JPS6049674A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS6049674A
JPS6049674A JP15736383A JP15736383A JPS6049674A JP S6049674 A JPS6049674 A JP S6049674A JP 15736383 A JP15736383 A JP 15736383A JP 15736383 A JP15736383 A JP 15736383A JP S6049674 A JPS6049674 A JP S6049674A
Authority
JP
Japan
Prior art keywords
region
source
monitor element
drain
circuit element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15736383A
Other languages
Japanese (ja)
Inventor
Hidetake Suzuki
鈴木 秀威
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP15736383A priority Critical patent/JPS6049674A/en
Publication of JPS6049674A publication Critical patent/JPS6049674A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Abstract

PURPOSE:To estimate the characteristics of FETs with high accuracy in a manufacturing process for a semiconductor by mutually forming channel regions for the FET as a circuit element and the FET as a monitor element equally onto a semiconductor base body. CONSTITUTION:A resist film is formed onto a semi-insulating GaAs substrate 21, and Si ions are implanted to regions 23a, 23b. A resist film 24 is formed and openings are shaped onto a source region 25 and a drain region 26 for a monitor element, and Se ions are implanted. A Schottky junction is formed between the N type regions 23a and 23b. Gate electrodes 28a and 28b in the same size for a circuit element and the monitor element and a source electrode 29 and a drain electrode 30 for the monitor element are formed. The characteristics of the monitor element can be measured under the state. Si<+> ions are implanted into a source region 32 and a drain region 33 for the circuit element and a region 34 and a region 35 for the monitor element to activate them. The characteristics can be measured again at the point of time.

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は半導体装置及びその製造方法、特に砒化ガリウ
ムショットキ接合型電界効果トランジスタを含む半導体
装置の製造工程中におけるモニタが効果的に行なわれる
半導体装置の構造及び製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a semiconductor device and a method for manufacturing the same, particularly a semiconductor device that can be effectively monitored during the manufacturing process of a semiconductor device including a gallium arsenide Schottky junction field effect transistor. The present invention relates to the structure and manufacturing method of the device.

(b) 技術の背景 電子計算機などの能力及びコストパフォーマンスの一層
の向上を志向して、半導体装置の高速化。
(b) Background of the technology Semiconductor devices are becoming faster with the aim of further improving the performance and cost performance of electronic computers.

低消費電力化及び高集積化が推進されており、キャリア
移動度がシリコン(St)より遥に大きい化合物半導体
特に砒化ガリウム(G a A a)を用いる半導体装
置が多数提案されている。
2. Description of the Related Art Lower power consumption and higher integration are being promoted, and many semiconductor devices have been proposed that use compound semiconductors, particularly gallium arsenide (G a A a), which have much higher carrier mobility than silicon (St).

化合物半導体においては少数キャリアの寿命が短いこと
などの理由によって、現在主として電界効果トランジス
タ(以下F’ETと略称する)が開発の対象とされてい
るが、特に半絶縁性の化合物半導体を基板に用いること
によって浮遊容量を小さくすることができる利点を活用
して、シ115’トキ接合型又はpn接合型のFETが
主流となっており、これを素子とする集積回路装置(以
下ICと略称する)の早急な実用化が期待されている。
Due to the short lifetime of minority carriers in compound semiconductors, field effect transistors (hereinafter abbreviated as F'ET) are currently the main target of development. Utilizing the advantage that stray capacitance can be reduced by using FETs, 115' Toki junction type or PN junction type FETs have become mainstream, and integrated circuit devices (hereinafter abbreviated as IC) using these FETs as elements have become mainstream. ) is expected to be put into practical use as soon as possible.

(c) 従来技術と問題点 砒化ガリウムショットキ接合型FET(以下GaAs 
MES FETと略称する)は、単一のトランジスタと
して例えばマイクロ波帯域の増幅などに既をこ実用化さ
れているが、更に先に述べた如く化合物半導体ICを形
成するトランジスタ素子の主流と目されている。
(c) Conventional technology and problems Gallium arsenide Schottky junction FET (hereinafter referred to as GaAs
The MES FET (abbreviated as MES FET) has already been put into practical use as a single transistor, for example, for amplification in the microwave band, but as mentioned earlier, it is considered to be the mainstream transistor element for forming compound semiconductor ICs. ing.

IC素子とするGaAs MES FETには高速度。High speed for GaAs MES FET used as IC element.

高集積度が当然要求されるが、その特性について、トラ
ンスコンダクタンスが大きくかつゲート閾値電圧のばら
つきが少ないことが特に重要である。
Although a high degree of integration is naturally required, it is especially important that the transconductance is large and the variation in gate threshold voltage is small.

この様な特性を実現するためにGaAs ICは従来下
記の様に製造されている。
In order to realize such characteristics, GaAs ICs have conventionally been manufactured in the following manner.

