror 2, and R2 is the reflectance of the plane reflecting mirror 3.

第4図口は測定状態を示し、光源1からの光束が半透鏡
2で反射され、被測定試料5に入射し、その反射光がイ
図の位置から移動した平面反射鏡3に垂直に入射し、反
射されて再び被測定試料5に入射しその反射光が半透鏡
2を透過して光検出素子4に入射する。このときの光電
出力をIとすると、Iは(4)式のように表わされ、(
3)式と(4)式から被測定試料5の反射率RxはRx
VCVI/IOとして求められる。− − −一
−9,..−ー一 −ーーー一1A1ここにRxは
被測定試料5の反射率である。
The opening in Figure 4 shows the measurement state, where the light beam from the light source 1 is reflected by the semi-transparent mirror 2 and enters the sample to be measured 5, and the reflected light is perpendicularly incident on the plane reflecting mirror 3 that has been moved from the position shown in Figure 4. Then, the reflected light enters the sample to be measured 5 again, and the reflected light passes through the semi-transparent mirror 2 and enters the photodetector element 4. Letting the photoelectric output at this time be I, I is expressed as in equation (4), and (
From equations (3) and (4), the reflectance Rx of the sample to be measured 5 is Rx
Required as VCVI/IO. − − −1
-9,. .. -1 -1A1 Here, Rx is the reflectance of the sample 5 to be measured.

第4図ハは平面反射鏡3を移動させず、該平面反射鏡3
と反射率が同特性の平面反射鏡3゛を使用した場合を示
し、可動部を必要としないから装置を簡単な構造にする
ことができる。尚上記のように反射率特性の同じ複数個
の反射鏡は同時蒸着によう容易に得ることが可能で、以
後の説明にも度々反射率が同じ反射鏡を複数個使用する
が、何ら本装置の実施を阻害するものではない。試料か
らの反射光が垂直に入射するように平面反射鏡3又は3
゛がセツトしてあれば、被測定試料への入射角度を任意
にでき、更に第4図口の如くセツトすれば一眼レフカメ
ラなどに使用されるベンツプリズム5′の透過率測定も
容易に可能である。又光源1を白色光源と分光器で構成
すれば、分光反射率の測定が可能なことは勿論である。
次に第5図により本発明をダブルビーム型分光光度計の
分光反射率アノツチメントとして応用した場合について
説明する。
FIG. 4C shows the flat reflecting mirror 3 without moving.
This shows a case in which a flat reflecting mirror 3' having the same reflectance characteristics as 1 and 2 is used, and since no moving parts are required, the device can have a simple structure. As mentioned above, multiple reflectors with the same reflectance characteristics can be easily obtained by simultaneous vapor deposition, and in the following explanations, multiple reflectors with the same reflectance will often be used, but there is no need for this device. This does not impede the implementation of the above. Plane reflector 3 or 3 so that the reflected light from the sample is incident perpendicularly.
If this is set, the angle of incidence on the sample to be measured can be set arbitrarily, and if it is set as shown in Figure 4, it is also possible to easily measure the transmittance of a Benz prism 5' used in single-lens reflex cameras. It is. Furthermore, if the light source 1 is composed of a white light source and a spectrometer, it is of course possible to measure the spectral reflectance.
Next, a case where the present invention is applied as a spectral reflectance annotation for a double beam spectrophotometer will be explained with reference to FIG.

第5図イは公知のダブルビーム型分光光度計の光学系を
示す。6は試料室、7は分光器、8は光検出素子、9a
,9bは固定反射鏡、10a,10bは回転セクター反
射鏡であり、交互に光路上に出入する。
FIG. 5A shows the optical system of a known double beam spectrophotometer. 6 is a sample chamber, 7 is a spectrometer, 8 is a photodetector element, 9a
, 9b are fixed reflecting mirrors, and 10a, 10b are rotating sector reflecting mirrors, which alternately enter and leave the optical path.