第1図(a)参照 半絶縁性GaAs基板1上に7オトレジスト膜2を設け
てF’ET形成領域に開口を形成し、例えばシリコン(
Sl)イオンを60(:KeV)でドーズ量2 X 1
0”[i内程度に領域3に注入する。
Referring to FIG. 1(a), a photoresist film 2 is provided on a semi-insulating GaAs substrate 1, and an opening is formed in the F'ET formation region.
Sl) ions at a dose of 2 x 1 at 60 (KeV)
0''[i is implanted into region 3.

第1図(b)参照 フォトレジスト膜2を剥離除去し二酸化シリコン(Si
ft)等よりなる膜4を設けて、例えば温度850[t
l:]時間15乃至20分間の加熱処理を行−3= ない前記領域3をキャリア濃度1×10′7〔crf3
〕程度のn型領域とする。
Refer to FIG. 1(b), the photoresist film 2 is peeled off and silicon dioxide (Si) is removed.
For example, a film 4 made of
l: ] Heat treatment is performed for 15 to 20 minutes to reduce the carrier concentration of the region 3 to 1×10'7 [crf3
] to an n-type region.

なおこの加熱処理を実施せず、後の工程の加熱処理によ
って前記の領域3のSi+イオンを活性化する場合もあ
る。
Note that this heat treatment may not be performed and the Si + ions in the region 3 may be activated by a heat treatment in a later step.

第1図(c)参照 Slow膜4を除去した後、例えばタングステンシリサ
イド(WSi)等のゲート材料をマグネトロンスパッタ
リング法等によってGaAa基板1上に堆積し、リアク
ティブイオンエツチング法等によってゲート電極5を形
成する。
After removing the slow film 4 (see FIG. 1(c)), a gate material such as tungsten silicide (WSi) is deposited on the GaAa substrate 1 by magnetron sputtering or the like, and the gate electrode 5 is formed by reactive ion etching or the like. Form.

第1図(dl参照 フィールド領域上をフォトレジスト又はstow等より
なるマスク6で被覆して、例えばSi+イオンを200
〔KeV〕でドーズ量2 X 10”[m→〕程度に領
域7に注入する。
FIG. 1 (dl reference field region is covered with a mask 6 made of photoresist or stow, etc., and Si + ions are
[KeV] is implanted into the region 7 at a dose of about 2×10” [m→].

第1図(el参照 前記マスク6を除去した後stow膜8を設けて、例え
ば温度800〔℃〕9時間10乃至15分間程度の加熱
処理を行ない前記領域7をキャリア濃度1−4= ×10111CI−F31程度のn生型領域とする。こ
の領域7はソース及びドレイン領域である。
FIG. 1 (see el) After removing the mask 6, a stow film 8 is provided, and heat treatment is performed at a temperature of, for example, 800 [° C.] for about 9 hours and 10 to 15 minutes, so that the region 7 has a carrier concentration of 1-4=×10111 CI. An n-type region of about -F31 is used.This region 7 is a source and drain region.

第1図(f)参照 前記StO,膜8を除去し改めて厚さ例えば0.4〔μ
m〕程度の810.膜9を設ける。次いでレジストマス
ク10を用いてSIO,膜9にソース電極及びドレイン
電極形成のための開口を形成する。
Refer to FIG. 1(f), the StO film 8 is removed and the thickness is increased to 0.4 μm, for example.
m] of about 810. A membrane 9 is provided. Next, openings for forming source and drain electrodes are formed in the SIO film 9 using a resist mask 10.

第1図(g)参照 n型GaAs半導体とのオーミック接触金属材料、例え
ば金・ゲルマニウム(Aura)及び金(Au)を0.
4〔μm〕程度蒸着して、前記レジストマスク10を剥
離除去する。次いで温度400[℃]、時間時間1稈 金化を行ない、ソース電極11及びドレイン電極12が
形成される。
Refer to FIG. 1(g). Ohmic contact metal materials with the n-type GaAs semiconductor, such as gold/germanium (Aura) and gold (Au), are used at 0.000.
After about 4 [μm] of vapor deposition, the resist mask 10 is peeled off. Next, culmification is performed at a temperature of 400[° C.] for one time to form a source electrode 11 and a drain electrode 12.

第1図Ch)参照 層間絶縁膜としてstow膜9′を厚さ0.4〔μm〕
程度に形成しく前記5102膜9と区分せずに図示する
)、ソース電極11,ドレイン電極12及びゲート接続
領域(図示されない)等の配線接続のための開口を設け
る。
Figure 1 Ch) A stow film 9' with a thickness of 0.4 [μm] is used as a reference interlayer insulating film.
Openings for wiring connections such as a source electrode 11, a drain electrode 12, and a gate connection region (not shown) are provided.

第1図(i)参照 例えばチタン(Ti)−白金(pt)−金(Au)を蒸
着しパターニングを行なって所要の配線13が形成され
る。
Referring to FIG. 1(i), for example, titanium (Ti)-platinum (pt)-gold (Au) is deposited and patterned to form the required wiring 13.

以上説明した如きGaAs MES FETを素子とす
るICの従来の製造方法において、GaAs MESF
ET素子の特性が仕様を満足するか否かのモニターは前
記第1図(h)に示す開口が設けられた時点において始
めて可能となる。すなわちGaAs基板1上の適当な位
置に、・例えば100〔μm〕程度の接触領域を各電極
について設けたモニター素子を本来のFET素子と同時
に形成して、前記時点を待ってその特性を測定している
In the conventional manufacturing method of an IC using GaAs MES FET as an element as explained above, GaAs MESFET
It is possible to monitor whether the characteristics of the ET element satisfy the specifications only after the opening shown in FIG. 1(h) is provided. That is, at an appropriate position on the GaAs substrate 1, a monitor element with a contact area of, for example, about 100 [μm] for each electrode is formed at the same time as the original FET element, and its characteristics are measured after the aforementioned point in time. ing.

しかしながらGaAs ICはGaAs基板1のばらつ
き等によって未だ不良率が高く、前記のモニタ一時点に
おいて多くの不良が検出される状況にある。このモニタ
一時点ではIC製造のウニハエ程の大半が既に終了して
おり、時間及び資材等の損失が甚だ大きく、より早い時
点においてモニターする製造方法が要望されている。
However, GaAs ICs still have a high defect rate due to variations in the GaAs substrate 1, and many defects are detected at one point in the monitor. At this point in time, most of the IC manufacturing process has already been completed, resulting in a significant loss of time and materials, and there is a need for a manufacturing method that monitors the process at an earlier point in time.

(d) 発明の目的 本発明はGaAs MKS FET、特番ζこれを回路
素子とするICの製造工程の早い時点において、得られ
る特性を推定するモニターを行なうことができる構造及
び製造方法を提供することを目的とする。
(d) Purpose of the Invention The present invention provides a structure and manufacturing method that enables monitoring to estimate the characteristics obtained at an early stage in the manufacturing process of an IC using a GaAs MKS FET, special number ζ as a circuit element. With the goal.

(e) 発明の構成 本発明の前記目的は、化合物半導体基体上にシ璽ットキ
接合型電界効果トランジスタの回路素子とモニタ素子と
を備えて、前記モニタ素子が、前記回路素子のソース及
びドレイン領域と同等以上のキャリア濃度のソース及び
ドレイン領域と、前記回路素子及びモニタ素子のゲート
電極と同一材料よりなるソース及びドレイン電極とを備
えてなる半導体装置により達成される。
(e) Structure of the Invention The object of the present invention is to provide a circuit element and a monitor element of a Schottky junction field effect transistor on a compound semiconductor substrate, wherein the monitor element is connected to the source and drain regions of the circuit element. This is achieved by a semiconductor device comprising source and drain regions having a carrier concentration equal to or higher than , and source and drain electrodes made of the same material as the gate electrodes of the circuit element and monitor element.

更に本発明の前記目的は、砒化ガリウム半導体基体に、
回路素子とする電界効果トランジスタ及びモニタ素子と
する電界効果トランジスタのチャネル領域を相互に同等
に形成し、前記モニタ素子7− のソース及びドレイン領域を前記回路素子に形成すべき
ソース及びドレイン領域と同等以上のキャリア濃度に形
成し、前記チャネル領域との間にシ11ツ)キ接合が形
成される材料を用いて、前記回路素子及び前記モニタ素
子の前記チャネル領域上に相互に同等なゲート電極と前
記モニタ素子のソース領域上にソース電極と前記ドレイ
ン領域上にドレイン電極とを配設し、前記モニタ素子の
各電極の接触領域に測定探針をあてて該モニタ素子の特
性測定を行なう半導体装置の製造方法により達成される
Furthermore, the object of the present invention is to provide a gallium arsenide semiconductor substrate with:
The channel regions of the field effect transistor as a circuit element and the field effect transistor as a monitor element are formed to be equal to each other, and the source and drain regions of the monitor element 7- are equal to the source and drain regions to be formed in the circuit element. By using a material that is formed to have a carrier concentration of the above level and forms a silicon junction with the channel region, a mutually equivalent gate electrode is formed on the channel region of the circuit element and the monitor element. A semiconductor device, wherein a source electrode is disposed on the source region of the monitor element, and a drain electrode is disposed on the drain region, and a measurement probe is applied to a contact area of each electrode of the monitor element to measure the characteristics of the monitor element. This is achieved by the manufacturing method.

なお本発明の製造方法による前記モニタ素子の特性測定
を、前記回路素子のソース及びドレイン領域を前記ゲー
ト電極に位置を整合して形成し、かつ前記モニタ素子に
おいて、前記ゲート電極に位置を整合して前記チャネル
領域及び前記ソース領域と前記ドレイン領域それぞれに
接し、前記回路素子のソース及びドレイン領域と同等の
キャリア濃度を有する領域を形成して実施することによ
り、回路素子とする電界効果トランジスタの特性8− を高い確率をもって推定することができる。
Note that the characteristics of the monitor element according to the manufacturing method of the present invention are measured by forming the source and drain regions of the circuit element by aligning the positions with the gate electrode, and forming the source and drain regions of the circuit element by aligning the positions with the gate electrode in the monitor element. The characteristics of a field effect transistor used as a circuit element are improved by forming a region in contact with each of the channel region, the source region, and the drain region and having a carrier concentration equivalent to that of the source and drain regions of the circuit element. 8- can be estimated with high probability.