このような構造によう、分光器7よシ出た単色光は実線
で示す参照側光束11a1点線で示す試料側光束11b
となつて試料室6を通過し光検出素子8に入射する。こ
のような構成の分光光度計では通常透過率を測定し、試
料側光束11bの光路中に試料を置けば、参照側光束と
の比によシ透過率を測定することができる。第5図口は
分光反射率測定アタッチメントの側面図、ハは上方から
見た図で、共に試料室6にセツトされた状態を示す。第
5図口,ハにおいて12,13,14,15,16は平
面反射鏡、17は半透鏡であり1色々の参照側光束11
aと試料側光束11bの反射、又は透過する部分は同特
性を有するものである。但し平面反射鏡16は試料側光
束の光路上にのみあればよく、その特性は平面反射鏡1
5と同特性を有するものである。参照側光束及び試料側
光束は分光器7より111,11もとなつてアタツチメ
ントに入射し、その射出光は11d′,111/′ と
なつて光検出素子8に入射する。18は被測定試料45
度入射の場合を示しておシ〜反射鏡16のセツトは被測
定試料17からの反射光が垂直に入射するように調整し
てある。
With such a structure, the monochromatic light emitted from the spectroscope 7 is divided into a reference side light beam 11a shown by a solid line and a sample side light beam 11b shown by a dotted line.
The light then passes through the sample chamber 6 and enters the photodetector element 8 . A spectrophotometer with such a configuration normally measures the transmittance, and if a sample is placed in the optical path of the sample side light beam 11b, the transmittance can be measured based on the ratio with the reference side light beam. Figure 5 shows a side view of the spectral reflectance measurement attachment, and Figure 5 shows a view from above, both showing the state set in the sample chamber 6. In Figure 5, 12, 13, 14, 15, 16 are plane reflecting mirrors, 17 is a semi-transparent mirror, 1 various reference side light beams 11
The portion a and the portion through which the sample-side light beam 11b is reflected or transmitted have the same characteristics. However, the plane reflecting mirror 16 only needs to be on the optical path of the light beam on the sample side, and its characteristics are similar to that of the plane reflecting mirror 1.
It has the same characteristics as No. 5. The reference side light beam and the sample side light beam are incident on the attachment as 111 and 11 from the spectrometer 7, and the emitted light is incident on the photodetecting element 8 as 11d' and 111/'. 18 is the sample to be measured 45
The setting of the reflector 16 is adjusted so that the reflected light from the sample 17 to be measured is incident perpendicularly.

測定方法を以下に説明すると、まず被測定試料を置かず
に、一般のダブルビーム型分光光度計を使川して透過率
を測定する際の零点合わせ、100%合わせ等の予備操
作を行つた後、第5図口の如く被測定試料18をセツト
して通常の透過率測定のときと同様操作で測定を行えば
、この測定結果の平方根が反射率となるのは第4図で説
明したとおうである。
To explain the measurement method below, first, we performed preliminary operations such as zero point alignment and 100% alignment when measuring transmittance using a general double beam spectrophotometer without placing the sample to be measured. After that, if you set the sample 18 to be measured as shown in Figure 5 and perform the measurement in the same manner as in normal transmittance measurement, the square root of this measurement result will be the reflectance, as explained in Figure 4. It's Tou.

又あらかじめ分光光度計を演算出力の平方根が出て〈る
ようにしておけば、直読で反射率が求められよシ測定が
簡単になるo一般に光源からの光束は平行光ではなく、
広がDをもつ為、例えばペン汐プリズム19の透過率の
測定のように、100%合わせ時と被測定試料を光路に
入れた時とで光路長が異なる鴨合、光検出素子の入射光
の面積が各々異なるので、光検出素子として光電子増倍
管のように受光面が極値性を有するものを使用する場合
、入力が常に同一場所同一面積に入射しなければ誤差を
生じる。
Also, if you set the spectrophotometer in advance so that the square root of the calculation output appears, the reflectance can be determined by direct reading, making measurement easier.In general, the light flux from the light source is not parallel light;
Because of the spread D, for example, when measuring the transmittance of the Penshio prism 19, the optical path length is different when 100% alignment is performed and when the sample to be measured is placed in the optical path. Since the areas of the two are different from each other, when using a photodetecting element such as a photomultiplier tube whose light-receiving surface has an extreme value, errors will occur if the input is not always incident on the same area in the same place.