また前記回路素子のソース及びドレイン領域形成に先立
って前記モニタ素子の特性測定を実施することにより、
最も早い時点において回路素子とする電界効果トランジ
スタの特性を推定することができる。
Furthermore, by measuring the characteristics of the monitor element prior to forming the source and drain regions of the circuit element,
The characteristics of a field effect transistor used as a circuit element can be estimated at the earliest point in time.

ただし前記モニタ素子は、例えばチップ内、チ(f) 
発明の実施例 以下本発明を実施例により図面を参照して具体的に説明
する。
However, the monitor element is, for example, within the chip,
EMBODIMENTS OF THE INVENTION The present invention will be specifically explained below using examples with reference to the drawings.

第2図(a)は本発明の実施例においてモニタ素子とす
る電界効果トランジスタの1例を示す平面図、(b)は
そのX−Y断面を示す断面図である。図において、21
は半絶縁性GaAs基板、23bはn型チャネル領域、
25はn+型ソース領域、26はn+型ドレイン領域、
28bはゲート電極、29はソース電極、30はドレイ
ン電極、34及び35は回路素子のソース及びドレイン
領域と同等に形成されたn中型領域を示す。なお各電極
28b、29及び30には一辺の長さ約100〔μ洛〕
程度の接触領域が設けられている。
FIG. 2(a) is a plan view showing an example of a field effect transistor used as a monitor element in an embodiment of the present invention, and FIG. 2(b) is a sectional view showing an X-Y cross section thereof. In the figure, 21
is a semi-insulating GaAs substrate, 23b is an n-type channel region,
25 is an n+ type source region, 26 is an n+ type drain region,
28b is a gate electrode, 29 is a source electrode, 30 is a drain electrode, and 34 and 35 are n medium-sized regions formed to be equivalent to the source and drain regions of the circuit element. Each electrode 28b, 29 and 30 has a side length of about 100 [μRaku].
There is a contact area of approximately

また第3図(&)乃至(f)は本発明の実施例の特徴部
分を示す断面図であり、図中領域Aは回路素子とするF
ET、領域Bはモニタ素子とするFETを示し、また画
素子について同時に同一条件で形成されて同一機能を有
する部分については、同一数字の符号を用い、前者に添
字a、後者に添字すを付する。
Further, FIGS. 3(&) to (f) are cross-sectional views showing characteristic parts of the embodiment of the present invention, in which area A is a circuit element F.
ET, area B indicates the FET used as a monitor element, and parts of the pixel element that are formed at the same time under the same conditions and have the same function are designated by the same numerals, with the suffix a for the former and the suffix for the latter. do.

第3図(a)参照 半絶縁性GaAs基板21上に7オトレジスト膜22を
設けて画素子形成領域に開口を形成し、例えばSL+イ
オンを60 (KeV]でドーズ量2刈OI!〔−〕程
度に領域23a及び23bに注入する。
Refer to FIG. 3(a). A 7-hole photoresist film 22 is provided on a semi-insulating GaAs substrate 21, an opening is formed in the pixel formation region, and, for example, SL+ ions are applied at 60 (KeV) at a dose of 2 OI! [-] It is implanted into regions 23a and 23b to a certain extent.

第3図(b)参照 フォトレジスト膜24を設けてモニタ素子のソース領域
25及びドレイン領域26上に開口を形成し、例えばセ
レン(Se)イオンを100 CKeV)でドーズ量5
 X 10”Cenr’3程度に注入する。ただし前記
ソース領域25とドレイン領域26との間隔は回路素子
のゲート長より大きくし、本実施例においてはこの間隔
を約3〔μm〕としている。
Refer to FIG. 3(b), a photoresist film 24 is provided, openings are formed on the source region 25 and drain region 26 of the monitor element, and selenium (Se) ions are irradiated with, for example, selenium (Se) ions at a dose of 5 at 100 CKeV).
X 10''Cenr'3. However, the distance between the source region 25 and the drain region 26 is made larger than the gate length of the circuit element, and in this embodiment, this distance is approximately 3 [μm].

第3図(c)参照 ト膜24を剥離除去しstow膜27膜設7て、例えば
温度850 (℃) 、時間15乃至20分間の加熱処
理を行ない、モニタ素子のソース領域25及びドレイン
領域26をキャリア濃度5 X 10” 〔tmrs〕
程度のn 型とし、又これに含まれない領域23b並び
に回路素子の領域23&をキャリア濃度1×1017(
cIrr’!程度のn型とする。
Referring to FIG. 3(c), the stow film 27 is removed by peeling off the stow film 27, and heat treatment is performed at, for example, a temperature of 850 (°C) for 15 to 20 minutes, and the source region 25 and drain region 26 of the monitor element are heated. Carrier concentration 5 x 10” [tmrs]
The region 23b and the circuit element region 23& which are not included in this are made of n type with a carrier concentration of 1×10 17 (
cIrr'! It is of n-type.

第3図(d)参照 5102膜27を除去した後lこ、n型領域23a及び
23bとの間にシ■ットキ接合が形成され、かつ後に述
べる加熱処理を実施してもこの特性が保たれる、例えば
WSl等のゲート材料をマグネトロンスパッタリング法
等によって堆積し、リアクティブイオンエツチング法等
によって、回路素子と11− モニタ素子に同一寸法のゲート電極28a及び28bと
、モニタ素子のソース電極29及びドレイン電極30と
を形成する。ただし、前記ソース電極29及びドレイン
30は前記ソース領域25及びドレイン領域26が表出
する部分をゲート電極28b側に残して形成する。なお
本実施例においてはゲート電極28a及び28bのゲー
ト長を約1〔μm〕、ソース電極29とドレイン電極3
0との間隔を約7〔μm〕としている。
After removing the 5102 film 27 (see FIG. 3(d)), a Schottky junction is formed between the n-type regions 23a and 23b, and this characteristic is maintained even after the heat treatment described later. A gate material such as WSl is deposited by magnetron sputtering or the like, and gate electrodes 28a and 28b of the same size are formed on the circuit element and the monitor element, and source electrodes 29 and 28b of the monitor element are formed by reactive ion etching or the like. A drain electrode 30 is formed. However, the source electrode 29 and the drain 30 are formed with the exposed portions of the source region 25 and drain region 26 remaining on the gate electrode 28b side. In this embodiment, the gate length of the gate electrodes 28a and 28b is approximately 1 [μm], and the length of the source electrode 29 and the drain electrode 3 is approximately 1 [μm].
The distance from 0 is approximately 7 [μm].

この状態において、ゲート電極28b、ソース電極29
及びドレイン電極30の各接触領域(第2図(a)参照
)に測定探針をあててモニタ素子の特性測定を行なうこ
とができる。この特性については後に詳細に説明する。
In this state, the gate electrode 28b, the source electrode 29
The characteristics of the monitor element can be measured by applying a measurement probe to each contact area of the drain electrode 30 (see FIG. 2(a)). This characteristic will be explained in detail later.

第3図(e)参照 フォトレジスト又はsio、等よりなりフィールド領域
を被覆するマスク31を設けて、例えばSlイオンを2
00 [KeV]でドーズ量2 X 1013[6n−
〇程度に、回路素子のソース領域32.ドレイン領域3
3.モニタ素子のゲート電極28bとソース電12− 極29間の領域34及びゲート電極28bとドレイン電
極30間の領域35に注入する。
Referring to FIG. 3(e), a mask 31 made of photoresist or sio, etc. and covering the field area is provided to remove, for example, 2 ions of Sl ions.
00 [KeV] with a dose of 2 x 1013 [6n-
The source region 32 of the circuit element is approximately ○. drain region 3
3. It is implanted into a region 34 between the gate electrode 28b and the source electrode 12-29 and a region 35 between the gate electrode 28b and the drain electrode 30 of the monitor element.

第3図(f)参照 前記マスク31を除去した後、5ift膜(図示されな
い)を設けて例えば温度s o o (℃) 、時間1
0乃至15分間程度の加熱処理を行なって前記の注入さ
れたSl イオンを活性化し、回路素子のソース領域3
2.ドレイン領域33.並びにモニタ素子の前記領域3
4及び35のn+型ソース領域25及びドレイン領域2
6に含まれない部分をキャリア濃度I X 10 ” 
〔cni5程度のn型とする。
Refer to FIG. 3(f). After removing the mask 31, a 5ift film (not shown) is provided, for example, at a temperature of s o o (°C) for a time of 1.
The implanted Sl ions are activated by heat treatment for about 0 to 15 minutes, and the source region 3 of the circuit element is heated.
2. Drain region 33. and said area 3 of the monitor element.
4 and 35 n+ type source region 25 and drain region 2
The portion not included in 6 is the carrier concentration I x 10''
[N-type with about cni5.

しかる後に前記stow膜を除去する。この時点におい
て再びモニタ素子の特性測定を行なうことができる。こ
の時点においてはモニタ素子に回路素子の完成状態と同
等のチャネル構造が形成されているために、前記モニタ
時点より高精度の判断が可能となる。この判断に基づく
処理を終った仕掛品は従来技術により、例えば前記従来
例について第1図(f)乃至(1)を参照して説明した
如くに、その製造工程が進行する。
After that, the stow film is removed. At this point, the characteristics of the monitor element can be measured again. At this point, a channel structure equivalent to that of the completed circuit element is formed in the monitor element, so that a more accurate judgment can be made than at the monitor point. The work-in-process product that has been processed based on this judgment is then subjected to the manufacturing process using the conventional technology, for example, as described in the prior art example with reference to FIGS. 1(f) to (1).