これを防ぐには100チ合わせ時と測定時の光路長とが
等しくなるようにすればよく、第4図口,ハにおける3
,3′、第5図における16の平面反射鏡を被測定試料
からの入射光の光軸方向に移動可能の構造にして光路長
が同じになるように調整すればよい。この構造による光
路長の調整を第5図の場合について説明する。まず10
0%合わせ時、平面反射鏡15の反射面の位置にスリガ
ラスのようなスクリーンを置き、光束の面積を測定する
。次に被測定試料例えばペンタプリズム19をセツトし
、平面反射鏡16の反射面の位置に同様にスクリーンを
置き、光束の面噴を測定し、、先に測定した面積と等し
くなるようにスクリーンを光軸方向に移動する。面積が
等しくなつた位置に表面反射鏡16をセツトすれば10
0%合わせ時と測定時の光路長を等しくすることができ
る。以上に述べた如く、本発明の構成によれば、絶対反
射率の測定が可能で、標準試料を必要とせず光束を絞れ
ば微小面積の測定が可能で、入射角も0度及び90度の
近くを除〈任意の角度が可能であジ、又受光部等の移動
を必要としないので構造が簡単となbダブルビーム型分
光光度計への応用も容易で、且つ参照側、試料側で反射
鏡、半透鏡による反射、透過の回数、角度が等しく構成
でき、光路長も簡単にあわせることが可能なので、参照
側、試料側の光学的特性、光検出素子の光電面の入射条
件が等しい為、高精度の測定ができ、更に平面鏡の反射
率に限らず、ペンタプリズムの反射率も含めた総合透過
率の測定も容易に行うことが可能でその効果は大きい。
To prevent this, it is sufficient to make the optical path lengths at the time of 100-chip alignment and at the time of measurement the same.
, 3', and 16 plane reflecting mirrors in FIG. 5 may be constructed to be movable in the optical axis direction of the incident light from the sample to be measured, and the optical path lengths may be adjusted to be the same. Adjustment of the optical path length using this structure will be explained with reference to the case shown in FIG. First 10
When adjusting to 0%, a screen such as ground glass is placed at the position of the reflecting surface of the plane reflecting mirror 15, and the area of the light beam is measured. Next, set the sample to be measured, for example, the pentaprism 19, place a screen in the same way at the reflective surface of the flat reflector 16, measure the plane jet of the luminous flux, and set the screen so that the area is equal to the previously measured area. Move in the direction of the optical axis. If the surface reflector 16 is set at the position where the area is equal, 10
The optical path length at the time of 0% adjustment and measurement can be made equal. As described above, according to the configuration of the present invention, it is possible to measure the absolute reflectance, and it is possible to measure a minute area by narrowing down the light beam without using a standard sample, and the incident angle is 0 degrees and 90 degrees. Any angle is possible except for the nearby area, and the structure is simple as there is no need to move the light-receiving part.B It is easy to apply to double-beam spectrophotometers, and it can be used on both the reference side and the sample side. The number and angle of reflection and transmission by the reflecting mirror and semi-transparent mirror can be configured to be equal, and the optical path length can be easily matched, so the optical characteristics of the reference side and sample side and the incident conditions of the photocathode of the photodetector are the same. Therefore, it is possible to measure with high precision, and furthermore, it is possible to easily measure not only the reflectance of a plane mirror but also the total transmittance including the reflectance of a pentaprism, which is highly effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1,2,3図は従来の鏡面反射率測定装置。 第4図は本発明の鏡面反射率測定装置。第5図は本発明
によるダブルビーム型分光光度計用鏡面反射率測定装置
。Q,Q″ :光源、PM,PM′:光検出素子、S,
S′ :S″:被測定試料、R:標準試料、M:反射鏡
、1:光源、2:半透鏡、3,3/:反射鏡、4:光検
出素子、5,5′ :被測定試料、6:分光光度計試料
室、7:分光器、8:光検出素子、9a,9b:反射鏡
、10a,10b:回転セクター反射鏡、11a,11
b:光束、11a′11b5:光束、12,13,14
,15,16:反射鏡、17:半透鏡、18,19:被
測定試料。
Figures 1, 2, and 3 show conventional specular reflectance measurement equipment. FIG. 4 shows a specular reflectance measuring device of the present invention. FIG. 5 shows a specular reflectance measuring device for a double beam spectrophotometer according to the present invention. Q, Q'': light source, PM, PM': photodetector, S,
S': S'': Sample to be measured, R: Standard sample, M: Reflector, 1: Light source, 2: Semi-transparent mirror, 3, 3/: Reflector, 4: Photodetection element, 5, 5': Subject to be measured Sample, 6: Spectrophotometer sample chamber, 7: Spectrometer, 8: Photodetection element, 9a, 9b: Reflector, 10a, 10b: Rotating sector reflector, 11a, 11
b: Luminous flux, 11a'11b5: Luminous flux, 12, 13, 14
, 15, 16: Reflecting mirror, 17: Semi-transparent mirror, 18, 19: Sample to be measured.

Claims (1)

【特許請求の範囲】 1 100%更正時には光源1からの光束が半透鏡2で
反射され、反射鏡3に垂直に入射し、その反射鏡が入射
光と同一光路を逆行し、半透鏡2を透過して光検出素子
4に入射する光録を構成し、測定時には光源1からの光
束が半透鏡2で反射され、被測定試料5に入射し、その
反射光が反射鏡3に垂直に入射し、その反射光が入射光
と同一光路を逆行し、被測定試料5で反射され、半透鏡
2を透過して光検出素子4に入射する光路を構成して、
該100%更正時の光検出素子に入射する光束と該測定
時の光検出素子に入射する光束との比により、被測定試
料5の反射率を求めることを特徴とする鏡面反射率測定
装置。 2 100%更正時には光源1からの光束が半透鏡2で
反射され、反射鏡3に垂直に入射し、その反射光が入射
光と同一光路を逆行し、半透鏡2を透過して光検出素子
4に入射する光路を構成し、測定時には光源1からの光
束が半透鏡2で反射され、被測定試料5に入射し、その
反射光が反射鏡3に垂直に入射し、その反射光が入射光
と同一光路を逆行し、被測定試料5で反射され、半透鏡
2を透過して光検出素子4に入射する光録を構成して、
該100%更正時の光検出素子に入射する光束と該測定
時の光検出素子に入射する光束との比により、被測定試
料5の反射率を求める装置において、ダブルビーム型分
光光度計の試料室内の参照側に前記100%更正時の光
路、試料側に前記測定時の光路をそれぞれ置いたことを
特徴とする鏡面反射率測定装置。 3 100%更正時には光源1からの光束が半透鏡2で
反射され、反射光3に垂直に入射し、その反射光が入射
光と同一光路を逆行し、半透鏡2を透過して光検出素子
4に入射する光路を構成し、測定時には光源1からの光
束が半透鏡2で反射され、被測定試料5に入射し、その
反射光が反射鏡3に垂直に入射し、その反射光が入射光
と同一光路を逆行し、被測定試料5で反射され、半透鏡
2を透過して光検出素子4に入射する光路を構成して、
該100%更正時の光検出素子に入射する光束と該測定
時の光検出素子に入射する光束との比により、被測定試
料5の反射率を求める装置において、前記反射鏡3が被
測定試料5からの反射光の光軸方向に移動可能となし、
前記100%更正時の光路長と前記測定の光路長を同一
とすることを特徴とする鏡面反射率測定装置。
[Claims] 1. At the time of 100% correction, the light beam from the light source 1 is reflected by the semi-transparent mirror 2 and enters the reflecting mirror 3 perpendicularly, and the reflecting mirror travels backward along the same optical path as the incident light. It constitutes a light record that passes through and enters the photodetecting element 4. During measurement, the light beam from the light source 1 is reflected by the semi-transparent mirror 2 and enters the sample to be measured 5, and the reflected light enters the reflecting mirror 3 at right angles. Then, the reflected light travels the same optical path as the incident light, is reflected by the sample to be measured 5, passes through the semi-transparent mirror 2, and forms an optical path in which it enters the photodetector element 4,
A specular reflectance measuring device characterized in that the reflectance of the sample to be measured 5 is determined by the ratio of the luminous flux incident on the photodetecting element during the 100% correction and the luminous flux incident on the photodetecting element during the measurement. 2 At the time of 100% correction, the light beam from the light source 1 is reflected by the semi-transparent mirror 2 and enters the reflecting mirror 3 perpendicularly, and the reflected light travels the same optical path as the incident light and passes through the semi-transparent mirror 2 to the photodetector element. During measurement, the light beam from the light source 1 is reflected by the semi-transparent mirror 2 and is incident on the sample to be measured 5, and the reflected light is perpendicularly incident on the reflecting mirror 3, and the reflected light is incident. Constructing an optical record that travels in the same optical path as the light, is reflected by the sample to be measured 5, passes through the semi-transparent mirror 2, and enters the photodetector element 4,
In an apparatus for determining the reflectance of the sample to be measured 5 based on the ratio of the luminous flux incident on the photodetecting element during the 100% correction and the luminous flux incident on the photodetecting element during the measurement, the sample of a double beam spectrophotometer is used. A specular reflectance measuring device characterized in that the optical path for the 100% correction is placed on the reference side of the room, and the optical path for the measurement is placed on the sample side. 3 At the time of 100% correction, the luminous flux from the light source 1 is reflected by the semi-transparent mirror 2 and enters the reflected light 3 perpendicularly, and the reflected light travels the same optical path as the incident light, passes through the semi-transparent mirror 2, and reaches the photodetector element. During measurement, the light beam from the light source 1 is reflected by the semi-transparent mirror 2 and is incident on the sample to be measured 5, and the reflected light is perpendicularly incident on the reflecting mirror 3, and the reflected light is incident. Constructing an optical path that travels in the same optical path as the light, is reflected by the sample to be measured 5, passes through the semi-transparent mirror 2, and enters the photodetector element 4,
In the apparatus for determining the reflectance of the sample to be measured 5 based on the ratio of the luminous flux incident on the photodetecting element during the 100% correction and the luminous flux incident on the photodetecting element during the measurement, the reflector 3 is connected to the sample to be measured. It is possible to move in the optical axis direction of the reflected light from 5,
A specular reflectance measuring device characterized in that the optical path length during the 100% correction and the optical path length during the measurement are the same.
JP50155367A 1975-12-25 1975-12-25 Kiyoumenhanshiyaritsusokuteisouchi Expired JPS593698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50155367A JPS593698B2 (en) 1975-12-25 1975-12-25 Kiyoumenhanshiyaritsusokuteisouchi