て実施する製造方法も可能である。この場合には前記実
施例の第2回目の測定時点においてそのモニタ素子の特
性測定を行なう。
It is also possible to use a manufacturing method carried out by In this case, the characteristics of the monitor element are measured at the time of the second measurement in the above embodiment.

前記実施例におけるモニタ素子の特性と、同一基板の同
等な回路素子の完成後の特性との比較例を第4図(a)
乃至(c)に示す。
An example of comparison between the characteristics of the monitor element in the above embodiment and the characteristics of an equivalent circuit element on the same board after completion is shown in FIG. 4(a).
Shown in to (c).

第4図(a)は前記第1のモニタ素子特性測定時点、す
なわち回路素子のソース及びドレイン領域と同等なn+
型領領域34び35形成前のモニタ素子、(b)は第2
のモニタ素子測定時点、すなわち前記n+型領領域4及
び35形成後のモニタ素子について、また(c)は同等
な回路素子についてその完成時点での、ドレイン電圧V
DS−ドレイン電流ID特性をゲート電圧VGをパラメ
ータとして測定した例を示す。ただしドレイン電流ID
はゲート幅当りに換算し相互の相対値で表示している。
FIG. 4(a) shows the time of measuring the characteristics of the first monitor element, that is, n+ which is equivalent to the source and drain regions of the circuit element.
Monitor element before forming mold regions 34 and 35, (b) shows the second
(c) is the drain voltage V at the time of measurement of the monitor element, that is, after the formation of the n+ type regions 4 and 35, and (c) is the same circuit element at the time of completion.
An example will be shown in which the DS-drain current ID characteristics were measured using the gate voltage VG as a parameter. However, drain current ID
are converted per gate width and displayed as mutual relative values.

なおモニタ素子及び回路素子のゲート長は何れも同じf
約1〔μ講〕としている。
Note that the gate length of the monitor element and the circuit element is the same f
It is approximately 1 [μ course].

まず第4図(b)に示したモニタ素子の特性を((+)
に示した回路素子の特性と比較すれば、モニタ素子のソ
ース電極29及びドレイン電極30にシlットキ接合材
料が用いられているために、これが接するn+型領領域
25び26はキャリア濃度が極めて高くされてはいるが
本来のFETである回路素子より高いドレイン電圧VD
Sを印加してもなお飽和ドレイン電流ID8Bが3/4
程度に減少し、かつドレイン電圧Vnsがごく低い範囲
においては特性曲線の形状がかなり異なるが、この電圧
範囲より高いドレイン電圧VD8については両者は類似
した伝達特性を示すことがわかる。特にゲート閾値電圧
については両者の値はよく一致している。
First, the characteristics of the monitor element shown in Fig. 4(b) ((+)
Compared to the characteristics of the circuit element shown in Figure 3, since Schittke junction material is used for the source electrode 29 and drain electrode 30 of the monitor element, the n+ type regions 25 and 26 in contact with these have an extremely high carrier concentration. The drain voltage VD is higher than that of the circuit element which is the original FET, although it has been increased.
Even if S is applied, the saturated drain current ID8B is still 3/4
It can be seen that although the shapes of the characteristic curves are quite different in the range where the drain voltage Vns is extremely low and the drain voltage Vns is very low, the two exhibit similar transfer characteristics for the drain voltage VD8 higher than this voltage range. In particular, the values of both gate threshold voltages are in good agreement.

また第4図(a)に示したモニタ素子の特性は先に述べ
た(b)に示した特性より回路素子との差が大きくなり
飽和ドレイン電流ID8Sも1/2程度ではあるが、な
おゲート閾値電圧は一致している。
Furthermore, the characteristics of the monitor element shown in FIG. 4(a) have a larger difference from those of the circuit element than those shown in FIG. 4(b), and the saturated drain current ID8S is about 1/2, The threshold voltages are matched.

従ってこれらのモニタ素子の特性より目的とする回路素
子のゲート閾値電圧vthを予め知ること15− ができ、またモニタ素子と回路素子との特性の相関を予
めめておくことによって、ドレイン電流ID58.、)
ランスコンダクタンスgm、 ピンチオフ電圧Vpなど
の特性を高い精度で推定することができる。
Therefore, it is possible to know the gate threshold voltage vth of the target circuit element in advance from the characteristics of these monitor elements, and by determining the correlation between the characteristics of the monitor element and the circuit element in advance, the drain current ID58. ,)
Characteristics such as lance conductance gm and pinch-off voltage Vp can be estimated with high accuracy.

本発明により早期に回路素子の特性を推定することによ
って、(イ)特性に従って分類し、目的に応じて選択的
lこ以降の製造工程を進行する。(ロ)前記第1のモニ
タ時点では回路素子のソース及びドレイン領域形成の条
件、すなわち不純物のドーズ量。
By estimating the characteristics of circuit elements at an early stage according to the present invention, (a) they are classified according to their characteristics, and subsequent manufacturing steps are selectively performed according to the purpose. (b) At the time of the first monitoring, the conditions for forming the source and drain regions of the circuit element, that is, the dose of impurities.