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50155367A JPS593698B2 (en) 1975-12-25 1975-12-25 Kiyoumenhanshiyaritsusokuteisouchi

Publications (2)

Publication Number Publication Date
JPS5278484A JPS5278484A (en) 1977-07-01
JPS593698B2 true JPS593698B2 (en) 1984-01-25

Family

ID=15604363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50155367A Expired JPS593698B2 (en) 1975-12-25 1975-12-25 Kiyoumenhanshiyaritsusokuteisouchi

Country Status (1)

Country Link
JP (1) JPS593698B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2115141B (en) * 1982-02-19 1985-09-04 Ici Plc Surface coating characterisation
JP5672376B2 (en) * 2011-05-13 2015-02-18 コニカミノルタ株式会社 Optical system for reflection characteristic measuring apparatus and reflection characteristic measuring apparatus

Also Published As

Publication number Publication date
JPS5278484A (en) 1977-07-01

Similar Documents

Publication Publication Date Title
JPH0726806B2 (en) Distance measuring device
JPS6355020B2 (en)
CN105938013A (en) Spectrometer and correction method thereof
JPH06317408A (en) Determination of characteristic value of transparent layer using polarization analysis method
CN205607626U (en) Measure device of remote sensing instrument's linear polarization sensitivity
JPS593698B2 (en) Kiyoumenhanshiyaritsusokuteisouchi
CN107525589B (en) A kind of wavelength scaling system and method
US5160981A (en) Method of measuring the reflection density of an image
JPH031615B2 (en)
US5323230A (en) Method of measuring the reflection density of an image
JPS5821527A (en) Fourier converting type infrared spectrophotometer
JPH05500853A (en) Method and apparatus for determining glass tube wall thickness
JPS61189424A (en) Photometer
JPH0361822A (en) Photometric standard light receiver
RU1800289C (en) Method of measuring radiation flux density from distant source
JPH0783828A (en) Variable-angle absolute reflectance measuring instrument
JPH0776710B2 (en) Spherical Luminometer Spectral Response Measurement Method
JPS58162805A (en) Method for monitoring vapor deposited film optically
JPH04204142A (en) Refractive-index measuring apparatus
SU1032375A1 (en) Optical surface reflection coefficient measuring method
SU401914A1 (en) DEVICE FOR MEASURING COEFFICIENTS
JPS6183940A (en) Spectral transmittance measuring apparatus
KR0178434B1 (en) Absolute measurement method of reflection rate using light splitter
SU1286963A1 (en) Method and apparatus for measuring absolute reflection factor of mirror
RU1778518C (en) Device for checking two-sided reflectors