加速エネルギーの大きさ、加熱処理温度及び時間の何れ
かを調整する。(ハ)何れのモニタ時点においても、こ
れに先立つ活性化加熱処理を控え目にしておき、再度の
加熱処理を選択的に実施する。などの手段を採用してG
aAs MES FETを含む半導体装置の特性、特に
そのばらつき及び生産性を向上することができる。
Adjust either the magnitude of acceleration energy, heat treatment temperature, or time. (c) At any monitoring point, the previous activation heat treatment is kept to a minimum, and the heat treatment is selectively performed again. By adopting methods such as
The characteristics of a semiconductor device including an aAs MES FET, particularly its variation and productivity, can be improved.

なお前記実施例においては、最も高キャリア濃度のn+
型領領域モニタ素子のみに形成しているが、このn 型
領域形成の際に回路素子について、ゲー16− ト領域に影響を及ぼさない範囲に限定してそのソース及
びドレイン領域にこの高キャリア濃度のn+型領領域設
けることによって、そのオーミック接触抵抗を低減して
特性を改善する効果が得られる。
In the above embodiment, n+ with the highest carrier concentration
Although it is formed only in the type region monitoring element, when forming this n-type region, this high carrier concentration is applied to the source and drain regions of the circuit element only to the extent that it does not affect the gate region. By providing the n+ type region, it is possible to reduce the ohmic contact resistance and improve the characteristics.

(g) 発明の詳細 な説明した如く本発明によれば、GaAaMESFET
を含む半導体装置の製造工程において早期にそのFET
素子の特性を高い精度をもって推定することが可能とな
り、該半導体装置の特性の改善。
(g) According to the present invention, as described in the detailed description of the invention, a GaAa MESFET
early in the manufacturing process of semiconductor devices including
It becomes possible to estimate the characteristics of the element with high accuracy, and the characteristics of the semiconductor device are improved.

生産性及び工程の安定性の向上を推進する効果を収める
ことができる。
This can have the effect of promoting improvements in productivity and process stability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)乃至(1)はGaAsMES FETの製
造方法の例を示す断面図、第2図(a)及び(b)は本
発明の実施例におけるモニタ素子の例を示す平面図及び
断面図、第3図(a)乃至(f)は本発明の特徴とする
部分についてその実施例を示す断面図、第4図(a)及
び(b)は前記実施例のモニタ素子について、同図(c
)は完成した回路素子についてその特性の例を示す図で
ある。 図において、21は半絶縁性GaAs基板、23&及び
23bはnuチャネル領域、 25はモニタ素子のn+
型ソース領域、26はモニタ素子のn+型ドレイン領域
、28a及び28bはゲート電極、29はモニタ素子の
ソース電極、30はモニタ素子のドレイン電極、32は
回路素子のn+型ソース領域。 33は回路素子のn型トレイン領域、34及び35は回
路素子のソース及びドレイン領域と同等に形成されたn
型領域を示す。 19− 348− カ リ
FIGS. 1(a) to (1) are cross-sectional views showing an example of a method for manufacturing a GaAsMES FET, and FIGS. 2(a) and (b) are a plan view and a cross-sectional view showing an example of a monitor element in an embodiment of the present invention. 3(a) to 3(f) are cross-sectional views showing an embodiment of the characteristic portion of the present invention, and FIGS. 4(a) and 4(b) are sectional views of the monitor element of the above embodiment. (c
) is a diagram showing an example of the characteristics of a completed circuit element. In the figure, 21 is a semi-insulating GaAs substrate, 23& and 23b are nu channel regions, and 25 is an n+ monitor element.
26 is an n+ type drain region of the monitor element, 28a and 28b are gate electrodes, 29 is a source electrode of the monitor element, 30 is a drain electrode of the monitor element, and 32 is an n+ type source region of the circuit element. 33 is an n-type train region of the circuit element, and 34 and 35 are n-type train regions formed similarly to the source and drain regions of the circuit element.
Indicates type area. 19- 348- Kali

Claims (3)

【特許請求の範囲】[Claims] (1)化合物半導体基体上にシmy)キ接合型電界効果
トランジスタの回路素子とモニタ素子とを備えて、前記
モニタ素子が、前記回路素子のソース及びドレイン領域
と同等以上のキャリア濃度のソース及びドレイン領域と
、前記回路素子及びモニタ素子のゲート電極と同一材料
よりなるソース及びドレイン電極とを備えてなることを
特徴とする半導体装置。
(1) A circuit element and a monitor element of a junction field effect transistor are provided on a compound semiconductor substrate, and the monitor element has a source and drain region having a carrier concentration equal to or higher than that of the source and drain regions of the circuit element. 1. A semiconductor device comprising: a drain region; and source and drain electrodes made of the same material as the gate electrodes of the circuit element and monitor element.
(2)砒化ガリウム半導体基体に、回路素子とする電界
効果トランジスタ及びモニタ素子とする電界効果トラン
ジスタのチャネル領域を相互に同等に形成し、前記モニ
タ素子のソース及びドレイン領域を前記回路素子に形成
すべきソース及びドレイン領域と同等以上のキャリア濃
度に形成し、前記チャネル領域との間にショットキ接合
が形成される材料を用いて、前記回路素子及び前記モニ
タ素子の前記チャネル領域上に相互に同等なゲート電極
と前記モニタ素子のソース領域上にソース電極と前記ド
レイン領域上にドレイン電極とを配設し、前記モニタ素
子の各電極の接触領域に測定探針をあてて該モニタ素子
の特性測定を行なうことを特徴とする半導体装置の製造
方法。
(2) Channel regions of a field effect transistor as a circuit element and a field effect transistor as a monitor element are formed in a gallium arsenide semiconductor substrate to be equivalent to each other, and source and drain regions of the monitor element are formed in the circuit element. The channel regions of the circuit element and the monitor element are formed using a material having a carrier concentration equal to or higher than that of the source and drain regions, and a Schottky junction is formed between the source and drain regions. A source electrode is disposed on the gate electrode and the source region of the monitor element, and a drain electrode is disposed on the drain region, and a measurement probe is applied to the contact area of each electrode of the monitor element to measure the characteristics of the monitor element. 1. A method of manufacturing a semiconductor device, characterized in that:
(3)前記回路素子のソース及びドレイン領域を前記ゲ
ート電極に位置を整合して形成し、かつ前記モニタ素子
において、前記ゲート電、極に位置を整合して前記チャ
ネル領域及び前記ソース領域と前記ドレイン領域それぞ
れに接し、前記回路素子のソース及びドレイン領域と同
等のキャリア濃度を有する領域を形成し、しかる後に該
モニタ素子について前記特性測定を行なうことを特徴と
する特許請求の範囲第2項記載の半導体装置の製造方法
(3) The source and drain regions of the circuit element are formed in alignment with the gate electrode, and in the monitor element, the source and drain regions are aligned in alignment with the gate electrode and the gate electrode, and the channel region and the source region are formed in alignment with the gate electrode. Claim 2, characterized in that a region is formed in contact with each drain region and has a carrier concentration equivalent to that of the source and drain regions of the circuit element, and then the characteristic measurement is performed on the monitor element. A method for manufacturing a semiconductor device.
JP15736383A 1983-08-29 1983-08-29 Semiconductor device and manufacture thereof Pending JPS6049674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15736383A JPS6049674A (en) 1983-08-29 1983-08-29 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15736383A JPS6049674A (en) 1983-08-29 1983-08-29 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6049674A true JPS6049674A (en) 1985-03-18

Family

ID=15648017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15736383A Pending JPS6049674A (en) 1983-08-29 1983-08-29 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6049674A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5514606A (en) * 1994-07-05 1996-05-07 Motorola Method of fabricating high breakdown voltage FETs
US7087981B2 (en) * 2002-04-19 2006-08-08 Infineon Technologies Ag Metal semiconductor contact, semiconductor component, integrated circuit arrangement and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5514606A (en) * 1994-07-05 1996-05-07 Motorola Method of fabricating high breakdown voltage FETs
US7087981B2 (en) * 2002-04-19 2006-08-08 Infineon Technologies Ag Metal semiconductor contact, semiconductor component, integrated circuit arrangement and method
US7560783B2 (en) 2002-04-19 2009-07-14 Infineon Technologies Ag Metal-semiconductor contact, semiconductor component, integrated circuit arrangement and method

Similar Documents

Publication Publication Date Title
US4377030A (en) Metallization of selectively implanted AIII -BV compound semiconductors
JPS60154674A (en) Manufacture of electronic device
US5587328A (en) Method for manufacturing semiconductor device
US4701422A (en) Method of adjusting threshold voltage subsequent to fabrication of transistor
JPS6049674A (en) Semiconductor device and manufacture thereof
KR100370987B1 (en) Compound semiconductor device and method for controlling characteristics of the same
JPS616871A (en) Manufacture of field-effect transistor
JP3018791B2 (en) Method for manufacturing field effect transistor
JPS6057980A (en) Manufacture of semiconductor device
JP3107681B2 (en) Etching control method for recess structure FET
KR940002402B1 (en) Manufacturing method of self-aligned gate trench mosfet
JPS6195571A (en) Manufacture of semiconductor device
JPS6218071A (en) Manufacture of semiconductor element
JP2000174292A (en) Manufacture of semiconductor element
JPS62211956A (en) Manufacture of field-effect transistor
JP2000200759A (en) Manufacture of semiconductor device
JP3105325B2 (en) Method for manufacturing semiconductor device
JPH03141651A (en) Manufacture of field-effect transistor
JPS58145161A (en) Manufacture of semiconductor device
JPS6038883A (en) Manufacture of schottky gate type field effect transistor
JPH0810698B2 (en) Manufacturing method of lateral junction field effect transistor
JPS59103353A (en) Manufacture of semiconductor device
JPS60132377A (en) Manufacture of semiconductor device
JPH03109725A (en) Manufacture of semiconductor device
JPS6298780A (en) Manufacture of self-aligning gaas digital integrated circuit